
Analysis of Random Oracle Instantiation

Scenarios for OAEP and other Practical Schemes

Alexandra Boldyreva1 and Marc Fischlin2 ∗

1College of Computing, Georgia Institute of Technology,
801 Atlantic Drive, Atlanta, GA 30332, USA

aboldyre@cc.gatech.edu www.cc.gatech.edu/~aboldyre

2Institute for Theoretical Computer Science, ETH Zürich, Switzerland
marc.fischlin@inf.ethz.ch www.fischlin.de

August 12, 2005

Abstract

We investigate several previously suggested scenarios of instantiating random oracles
(ROs) with “realizable” primitives in cryptographic schemes. As candidates for such “in-
stantiating” primitives we pick perfectly one-way hash functions (POWHFs) and verifiable
pseudorandom functions (VPRFs). Our analysis focuses on the most practical encryption
schemes such as OAEP and its variant PSS-E and the Fujisaki-Okamoto hybrid encryption
scheme. We also consider the RSA Full Domain Hash (FDH) signature scheme. We first
show that some previous beliefs about instantiations for some of these schemes are not true.
Namely we show that, contrary to Canetti’s conjecture, in general one cannot instantiate
either one of the two ROs in the OAEP encryption scheme by POWHFs without losing
security. We also confirm through the FDH signature scheme that the straightforward
instantiation of ROs with VPRFs may result in insecure schemes, in contrast to regular
pseudorandom functions which can provably replace ROs (in a well-defined way). But un-
like a growing number of papers on negative results about ROs, we bring some good news.
We show that one can realize one of the two ROs in a variant of the PSS-E encryption
scheme and either one of the two ROs in the Fujisaki-Okamoto hybrid encryption scheme
through POWHFs, while preserving the IND-CCA security in both cases (still in the RO
model). Although this partial instantiation in form of substituting only one RO does not
help to break out of the random oracle model, it yet gives a better understanding of the
necessary properties of the primitives and also constitutes a better security heuristic.

∗Part of the work done while both authors were at the University of California, San Diego. The second author
was supported by the Emmy Noether Programme Fi 940/1-1 of the German Research Foundation (DFG).

1

1 Introduction

The random oracle (RO) model, introduced by Fiat and Shamir [16] and refined by Bellare
and Rogaway [5], has been suggested as a trade-off between provable security and practical
requirements for efficiency. Schemes and proofs in this nowadays well-established model make the
idealized assumption that all parties have oracle access to a truly random function. Availability
of such a random oracle often allows to find more efficient solutions than in the standard model.
In practice, it is then assumed that the idealized random function is instantiated through a
“good” cryptographic hash function, like SHA-1 or a variation thereof.

The random oracle methodology has gained considerable attention as a design method. Nu-
merous cryptographic schemes proven secure in the RO model have been proposed and some of
them are implemented and standardized. The best known example is presumably the OAEP
encryption scheme [6, 19]. However, even though a RO-based scheme instantiated with a “good”
hash function is usually believed to remain secure in the standard model, proofs in the RO model
do not technically guarantee this, but merely provide some evidence of security.

Moreover, several recent works [10, 22, 24, 3, 20] raised concerns by proving that the random
oracle model is not sound. Here lack of soundness refers to the situation when a scheme allows
a security proof in the random oracle model but any instantiation of the scheme with any real
function family is insecure in the standard model. Such schemes are called “uninstantiable”
in [3]. While these results are certainly good reminders about the gap between the RO model
and the standard model, the defenders of the RO model and practitioners are assured by the
fact that most uninstantiable schemes involve somewhat esoteric examples, in terms of either a
construction or sometimes with respect to a security goal.

Towards Instantiating Random Oracles for Practical Schemes. In this work we
continue to study security of instantiated schemes designed in the RO model. But unlike the
aforementioned works we turn our attention to the most practical cryptographic schemes such
as OAEP encryption, the full domain hash (FDH) signature scheme, hybrid encryption schemes
obtained via Fujisaki-Okamoto transform [18] and the PSS-E encryption scheme, an OAEP
variant due to Coron et al. [13]. Our goal is different, too. We do not show that these schemes
are uninstantiable (this would be really bad news). It also seems unrealistic to instantiate these
schemes such that they are still efficient and provably secure in the standard model (though this
would be great news). Rather, we investigate several possible instantiation scenarios for to these
practical schemes somewhere in between.

As candidates for substituting random oracles we consider two primitives with known con-
structions whose security definitions capture various strong properties of the ideal random ora-
cles, and which have actually been suggested as possible instantiations of random oracles [9, 14].
These are the perfectly one-way hash functions (POWHFs) [9, 11] and verifiable pseudorandom
functions (VPRFs) [23].

The notion of perfectly one-way hash functions has been suggested by Canetti [9] (and was
originally named “oracle hashing”) to identify and realize useful properties of random oracles.
POWHFs are special randomized collision-resistant one-way functions which hide all information
about preimages. Canetti [9], and subsequently [11, 17], gave several constructions of such
POWHFs, based on specific number-theoretic and on more general assumptions. Usually, these
POWHFs satisfy another property that requires the output look random, even to an adversary
who knows “a little” about the inputs. We will refer to such POWHFs as pseudorandom. In [9]

2

it is proved that a hybrid encryption scheme of Bellare and Rogaway [5] secure against chosen-
plaintext attacks (IND-CPA secure) can be securely instantiated with a pseudorandom POWHF,
and Canetti conjectured that one could also replace one of the two random oracles in OAEP by
a POWHF without sacrificing security against chosen-ciphertext attacks (IND-CCA security) in
the RO model.

Verifiable pseudorandom functions have been proposed by Micali et al. in [23]. They resemble
pseudorandom functions in that their outputs look random. But their outputs also include proofs
that allow verifying the correctness of the outputs with respect to a previously announced public
key. In contrast to POWHFs, which are publicly computable given the inputs, VPRFs involve
a secret key and therefore their global usage requires the participation of a third party or a
device with a tamper-proof key. It is folklore that a secure RO scheme instantiated with a PRF
implemented by a third party, will remain secure in the standard model. As suggested in [14]
an application scenario for VPRFs is a trusted third party implementing a VPRF, say, through
a web interface. Now the correctness of the given image can be verified with the consistency
proof, and this can be done locally, without further interactions with the third party. We note
that this scenario is suitable mostly for digital signatures and not encryption schemes, as the
third party has to know the inputs.

Negative Results. In this work we show that the above intuition about securely replacing
random oracles by the aforementioned primitives may be incorrect. We first disprove Canetti’s
[9] conjecture for the OAEP encryption scheme [6] saying that one can instantiate one of the
two RO in the OAEP scheme without losing security (still in the RO model). Recall that, in
the OAEP scheme with a (partial one-way) trapdoor permutation f , a ciphertext is of the form
C = f(s||t) for s = G(r)⊕M ||0k and t = r ⊕H(s) for random r. For the security proof of
OAEP it is assumed that both G and H are modeled as random oracles.

We prove that, with respect to general (partial one-way) trapdoor permutations f , one cannot
replace either of the two random oracles G, H in OAEP by arbitrary pseudorandom POWHFs
without sacrificing chosen-ciphertext security. Our negative result follows Shoup’s idea to identify
weaknesses in the original OAEP security proof [26], and holds relative to a malleable trapdoor
function oracle from which a specific function f is derived. Yet, unlike [26], we consider partial
one-way functions f which suffice to prove OAEP to be IND-CCA in the random oracle model
[19]. Our construction also requires to come up with a malleable yet pseudorandom POWHF.
We note that our impossibility result is not known to hold for the special case of the RSA
function f : x 7→ xe mod N , yet indicates that further assumptions about the RSA function may
be necessary to replace one of the random oracles by a POWHF.

The idea for OAEP can be also applied to the Full Domain Hash (FDH) signature scheme,
where signatures are of the form S = f−1(H(M)). Transferring our OAEP result shows that for
a specific class of trapdoor permutations f the instantiation of the RO H through a POWHF
can result in an insecure implementation. But here we also show that FDH becomes insecure
when H is instantiated the obvious way with a VPRF, even for any trapdoor permutation f
such as RSA. By obvious we mean that the pseudorandom value H(M) and its correctness
proof π is concatenated with the signature S, such that one can verify the signature’s validity by
verifying π and checking that f(S) = H(M). Note that VPRFs already provide secure signatures
directly, so substituting the random oracle by a VPRF in a signature scheme seems to be moot.
However, our goal is to see if VPRFs are a good instantiation in general. Second, one might
want additional properties of the signature scheme which FDH gives but not the VPRF, e.g., if

3

used as a sub-protocol in Chaum’s blind signature scheme [12]. We note that, independently of
our work, [15] obtained a related result about FDH signatures, showing that any instantiation
of H fails relative to a specific trapdoor function oracle f (whereas our result holds for arbitrary
trapdoor functions such as RSA but for a specific instantiation candidate).

Positive Results. Our results show that the RO model is very demanding and even functions
with extremely strong properties often cannot securely replace random oracles. However this
does not mean that no real function family can be securely used in place of any random oracle.
As mentioned, Canetti [9] for example shows how to instantiate an IND-CPA secure encryption
scheme through pseudorandom POWHFs. Accordingly, we look beyond our negative results and
present some positive results, but this time for IND-CCA secure encryption schemes.

We first show the following positive results for a variation of the PSS-E encryption scheme
introduced by Coron et al. [13]. In the original PSS-E encryption scheme ciphertexts are given
by C = f(ω||s) for ω = H(M ||r) and s = G(ω)⊕M ||r. The PSS transform has been originally
proposed by Bellare and Rogaway in the RSA-based signature scheme with message recovery [7].
Coron et al. showed that PSS is a universal transform in that it can also be used for RSA-based
encryption for random oracles G, H, achieving chosen-ciphertext security as an alternative to
OAEP.

Here we consider a variation PSS-I, where ciphertexts have the form (f(ω), s) for ω =
H(M ||r) and s = G(ω)⊕M ||r, i.e., where the s-part is moved outside of the trapdoor per-
mutation. We prove that for any trapdoor function f the random oracle G can be instantiated
(hence the name PSS-I) with a pseudorandom POWHF such that the scheme remains IND-CCA
secure (in the RO model). Interestingly, this also comes with a weaker assumption about the
function f . While the original PSS-E scheme has been proven secure for partial one-way trap-
door permutations, our scheme PSS-I (with the G-instantiation through a POWHF) works for
any trapdoor permutation f . A similar observation was made in [21] for OAEP. Concerning the
substitution of the H-oracle (even if G is assumed to be a random oracle) we were neither able
to prove or disprove that this oracle can be instantiated by some primitive with known construc-
tion. We remark that this result about PSS-I is in sharp contrast to OAEP where neither oracle
can be replaced by such a POWHF.

As an example where we can replace two random oracles (individually) we discuss the Fujisaki-
Okamoto transformation [18] for combining asymmetric and symmetric encryption schemes,
where a ciphertext is given by C = (Easym(pk, σ;H(σ,M)), Esym(G(σ),M)) for random σ. It
provides an IND-CCA secure hybrid encryption under weak security properties of the two en-
cryption schemes (for random oracles G, H). We show that the scheme remains IND-CCA secure
in the RO model if the oracle G is instantiated with a pseudorandom POWHF. We also show
that one can instantiate oracle H through a POWHF (for random oracle G) but this requires
a strong assumption about the joint security of the POWHF and the asymmetric encryption
scheme. Hence, for the Fujisaki-Okamoto transformation both random oracles can be instanti-
ated separately (albeit under a very strong assumption in case of the H oracle).

Our technical results do not mean that one scheme is “more” or “less” secure than the other
one, just because one can substitute one random oracle by a primitive like POWHFs. In our
positive examples there are usually two random oracles and, replacing one, the resulting scheme
is still cast in the random oracle model. Yet, we believe that attenuating the assumption is
beneficial, as substituting even one oracle by more “down-to-earth” cryptographic primitives
gives a better understanding of the required properties, and it also provides a better heuristic

4

than merely assuming that the hash function behaves as a random oracle.

Organization. We give the basic definitions of the two primitives, POWHFs and VPRFs,
in Section 2. In Section 3 we show our negative result about instantiating one of the random
oracles in OAEP through a POWHF. We then show that in Section 4 that PSS-I admits such
an instantiation for one oracle. Section 5 presents the Fujisaki-Okamoto transformation as an
example of a scheme where we can replace both random oracles by POWHFs. The FDH scheme
and its instantiation through VPRFs are discussed in Section 6. In the body of the paper we
usually present proof ideas only; the full proofs are given in the Appendix.

2 Preliminaries

If x is a binary string, then |x| denotes its length, and if n ≥ 1 is an integer, then |n| denotes
the length of its binary encoding, meaning the unique integer ` such that 2`−1 ≤ n < 2`. The
string-concatenation operator is denoted “‖”. By 〈i〉k we denote the standard fixed-length binary
encoding of numbers i = 0, 1, . . . , 2k − 1 with k bits. If x is a k-bit binary string then x[i] for
0 ≤ i ≤ k − 1 denotes its i-th most significant bit.

If S is a set then x
$← S means that the value x is chosen uniformly at random from S.

More generally, if D is a probability distribution on S then x
D← S means that the value x is

chosen from set S according to D. If A is a randomized algorithm with a single output then
x

$← A(y, z, . . .) means that the value x is assigned the output of A for input (y, z, . . .). We
let [A(y, z, . . .)] denote the set of all points having positive probability of being output by A on
inputs y, z, etc. A (possibly probabilistic) algorithm is called efficient if it runs in polynomial
time in the input length (which, in our case, usually refers to polynomial time in the security
parameter).

In Appendix A we recall the definitions of asymmetric encryption schemes, their security
against chosen-plaintext attacks (IND-CPA security) and chosen-ciphertext attacks (IND-CCA
security). We also specify deterministic symmetric encryption schemes, also known as data en-
capsulation mechanisms or one-time symmetric encryption schemes, and their IND-CPA security
(that is a weaker notion than the standard IND-CPA security), and of digital signature schemes
and their security against existential unforgeability under chosen-message attacks.

For simplicity we give all definitions in the standard model. To extend these definitions to
the random oracle model, all algorithms including the adversary get oracle access to one or more
random functions G, H, . . . , drawn from the set of all mappings from domain Ak to some range
Bk (possibly distinct for different oracles). Here, the parameter k and therefore the domain and
the range are usually determined by the cryptographic scheme in question.

2.1 Perfectly One-Way Hash Functions

Perfectly one-way hash functions describe (probabilistic) collision-resistant hash functions with
perfect one-wayness. The latter refers to the strong secrecy of a preimage x, even if some addi-
tional information about x besides the hash value are known. For this purpose [9] introduces the
notion of a function hint which captures these side information. One assumes, though, that it is
infeasible to recover the entire value x from hint(x), else the notion becomes trivial. More for-
mally, a (possibly randomized) function hint : {0, 1}m(k) → {0, 1}n(k), where m,n are polynomi-

5

als, is uninvertible with respect to a probability distribution X = (Xk)k∈N if for any probabilistic
polynomial-time adversary I and x taken from Xk, the probability Pr

[
I(1k, hint(x)) = x

]
is

negligible in k.
In the sequel we usually restrict ourselves to efficient and sufficiently smooth distributions.

That is, a probability distribution X = (Xk)k∈N is efficient if it can be computed in polynomial
time in k; it is well-spread if the min-entropy of X is superlogarithmic in k.

Definition 2.1 [Perfectly One-Way Hash Function] Let K be an efficient key generation
algorithm that takes input 1k for k ∈ N and outputs a function key K of length l(k); let H be an
efficient evaluation algorithm that takes a function key K, input x ∈ {0, 1}m(k) and randomness
r ∈ Coins(K) for some fixed polynomial m(k) and returns a hash value y ∈ {0, 1}n(k); let V be an
efficient verification algorithm that takes a function key K, an input x ∈ {0, 1}m(k) and a hash
value y ∈ {0, 1}n(k) and outputs a decision bit. The tuple POWHF = (K,H,V) is called a perfectly
one-way hash function (with respect to the well-spread, efficient distribution X = (Xk)k∈N and
the uninvertible function hint) if the following holds:

1. Completeness: For any k ∈ N, any key K ∈ [K(1k)], any r ∈ Coins(K), any x ∈ {0, 1}m(k)

we have V(K, x,H(K, x, r)) = 1.

2. Collision-resistance: For every efficient adversary C the following holds. For k ∈ N pick
K

$← K(1k) and let (x, x′, y) $← C(K). Then Pr [V(K, x, y) = 1 ∧ V(K, x′, y) = 1
∧ x 6= x′] is negligible in k.

3. Perfect one-wayness (with respect to X , hint): For any efficient adversary A with binary
output the following random variables are computationally indistinguishable:

• Let K
$← K(1k), r

$← Coins(K), x
Xk← {0, 1}m(k). Output (K, x,A(K, hint(x),

H(K, x, r))).

• Let K
$← K(1k), r

$← Coins(K), x, x′
Xk← {0, 1}m(k). Output (K, x,A(K, hint(x),

H(K, x′, r))).

The perfectly one-way hash function may have the following additional properties:

4. Public randomness: The function H can be written as H(K, x, r) = (r,Hpr(K, x, r)) for
another function Hpr : {0, 1}l(k) × {0, 1}m(k) × Coins(K) → {0, 1}n(k)−|r| for any k ∈ N,
any K ∈ [K(1k)], any x ∈ {0, 1}m(k) and any r ∈ Coins(K).

5. Pseudorandomess (with respect to X , hint): The function’s output is pseudorandom, i.e.,
the following random variables are computationally indistinguishable:

• Let K
$← K(1k), r

$← Coins(K), x
Xk← {0, 1}m(k). Output (K, hint(x),H(K, x, r)).

• Let K
$← K(1k), x

Xk← {0, 1}m(k), and U
$← {0, 1}n(k). Output (K, hint(x), U).

As pointed out in [9] the notion of an uninvertible function is weaker than the one of a
one-way function. For example, hint(·) = 0, which reveals no information about x, is uninvert-
ible but not one-way. We call this function the trivial uninvertible function. In fact, several
constructions of POWHF based on the Decisional Diffie-Hellman assumption [9] and on more
general assumptions like one-way permutations and regular hash functions [9, 11, 17] have been

6

suggested in the literature. They are provably pseudorandom POWHFs with respect to trivial
uninvertible function hint. For other uninvertible functions hint they are conjectured to remain
secure, yet a formal proof is missing.

In this paper we will mostly consider perfectly one way function families with public random-
ness as this is a way to ensure correct function re-computation on the same input by different
parties, as required for the functionality of some encryption schemes. All previous constructions
[9, 11, 17] have been designed to meet this notion. For simplicity we will often use the notation
y ← HK(x, r) for y ← H(K, x, r) and y

$← HK(x) for r
$← Coins(K), y ← H(K, x, r), and we

often define a hash function with public randomness by just specifying Hpr.

2.2 Verifiable Pseudorandom Functions

A verifiable pseudorandom function, defined in [23], is a pseudorandom function with an addi-
tional public key allowing to verify consistency of values. Any value for which one has not seen
the proof should still look random:

Definition 2.2 [Verifiable Pseudorandom Function] Let K be an efficient key generation
algorithm that takes input 1k for k ∈ N and outputs a function key and a verification key (fk, vk);
let H be an efficient evaluation algorithm that takes the key fk, input x ∈ {0, 1}∗ and returns the
output y ∈ {0, 1}n(k) and a proof π ∈ {0, 1}l(k) for some fixed polynomials l, n; let V be an efficient
verification algorithm that takes vk, x, y and π and returns a bit. The triple VPRF = (K,H,V)
is called a verifiable pseudorandom function if the following holds:

1. Completeness: For any (vk, fk) ∈ [K(1k)], x ∈ {0, 1}∗ and (y, π) ∈ [H(fk, x)], V(vk, x, y, π) =
1.

2. Uniqueness: There exists a negligible function ν(·) such that for any vk (possibly not gen-
erated according to K(1k)), any x ∈ {0, 1}∗, y0 6= y1 ∈ {0, 1}n(k), π0, π1 ∈ {0, 1}l(k) we have
Pr [V(vk, x, yb, πb) = 1] ≤ ν(k) for either b = 0 or b = 1.

3. Pseudorandomness: For any efficient algorithm A that has access to an oracle and the
following experiment

Experiment Expvprf-ind
VPRF,A (1k)

b
$← {0, 1}

(fk, vk) $← K(1k)
(x, state) $← AH(fk,·) where x has never been submitted to oracle H(fk, ·)
If b = 0 then (y, π) $← H(fk, x) else y

$← {0, 1}n(k) EndIf
d

$← AH(fk,·)(y, state) where x has never been submitted to oracle H(fk, ·)

the difference Pr
[
Expvprf-ind

VPRF,A (1k) = b
]
− 1/2 is negligible in k.

3 (In)Security of OAEP Instantiations

Here we show that, for general trapdoor permutations, instantiating any of the two random
oracles in OAEP with a pseudorandom POWHF does not yield a secure scheme.

7

3.1 OAEP Encryption Scheme

We first recall the OAEP encryption scheme [6]. It is parameterized by integers k, k0 and k1

(where k0, k1 are linear in k) and makes use of a trapdoor permutation family F with domain
and range {0, 1}k and two random oracles

G : {0, 1}k0 → {0, 1}k−k0 and H : {0, 1}k−k0 → {0, 1}k0

The message space is {0, 1}k−k0−k1 . The scheme OAEPG,H [F] = (EK, E ,D) are defined as
follows:

• key generation EK(1k) : Pick a permutation f from F at random. Let pk specify f and
let sk specify f−1.

• encryption E(pk,M) : Compute r
$← {0, 1}k0 , s ← (m‖0k1)⊕G(r) and t ← r ⊕H(s).

Output C ← f(s||t).

• decryption D(sk, C) : Compute s‖t ← f−1(C), r ← t⊕H(s) and M ← s⊕G(r). If the
last k1 bits of M are zeros, then return the first k − k0 − k1 bits of M . Otherwise, return
⊥.

The encryption scheme OAEPG,H [F] is proven to be IND-CCA secure in the RO model if the
underlying permutation family F is partial one-way [19]. Partial one-wayness is a stronger notion
than one-wayness; for the definitions see [19].

3.2 Insecurity of Instantiating the G-Oracle in OAEP with POWHFs

We first consider the OAEP scheme where the G-oracle is instantiated with a pseudorandom
POWHF. Informally, a key specifying an instance of POWHF becomes a part of the public key
and each invocation of the G-oracle is replaced with the function evaluation, such that in the
encryption algorithm a new randomness for the function evaluation is picked and becomes part
of the ciphertext, and in the decryption algorithm the function is re-computed using the given
randomness. More formally:

Let POWHF = (K,G,V), where K : {1k|k ∈ N} → {0, 1}k, G : {0, 1}k×{0, 1}k0×Coins(K)→
{0, 1}k−k0 and V : {0, 1}k×{0, 1}k0 ×{0, 1}k−k0 → {0, 1}, be a perfectly one-way pseudorandom
hash function with public randomness. An instantiation of the G-oracle in the OAEPG,H [F]
encryption scheme with POWHF = (K,G,V) results in the following scheme OAEPPOWHF,H [F] =
(EK, E ,D):

• EK(1k) : Pick a random permutation f on {0, 1}k and sample a POWHF key K
$← K(1k).

Let pk specify f and also contain K, and let sk specify f−1 and also contain K.

• E(pk,M) : Pick randomness r
$← {0, 1}k0 for encryption and rG

$← Coins(K) for the
POWHF. Compute y ← Gpr

K (r, rG), s ← (M‖0k1)⊕ y and t ← r ⊕H(s). Let C ← f(s||t)
and output (rG , C).

• D(sk, (rG , C)) : Compute s‖t← f−1(C), r ← t⊕H(s), M ← s⊕ Gpr(r, rG). If the last k1

bits of M are zeros, then return the first k − k0 − k1 bits of M . Otherwise, return ⊥.

8

We note that for simplicity we assume that rG , the randomness output by GK , is a public part of
the ciphertext. If it was possible to tamper this value rG into r′G for a given ciphertext, such that
this yields the same hash value, Gpr

K (r, rG) = Gpr
K (r, r′G), then it would be obviously easy to mount

a successful chosen-ciphertext attack. To prevent such attacks one can in principle demand that
such collisions for the hash function are infeasible to find —most known constructions [9, 11, 17]
have this additional property— or one can protect rG by some other means. We do not complicate
the instantiation here, as our attack already succeeds without changing rG , e.g., the attack would
even work if rG was encrypted (separately or inside f) or authenticated.

Intuition. Before we present our results in detail we provide some intuition. First we construct
malleable POWHFs, i.e., for which GK(x, r)⊕∆ = GK(x⊕ δ, r) for some δ,∆. We show how to
construct such primitives in Appendix B.1. Our construction assumes that one-way permutations
exist and employs the pseudorandom function tribe ensembles of [17] (which is one possibility to
build POWHFs). Assume that either RO in the OAEPG,H [F] encryption scheme is instantiated
with such a POWHF. Here F is a partial one-way trapdoor permutation family. Now given
the challenge ciphertext C∗ = f(s∗‖t∗) of some message Mb where f is an instance of F , an
adversary A can find δ,∆ such that C = f((s∗‖t∗)⊕ δ) is a valid encryption of Mb ⊕∆, and
given the decryption of this ciphertext one can easily compute Mb.

The only problem is that, although flipping bits by penetrating the POWHF is easy by
construction, A needs to be able to compute f((s∗‖t∗)⊕ δ) without knowing s∗‖t∗. Here we
use the idea of Shoup [26] about the existence of XOR-malleable trapdoor permutations which
allow such modifications. We note that the attack is not known to work for OAEP with the RSA
trapdoor family, but it nevertheless shows that security may fail in general if a RO is instantiated
with a POWHF.

Our approach is somewhat similar to the attacks Shoup used to show that for a XOR-
malleable one-way trapdoor permutation family F the encryption scheme OAEPG,H [F] is not
IND-CCA secure in the RO model. However, Shoup’s attack does not work if F is partial one
way, and, moreover, for such F the scheme OAEPG,H [F] has been proven IND-CCA secure in
the RO model [19]. Our attacks work even if F is partial one way.

Theorem 3.1 Let POWHF′ = (K′,G′,V ′) be a pseudorandom POWHF with public randomness
(with respect to the uniform distribution and some uninvertible function hint) and assume one-
way permutations exist. Then there exists a pseudorandom POWHF = (K,G,V) with public
randomness (with respect to the uniform distribution and hint) and an oracle relative to which
there is a partial one-way permutation family F , such that OAEPPOWHF,H [F], an instantiation
of the G-oracle in the OAEPG,H [F] encryption scheme with POWHF, is not IND-CCA in the
RO model.

We give a sketch of the proof. For the formal proof see Appendix B.2. Recall that we can
assume that POWHF is malleable in the sense that Gpr

K (x, r)⊕ 1||0n−1 = Gpr
K (x⊕ 1||0m−1, r)

for all k, x, r (we show how to construct such POWHFs from the given POWHF′ and one-way
permutations in Appendix B.1). We now define a compliant XOR-malleable permutation family.
We slightly strengthen the original definition of Shoup [26].

Definition 3.2 A permutation family F is XOR-malleable if there exists an efficient algorithm
U , such that on inputs a random instance permutation f from F with domain {0, 1}k and f(t)
for random t ∈ {0, 1}k and any δ ∈ {0, 1}k, algorithm U(f, f(t), δ) outputs f(t⊕ δ) with non-
negligible probability (in k).

9

Even though Shoup uses a weaker definition of XOR-malleability, where U ’s success probability
is also over the random choice of δ ∈ {0, 1}k, his proof in [26] is also valid for the stronger
Definition 3.2 with fixed δ:

Fact 3.3 ([26]) There exists an oracle relative to which XOR-malleable one-way trapdoor per-
mutations exist.

Now we are ready to prove the theorem of the insecure instantiation of the G-oracle in OAEP.
The idea is to construct the trapdoor permutation family F as f(s‖t) = f ′left(s)‖f ′right(t) for
random instances f ′left, f

′
right of the malleable family F ′. Then an adversary A gets a challenge

ciphertext (r∗G , C∗
left‖C∗

right) of one of two messages M0,M1, and invokes U to modify the right
part to Cright ← U(f ′right, C

∗
right, 1‖0k0−1). Submitting the ciphertext (r∗G , C∗

left‖Cright) to the
decryption oracle is a valid ciphertext for the message Mb ⊕ 1||0k−k0−k1−1 because for

(C∗
left||C∗

right) = (f ′left(s
∗)||f ′right(t

∗)), s∗ = Mb||0k0 ⊕ Gpr
K (r∗, r∗G), t∗ = r∗ ⊕H(s∗)

we have:

Cright = f ′right

(
t∗ ⊕ 1‖0k0−1

)
= f ′right

(
(r∗ ⊕ 1‖0k0−1)⊕H(s∗)

)
C∗

left = f ′left(s
∗) = f ′left

(
Mb||0k0 ⊕ Gpr

K (r∗, r∗G)
)

= f ′left
(
(Mb||0k0 ⊕ 1||0k−k0−1)⊕ (Gpr

K (r∗, r∗G)⊕ 1||0k−k0−1)
)

= f ′left
(
(Mb||0k0 ⊕ 1||0k−k0−1)⊕ Gpr

K (r∗ ⊕ 1‖0k0−1, r∗G)
)

The answer of the decryption oracle now allows to determine the bit b easily.

3.3 Insecurity of Instantiating the H-Oracle in OAEP with POWHFs

Let POWHF = (K,H,V), where K : {1k|k ∈ N} → {0, 1}k, H : {0, 1}k×{0, 1}k−k0×Coins(K)→
{0, 1}k0 and V : {0, 1}k×{0, 1}k−k0×{0, 1}k0 → {0, 1}, be a pseudorandom POWHF with public
randomness. An instantiation of the H-oracle in the OAEP encryption scheme with POWHF
results in the following encryption scheme OAEPG,POWHF[F] = (EK, E ,D):

• EK(1k) : Pick a random permutation f on {0, 1}k and sample a POWHF key K
$← K(1k).

Let pk specify f and also contain K, and let sk specify f−1 and also contain K.

• E(pk,M) : Pick randomness r
$← {0, 1}k0 for the encryption algorithm and compute

s ← (m‖0k1)⊕G(r). Pick randomness rH
$← Coins(K) for the POWHF, compute y ←

Hpr
K (s, rH) and t← r ⊕ y. Compute C ← f(s||t). Output (rH, C).

• D(sk, (rH, C)) : Compute s‖t ← f−1(C), r ← t⊕Hpr
K (s, rH) and M ← s⊕ G(r). If the

last k1 bits of M are zeros, then return the first k − k0 − k1 bits of M . Otherwise, return
⊥.

For substituting the H-oracle we obtain a similar insecurity result as for the case of G. However,
the proof (presented in Appendix B.3) is slightly different as we have to transform both ciphertext
parts.

10

Theorem 3.4 Let POWHF′ = (K′,H′,V ′) be a pseudorandom POWHFs with public random-
ness (with respect to the uniform distribution and some uninvertible function hint) and assume
one-way permutations exists. Then there exists a pseudorandom POWHF = (K,H,V) with pub-
lic randomness (with respect to the uniform distribution and hint), and there exists an oracle
relative to which there is a partial one-way permutation family F , such that OAEPG,POWHF[F],
an instantiation of the H-oracle in the OAEPG,H [F] encryption scheme with POWHF, is not
IND-CCA in the RO model.

4 Security of PSS-I Encryption Instantiations

In this section we show a positive result, allowing to replace one of the random oracles in our
PSS-E variation, called PSS-I, by a pseudorandom POWHF. We were unable to prove or disprove
that one can replace the other oracle in PSS-I.

4.1 The PSS-I Encryption Scheme

Coron et al. [13] suggested that the transformation used by the PSS signature scheme [7] can
also be used for encrypting with RSA. Here we consider the following variation PSS-I. This
scheme is parameterized by integers k, k0 and k1 (where k0, k1 are linear in k) and makes use
of an instance of a trapdoor permutation family with domain and range {0, 1}k (and it can be
easily adapted for other domains like Z∗

N for the RSA permutation). The scheme also uses two
random oracles

G : {0, 1}k1 → {0, 1}k−k1 and H : {0, 1}k−k1 → {0, 1}k1 .

The message space is {0, 1}k−k0−k1 . The scheme PSS-IG,H [F] is given by the following algo-
rithms:

• EK(1k) : Pick a random permutation f on {0, 1}k1 . Let pk specify f and let sk specify
f−1.

• E(pk,M) : Compute r
$← {0, 1}k0 , ω ← H(M‖r) and s ← G(ω)⊕ (M‖r). Compute

C ← f(ω) and output (C, s).

• D(sk, (C, s)) : Compute ω ← f−1(C), M‖r ← s⊕G(ω). If ω = H(M‖r) then return M .
Otherwise, return ⊥.

In the original PSS-E scheme [13] one computes f over both ω||s. We remark that our version
here seems to be less secure than the original scheme at first, as the value s is now given in the
clear. However, it nonetheless allows us to securely replace oracle G by a POWHF which we
were unable to do in the original scheme. Moreover, we can prove security of our instantiation
with respect to arbitrary trapdoor permutations, whereas the original scheme required partial
one-way trapdoor permutations.

4.2 Instantiating the G-Oracle in PSS-I with POWHFs

An instantiation of the G-oracle in the PSS-IG,H [F] encryption scheme with a pseudorandom
perfectly one-way hash function POWHF = (K,G,V) with public randomness results in the
following encryption scheme PSS-IPOWHF,H [F]=(EK, E ,D)

11

• EK(1k) : Pick a random permutation f on {0, 1}k1 and sample a POWHF key K
$← K(1k)

and randomness rG
$← Coins(K). Let pk specify f and also contain K, rG , and let sk

specify f−1 and also contain K, rG .

• E(pk,M) : Pick randomness r
$← {0, 1}k0 for the encryption algorithm and compute ω ←

H(M‖r). Compute s← Gpr
K (ω, rG)⊕ (M‖r) and C ← f(ω). Output (C, s).

• D(sk, (C, s)) : Compute ω ← f−1(C), M‖r ← s⊕ Gpr
K (ω, rG). If ω = H(M‖r) then return

M . Otherwise, return ⊥.

It is noteworthy that the randomness of the POWHF becomes part of the public key and is
therefore fixed for each ciphertext. While this seems strange at first, it becomes clear in in
light of the role of the randomness in POWHFs. Originally, POWHFs were designed to meet
a stronger security requirement [9, 11], demanding pairs (G(x, r1), G(x, r2)) for a single random
x to be indistinguishable from pairs (G(x, r1),G(x′, r2)) for independent samples x, x′. This of
course requires that the randomness r1, r2 is chosen independently for each function evaluation,
else distinguishing would be easy. However, security of PSS-I relies on pseudorandomness of the
corresponding function family and does not require the above security property. Accordingly,
putting the randomness for the function family in the public key does not compromise security
of the encryption scheme.

Theorem 4.1 Let F be a trapdoor permutation family and let POWHF = (K,G,V) be a pseu-
dorandom POWHF with public randomness, where pseudorandomness holds with respect to the
uniform distribution on and the uninvertible function hint(x) = (f, f(x)) for random f drawn
from F . Then PSS-IPOWHF,H [F] is IND-CCA secure in the RO model.

The full proof is delegated to Appendix C. For the proof idea consider an adversary A attacking
the encryption scheme and getting exactly one challenge ciphertext. Gradually modify the
encryption algorithm to compute this challenge ciphertext

(C, s) = (f(ω),Gpr
K (ω, rG)⊕ (M‖r)), for r ← {0, 1}k, ω ← H(M‖r).

in a sequence of games as follows:

• In the first modification change the encryption process by substituting the ciphertext part
s← Gpr

K (ω, rG)⊕ (M‖r) through the computation of s← u⊕ (M‖r) for random u:

(C, s) = (f(ω), u⊕ (M‖r)), for r ← {0, 1}k, ω ← H(M‖r), u← {0, 1}k−k1 .

Since the POWHF value Gpr
K (ω, rG) is pseudorandom with respect to the hint function

(f, f(ω)), the adversary’s behavior in an attack in this game cannot change significantly.

• Next, instead of computing ω ← H(M‖r) we simply pick ω at random:

(C, s) = (f(ω), u⊕ (M‖r)), for r ← {0, 1}k, ω ← {0, 1}k1 , u← {0, 1}k−k1 .

As the random oracle H is evaluated for a secret random string r this modification will
not alter the adversary’s output behavior noticeably.

12

We furthermore show that any decryption query of the adversary can be essentially answered
in the random oracle model by inspecting A’s communication with H (even if we now only
have a single random oracle instead of two). This holds for the original scheme as well as
for both modified games, but requires some care with decryption queries based on previously
obtained ciphertexts of unknown messages. We finally note that ciphertexts in the last game
are distributed independently of the message M and any adversary therefore cannot successfully
attack this modified scheme. Because of the almost identical adverserial behavior in all games
it follows that the original scheme is secure.

We note that our proof does not make use of the collision-resistance of the POWHF. This
is because the preimage ω of the POWHF is uniquely determined by the additional trapdoor
function value f(ω) anyway. Hence, a pseudorandom generator for which distinguishing the
output from random is infeasible, even if given hint(ω), would actually suffice in this setting.
In particular, such a generator G can be built in combination with the trapdoor permutation
f via the Yao-Blum-Micali construction [27, 8]. Namely, let f be of the form f(x) = gn(x)
for a trapdoor permutation g and define G(x) = (hb(x),hb(g(x)), . . . ,hb(gn−1(x))) through the
hardcore bits hb. Then the output of G is still pseudorandom, even given f and f(x).

5 Security of Instantiating the Fujisaki-Okamoto Transfor-
mation

Fujisaki and Okamoto [18] suggested a general construction of hybrid encryption schemes in the
random oracle model. It is based on two random oracles, G and H. Here we show that one can
replace G by a pseudorandom POWHF and still obtain a secure scheme (for a random oracle
H). We then prove, under a somewhat strong assumption about the combined security of the
POWHF and the encryption scheme, that one can also replace H by a POWHF to obtain a
secure scheme for a random oracle G.

5.1 Fujisaki-Okamoto Scheme

The Fujisaki-Okamoto construction is based on an asymmetric encryption scheme AS = (EKasym,
Easym, Dasym) and a deterministic symmetric encryption scheme SS = (EKsym, Esym,Dsym), as
well as two random oracles G, H. For parameter k ∈ N let Coinsasym(k) and MsgSpasym(k)
denote the set of random strings and the message space of the asymmetric encryption scheme,
and Keyssym(k) and MsgSpsym(k) denote the key and message space of the symmetric encryption
scheme. Let

G : MsgSpasym(k)→ Keyssym(k) and H : {0, 1}k × {0, 1}∗ → Coinsasym(k)

The message space is MsgSpsym(k). The encryption scheme FOG,H is given by the following
algorithms:

• EK(1k) : Run EKasym(1k) to generate a key pair (sk,pk).

• E(pk,M) : Pick σ
$← MsgSpasym(k), compute Casym ← Easym(pk, σ;H(σ,M)) and Csym ←

Esym(G(σ),M). Output C = (Casym, Csym).

13

• D(sk, C) : For C = (Casym, Csym) compute σ ← D(sk, Casym), M ← Dsym(G(σ), Csym).
Recompute c← Easym(pk, σ;H(σ,M)) and output M if c = Casym, else return ⊥.

Security of this conversion has been shown under the assumption that the symmetric encryption
scheme is IND-CPA (and that the symmetric encryption algorithm is deterministic), and that the
public-key encryption scheme is one-way and γ-uniform, which roughly means that ciphertexts
are almost uniform. Here we make different, yet “natural” assumptions about the encryption
schemes, as specified below.

5.2 Instantiating the G-Oracle

An instantiation of the G-oracle in the Fujisaki-Okamoto scheme through a perfectly one-way
hash function POWHF = (K,G,V) with public randomness, denoted by FOPOWHF,H , works as
follows:

• EK(1k) : Run EKasym(1k) to generate a key pair (sk,pk). Pick K
$← K(1k) and r

$←
CoinsG(K). Output ((sk,K, r), (pk,K, r)).

• E((pk,K, r),M) : Pick σ
$← MsgSpasym(k), compute Casym ← Easym(pk, σ, H(σ, M)) and

Csym← Esym(Gpr(K, σ, r),M). Output C = (Casym, Csym).

• D((sk,K, r), C) : For C = (Casym, Csym) compute σ ← Dasym(sk, Casym) and M ←
Dsym(Gpr(K, σ, r), Csym). Recompute c ← Easym(pk, σ;H(σ,M)) and output M if c =
Casym, else return ⊥.

We note that we use the same trick as in the PSS-I case before and put the randomness r of the
POWHF into the public key. See the remarks there for further discussion.

Theorem 5.1 Let AS and SS be IND-CPA asymmetric and symmetric encryption schemes,
where Esym is deterministic. Let POWHF = (K,G,V) be a pseudorandom POWHF with public
randomness (with respect to the uniform distribution on (MsgSpasym(k))k∈N and the trivial unin-
vertible function hint). Then the instantiation of the G-oracle in the Fujisaki-Okamoto scheme,
FOPOWHF,H , is IND-CCA in the random oracle model.

The proof is in Appendix D. Similar to PSS-I the underlying idea is to consider an adversary
and its behavior for slightly changing games when getting a single challenge ciphertext. Starting
with the original encryption algorithm

Casym ← Easym(pk, σ;H(σ,M)), Csym ← Esym(Gpr(K, σ, r),M) for random σ.

we define the games with the modified encryption algorithm to compute the challenge ciphertext
by:

• In the first game pick a random ω instead of using H(σ,M) as the random coins for the
computation of Casym:

Casym ← Easym(pk, σ;ω), Csym ← Esym(Gpr(K, σ, r),M) for random σ, ω.

By the one-wayness of POWHF (for hint(σ) = (pk, Casym)) it follows that any adversary
attacking the original game cannot query H about (σ,M) during the attack, except with
negligible probability. Given this, the modification with a random ω is unrecognizable to
the adversary.

14

• In the second game we now pick a random key u for the symmetric part, instead of
computing it via the POWHF Gpr(K, σ, r):

Casym ← Easym(pk, σ;ω), Csym ← Esym(u, M) for random σ, ω, u.

Indistinguishability of the two experiments follows by the pseudorandomness of the POWHF
(for hint(σ) = (pk, Casym)).

• Finally, replace the symmetric encryption of M by a trivial encryption of 0|M |:

Casym ← Easym(pk, σ;ω), Csym ← Esym(u, 0|M |) for random σ, ω, u.

The security of the symmetric schemes guarantees that the adversary’s output distribution
is close to the in the previous game.

It follows analogously to the PSS-I case that decryption queries of the adversary in any of the
games can already be simulated with the help of the remaining random oracle H. Yet, this time
we also need to rely on the security of the asymmetric encryption scheme to prove this. Since
ciphertexts in the final game are again independent of the actual message content —the length
cannot be hidden— we conclude that the original scheme must be secure.

Recall that we demand perfect one-wayness and pseudorandomness of the POWHF to hold
with respect to hint(σ) = (pk, Casym), i.e., for an encryption of random σ. By the security of
the asymmetric scheme we can replace Casym by an encryption of, say, 0|σ| without affecting the
one-wayness or pseudorandomness significantly. But this hint function is equivalent to trivial
and we can therefore build such POWHF as in the claim of Theorem 5.1 from any one-way
permutation. We can thus instantiate the G-oracle under this condition. In fact, the proof
actually shows that regular one-wayness (instead of perfect one-wayness) is sufficient for the
pseudorandom POWHF, where for any efficient algorithm A the probability that A returns x

on input (K, hint(x),H(K, x, r)) for K
$← K(1k), r

$← Coins(K), x
Xk← {0, 1}m(k), is negligible.

Clearly, perfect one-wayness implies regular one-wayness.

5.3 Instantiating the H-Oracle

Instantiating the H-oracle is technically more involved and requires a strong assumption about
the combination of the POWHF and the public-key encryption scheme. Our construction also
requires a stronger (yet mild) assumption about the symmetric encryption scheme.

Before presenting our assumptions we first define the H-instantiation of the Fujisaki -Okamoto
transformation. We call the encryption scheme below an instantiation of the H-oracle in the
Fujisaki-Okamoto scheme, FOG,POWHF, through a pseudorandom and strongly collision-resistant
POWHF = (K,H,V):

• EK(1k) : Run EKasym(1k) to generate a key pair (sk,pk). Generate K
$← K(1k) and

r
$← CoinsH(k) for POWHF. Output (sk,K, r) and (pk,K, r).

• E((pk,K, r),M) : Pick σ
$← EKsym(1k), compute ω ← Hpr(K, σ||M, r) and Casym ←

Easym(pk, σ, ω) and Csym ← Esym(G(σ),M). Output C = (Casym, Csym).

• D((sk,K, r), C) : For C = (Casym, Csym) compute σ ← D(sk, Casym), M ← Dsym(G(σ), Csym).
Recompute c← Easym(pk, σ;Hpr(K, σ||M, r)) and output M if c = Casym, else return ⊥.

15

To show that this instantiation is secure we need the following additional assumption about
the symmetric encryption scheme. We assume that the symmetric encryption scheme provides
integrity of ciphertexts (INT-CTXT) [4], i.e., for any efficient adversary B let κ

$← EKsym(1k),
C

$← BEsym(κ,·)(1k) and let M ← Dsym(κ, C). Then the probability that M 6= ⊥ and that C
has never been submitted by B to its oracle Esym(κ, ·) is negligible. This INT-CTXT property
can be accomplished for example by the encrypt-then-MAC paradigm [4]. We remark that
this additional property, together with the IND-CPA security of the asymmetric and symmetric
encryption schemes, does not necessarily imply IND-CCA security of hybrid schemes; it is easy
to construct counterexamples.

For our instantiation we also need a very strong assumption about the combination of POWHF
and the public-key encryption scheme (EKasym, Easym,Dasym). That is, we assume that the
following random variables are indistinguishable for any efficient message distributionM (which
also outputs some information state about the sampling process):

• Let (sk,pk) $← EKasym(1k), K
$← K(1k), r

$← CoinsG(k) and (M, state) $← M(pk,K, r).
Pick σ

$← MsgSpasym (k) and compute ω ← Hpr(K, σ||M, r) and Casym ← Easym(pk, σ, ω).
Output (pk,K, r, state, Casym).

• Let (sk,pk) $← EKasym(1k), K
$← K(1k), r

$← CoinsG(k) and (M, state) $← M(pk,K, r).
Pick σ

$← MsgSpasym (k) and ω
$← Coinsasym and compute Casym ← Easym(pk, σ, ω).

Output (pk,K, r, state, Casym).

We call this the POWHF-encryption assumption for POWHF and AS.
Informally, if one views the POWHFs as a pseudorandom generator, the assumption basically

says that encrypting the seed σ of a pseudorandom generator with the pseudorandom output ω
is indistinguishable from an encryption of the seed with independent randomness. Note that this
assumption would be false in general if one is also given ω in clear (which is either pseudorandom
or truly random). For example, for ElGamal encryption (gω,pkω · σ) one could easily recover
σ if given ω (by dividing out pkω in the right part), and try to recompute ω through the
pseudorandom generator applied to σ. However, if one is not given ω then such generic attacks
(in the sense of [25]) fail.

Note also that our POWHF-encryption assumption is certainly not stronger than assuming
that the pseudorandom generator is perfect and given by a random oracle. On the contrary,
our result shows that seeing the adversary’s queries to function H is not necessary to simulate
attacks and to prove security. This holds, of course, as long as G is still a random oracle and the
simulator learns the queries to this oracle. The proof of the following theorem is in Appendix 5.2
and also relies on a sequence of games, modifying the original scheme to one where ciphertexts
are independent of the message (yet, the analysis of these games is slightly more involved).
Similar to the G-case the proof shows that regular one-wayness is enough for the pseudorandom
POWHF.

Theorem 5.2 Let AS and SS be IND-CPA public-key and private-key encryption schemes where
Esym is deterministic. Let POWHF = (K,H,V) be a pseudorandom POWHF with public ran-
domness (with respect to the uniform distribution and the trivial uninvertible function). As-
sume further that the symmetric encryption scheme provides integrity of ciphertexts and that
the POWHF-encryption assumption holds for POWHF and AS. Then the instantiation of the

16

H-oracle in the Fujisaki-Okamoto transformation, FOG,POWHF, yields an IND-CCA encryption
scheme in the random oracle model.

6 (In)Security of FDH Signature Scheme Instantiations

In this section we consider the Full Domain Hash (FDH) signature scheme which is provably
secure in the random oracle model if the associated permutation is one-way. We show that
replacing the random oracle by a verifiable pseudorandom function does not necessarily yield a
secure instantiation. For sake of concreteness we explain our negative result for the RSA case.
The result can be transferred, mutatis mutandis, to other trapdoor permutations.

We note that one can easily transfer our negative result about OAEP (Theorems 3.1 and 3.4)
to show that the FDH instantiated with a POWHF is insecure with respect to a specific trapdoor
permutation oracle. But our result here for the VPRFs works for any trapdoor permutation,
including RSA for example.

6.1 Full Domain Hash Signature Scheme and Instantiation with VPRFs

We recall the well-known Full-domain hash (FDH) signature scheme [5]. The scheme FDHH [F]
makes use of a random permutation family F for domain D = (Dk)k∈N and a random oracle H.

• SK(1k) : Pick a random permutation f on Dk from F . Let pk specify f and let sk specify
f−1.

• SH(sk,M) : Output S ← f−1(H(M)).

• VH(pk,M, S) : If f(S) = H(M) then return 1, else return 0

An instantiation of the FDH scheme with VPRF = (K,H,V) is the following signature scheme
FDHVPRF[F] = (SK,S,V):

• SK(1k) : pick a random permutation f on Dk from F , pick (fk, vk) $← K(1k). Let pk
specify f and contain vk and let sk specify f−1 and contain vk.

• SH(fk,·)(sk,M) : (y, π) $← H(fk,M), S ← f−1(y). Output (S, π, y).

• VV(fk,·)(pk,M, (S, π)) : If f(S) = y and V(vk,M, y, π) = 1 then return 1, else return 0

It is important to note that similarly to the case of schemes using PRFs, in the attack the
adversary is not only given access to the signature oracle, but also to the VPRF oracle (just as
it is allowed to query the random oracle). This viewpoint is also supported by the application
as a third-party web interface providing such values or as a tamper-resistant device to which the
adversary has local black-box access.1

1In the proceedings version we initially claimed that our result would also hold if the adversary is denied access
to the VPRF; this, however, remains open.

17

6.2 On the Insecurity of RSA-FDH with VPRFs

A special case is the RSA-FDH signature scheme (and its instantiation through a VPRF) where
f, f−1 are given by the RSA function x 7→ xe mod N and its inverse y 7→ yd mod N . Here
we consider the case with large prime exponents where the RSA exponent e has to be a prime
of (k + 1) bits and therefore larger than the k-bit modulus N . We denote this function by
RSAlarge-exponent. According to the recent result about deterministic primality testing [1], this
prerequisite allows to verify deterministically that a pair (N, e) really constitutes a permutation.
We also remark that this RSA version is not known to be weaker than RSA with other exponents.

For the RSA-FDH scheme we construct a “bad” VPRF such that, when instantiated with
this VPRF, RSA-FDH becomes insecure:

Theorem 6.1 Suppose VPRFs exist. Then there exists a verifiable pseudorandom function
VPRF = (K,H,V) such that FDHVPRF[RSAlarge-exponent] is subject to existential forgeries in
chosen-message attacks.

The basic idea is that the “bad” VPRF (which exists if any VPRF exists) itself will reveal
signatures for free as part of the correctness proof. We prove this formally in Appendix F.

Acknowledgments

We thank Victor Shoup for clarifications on [26] and Mihir Bellare and the anonymous reviewers
of Crypto 2005 for useful comments.

References

[1] M. Agrawal, N. Kayal, and N. Saxena. Primes is in P. http://www.cse.iitk.ac.in/news/

primality.html, 2002.

[2] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in public-key encryption. In
ASIACRYPT 2001, volume 2248, pages 566–582.

[3] M. Bellare, A. Boldyreva, and A. Palacio. An uninstantiable random-oracle-model scheme for a
hybrid-encryption problem. In C. Cachin and J. Camenisch, editors, Eurocrypt 2004, volume 3027
of LNCS. Springer, 2004.

[4] M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and analysis
of the generic composition paradigm. In T. Okamoto, editor, ASIACRYPT 2000, volume 1976 of
LNCS. Springer, 2000.

[5] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient
protocols. In CCS ’93. ACM, 1993.

[6] M. Bellare and P. Rogaway. Optimal asymmetric encryption – how to encrypt with RSA. In A. De
Santis, editor, Eurocrypt ’94, volume 950, 1995.

[7] M. Bellare and P. Rogaway. The exact security of digital signatures: How to sign with RSA and
Rabin. In U. Maurer, editor, Eurocrypt ’96, volume 1070 of LNCS. Springer, 1996.

[8] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudorandom bits.
SIAM Journal of Computing, 13:850–864, 1984.

[9] R. Canetti. Towards realizing random oracles: Hash functions that hide all partial information. In
B. Kaliski, editor, CRYPTO ’97, volume 1294 of LNCS. Springer, 1997.

18

[10] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. In STOC ’98.
ACM, 1998.

[11] R. Canetti, D. Micciancio, and O. Reingold. Perfectly one-way probabilistic hash functions. In
STOC ’98. ACM, 1998.

[12] D. Chaum. Blind signatures for untraceable payments. In D. Chaum, R. Rivest, and T. Sherman,
editors, CRYPTO ’82, 1983.

[13] J.-S. Coron, M. Joye, D. Naccache, and P. Paillier. Universal padding schemes for RSA. In M. Yung,
editor, CRYPTO 2002, volume 2442. Springer, 2002.

[14] Y. Dodis. Efficient construction of (distributed) verifiable random functions. In Y. Desmedt, editor,
PKC 2003, volume 2567 of LNCS. Springer, 2003.

[15] Y. Dodis, R. Oliveira, and K. Pietrzak. On the generic insecurity of full-domain hash. In V. Shoup,
editor, CRYPTO 2005, LNCS, 2005.

[16] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature
schemes. In Crypto ’86, volume 263 of LNCS. Springer, 1986.

[17] M. Fischlin. Pseudorandom function tribe ensembles based on one-way permutations: Improvements
and applications. In J. Stern, editor, Eurocrypt ’99, volume 1592 of LNCS. Springer, 1999.

[18] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric encryption schemes.
In M. Weiner, editor, CRYPTO ’99, volume 1666 of LNCS, 1999.

[19] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is secure under the RSA
assumption. In J. Kilian, editor, CRYPTO 2001, volume 2139 of LNCS. Springer, 2001.

[20] S. Goldwasser and Y. T. Kalai. On the (in)security of the Fiat-Shamir paradigm. In FOCS 2003.
IEEE, 2003.

[21] K. Kobara and H. Imai. OAEP++: A very simple way to apply OAEP to deterministic ow-cpa
primitives. Cryptology ePrint Archive, Report 2002/130., 2002.

[22] U. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results on reductions,
and applications to the random oracle methodology. In M. Naor, editor, TCC 2004, volume 2951
of LNCS. Springer, 2004.

[23] S. Micali, M. Rabin, and S. Vadhan. Verifiable random functions. In FOCS 1999. IEEE, 1999.

[24] J. Nielsen. Separating random oracle proofs from complexity theoretic proofs: The non-committing
encryption case. In M. Yung, editor, CRYPTO 2002, volume 2442 of LNCS. Springer, 2002.

[25] V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy, editor, Eurocrypt
’97, volume 1233 of LNCS. Springer, 1997.

[26] V. Shoup. OAEP reconsidered. In J. Kilian, editor, CRYPTO 2001, volume 2139 of LNCS. Springer,
2001.

[27] A. Yao. Theory and applications of trapdoor functions. In FOCS 1982, pages 80–91. IEEE, 1982.

A Standard Definitions

A.1 Encryption Schemes and their Security

An asymmetric encryption scheme AE = (EK, E ,D) is specified by three polynomial-time algo-
rithms with the following functionalities. The randomized key-generation algorithm EK takes
input 1k, where k is the security parameter, and outputs a pair (pk, sk) consisting of a public

19

key and a matching secret key, respectively. The randomized encryption algorithm E takes input
a public key pk and a message M , and outputs a ciphertext C. The deterministic decryption al-
gorithm D takes input a secret key sk and a ciphertext C, and outputs a message M or a special
symbol ⊥ to indicate that the ciphertext is invalid. Associated to k is a message space MsgSp(k)
from which M is allowed to be drawn. For any (pk, sk) ∈ [EK(1k)], any M ∈ MsgSp(k), it is
required that D(sk, E(pk,M)) = M .

The syntax of deterministic symmetric encryption schemes is very similar, except the same
symmetric key K is used in place of public and secret keys (pk = sk = K) and the encryption
algorithm is deterministic.

Definition A.1 [Security of Asymmetric Encryption] Let AE = (EK, E ,D) be an asym-
metric encryption scheme. Consider experiments Expenc-ind-cpa

AE,A,b (k),Expenc-ind-cca
AE,A,b (k) associated

to AE, a bit b ∈ {0, 1} and an adversary A. In both experiments A is given input a public
key pk. In experiment Expenc-ind-cca

AE,A,b (k) the adversary is also given input a decryption oracle

D(sk, ·). Here pk and sk are matching keys generated via (pk, sk) $← EK(1k). In the first phase
A outputs a pair of messages M0,M1 ∈ MsgSp(k) of equal length, and some state information
st. In the second phase A gets back the challenge ciphertext computed via C

$← E(pk,Mb) and
st, and outputs a guess d which is also the output of the experiment. In the seconf phase of the
experiment Expenc-ind-cca

AE,A,b (k) the adversary is not allowed to query its decryption oracle on C.
AE is said to be IND-CPA (resp. IND-CCA) secure if the the following

Pr[Expenc-ind-atk
AE,A,1 (k) = 1]− Pr[Expenc-ind-atk

AE,A,0 (k) = 1] .

is negligible in k.

IND-CPA and IND-CCA security of symmetric encryption schemes is defined similarly, except
that adversary is not given any key.

We adopt the convention that the time complexity of adversary A is the execution time of
the entire experiment, including the time taken for key generation, and computation of answers
to oracle queries. The same convention will be used implicitly in other definitions of the paper.

A.2 Digital Signature Schemes and Their Security

A digital signature scheme DS = (SK,S,V) is specified by four polynomial-time algorithms
with the following functionalities. The randomized key-generation algorithm SK takes input
1k, where k is the security parameter, and outputs a pair (pk, sk) consisting of a public key
and a matching secret key, respectively. The (possibly) randomized signing algorithm S takes
input a secret key sk and a message M ∈ {0, 1}∗, and outputs a signature σ. The deterministic
verification algorithm V takes input a public key pk, a message M and a candidate signature σ for
M , and outputs a bit. We say that σ is a valid signature for M relative to pk if V(pk,M, σ) = 1.
For any pair of keys (pk, sk) ∈ [SK(1k)] and any M ∈ {0, 1}∗, it is required that V(pk,M,
S(sk,M)) = 1.

Definition A.2 [Security of Digital Signatures] Let DS = (SK,S,V) be a digital signature
scheme. Consider an adversary A that is given input a public key pk and access to a signing
oracle USS(sk, ·), where pk and sk are matching keys generated via I

$← SG(1k) ; (pk, sk) $←
SK(I). The oracle takes input a message M and returns a signature σ

$← S(sk,M). A queries

20

this oracle on messages of its choice, and eventually outputs a forgery (M,σ). DS is said to
be secure against existential forgery under adaptive chosen-message attacks (or, simply, secure)
if the probability that the adversary outputs a pair (M,σ) such that σ is a valid signature for
message M and this message was not queried to the signing oracle, is negligible in k.

B Auxiliary Results for Section 3

B.1 Constructing Malleable POWHFs

Towards proving our negative result we need malleable POWHFs, i.e., for which GK(x, r)⊕∆ =
GK(x⊕ δ, r) for some δ,∆ which we will specify later. Ironically, to construct such malleable
POWHFs we start with POWHFs which are strongly xor-collision-resistant, which basically
means that such bit modifications are impossible:

Definition B.1 Let POWHF = (K,G,V) be a POWHF (with respect to X , hint). Then POWHF
is strongly xor-collision-resistant if for every efficient adversary C and any sequence (zk)k∈N of
values zk ∈ {0, 1}n(k) the following holds. For k ∈ N pick K

$← K(1k) and let (x, x′, y, y′) $←
C(K, zk). Then

Pr [V(K, x, y) = 1 ∧ V(K, x′, y′) = 1 ∧ x 6= x′ ∧ y ⊕ y′ = zk]

is negligible in k.

Strong xor-collision-resistance (which implies for example regular collision-resistance for the
special case zk = 0n(k)) has not been considered in previous works about POWHFs. However,
as we show below, this property is already satisfied by the pseudorandom function tribe ensem-
bles in [17] (which is one possibility to build POWHFs), again under the assumption that the
distribution X is uniform and that the uninvertible function hint is trivial. We actually note
that the construction of a pseudorandom POWHF with respect to some X , hint would suffice to
get a strongly xor-collision-resistant POWHF with respect to the same pair X , hint (if one-way
permutations exist).

Proposition B.2 If one-way permutations exist then there is a pseudorandom and strongly xor-
collision-resistant POWHF (with respect to the uniform distribution and the trivial uninvertible
function hint). If there is a pseudorandom POWHF (with respect to some distribution X and
some uninvertible function hint) and one-way permutations exist, then there is also a pseudo-
random and strongly xor-collision-resistant POWHFs (with respect to the same X and hint). All
derived POWHFs have public randomness.

Proof: To prove the proposition we recall some very basic facts about PRF tribe ensembles
[11, 17]. Let F be a PRF family such that F(x, r) denotes the value of the pseudorandom function
for secret key x at point r. A tribe ensemble now is a PRF family F with an additional public
tribe key K such that for any secret keys x 6= x′ and r, we have F(K, x, r)⊕F(K, x′, r) 6= zk with
overwhelming probability over the choice of K for any sequence (zk)k∈N of fixed values. In [11, 17]
constructions of PRF tribe ensembles have been given based on any one-way permutation.2

2Originally defined only for the special case of zk = 0n(k) but the solution in [17] for example achieves this
property for any sequence of fixed values.

21

They immediately give POWHFs with strong xor-collision-resistance and public randomness via
H(K, x, r) = (r,F(K, x, r)).

The first claim follows easily from the construction of the pseudorandom function tribe ensemble
from any one-way permutation in [17] and the construction sketched above. Pseudorandomness
of this POWHF is immediate from the pseudorandomness of F . The strong XOR collision-
resistance property follows from the random choice of the tribe key, as explained above. The
idea for the second part of the claim is to convert x through the pseudorandom POWHF into
a uniform-looking string and to use this string as input for the pseudorandom function tribe
ensemble. The formalization and the security proof are straightforward.

Given such strongly xor-collision-resistant POWHFs we can now construct our malleable
POWHF:

Definition B.3 Let POWHF′ = (K′,G′,V ′) be a pseudorandom and strongly XOR-collision-
resistant POWHF with public randomness (for the uniform distribution and some function hint),
where G′ : {0, 1}k×{0, 1}m−1×Coins(K)→ {0, 1}n and V : {0, 1}k×{0, 1}m−1×{0, 1}n → {0, 1}.
For every K ∈ [K′(1k)] and x ∈ {0, 1}m and r ∈ Coins(K) define:

Gpr
K (x, r) =

{
G′prK (x[2]‖ . . . ‖x[m], r), if x[1] = 0
G′prK (x[2]‖ . . . ‖x[m], r)⊕ 1‖0n−1, if x[1] = 1

VK(x, (r, y)) =
{
V ′K(x[2]‖ . . . ‖x[m], (r, y)), if x[1] = 0
V ′K(x[2]‖ . . . ‖x[m], (r, y ⊕ 1‖0n−1)), if x[1] = 1

Claim B.4 POWHF = (K′,G,V) as defined in Construction B.3 is a pseudorandom POWHF
with public randomness, with respect to the uniform distribution and the uninvertible function
hint.

Proof: It is clear that POWHF satisfies the correctness property. Collision resistance follows
from collision-resistance and XOR-collision-resistance of POWHF′. This is because if x, x′, r, y
are such that x 6= x′ and VK(x, (r, y)) = VK(x′, (r, y)) = 1, then it is either

• x[1] = x′[1] and G′pr
K (x, r) = G′pr

K (x′, r), or

• x[1] 6= x′[1] and G′pr
K (x, r)⊕ G′pr

K (x′, r) = 1‖0n

But the former condition contradicts the collision-resistance of POWHF′, and the latter condition
contradicts XOR-collision-resistance of POWHF′. The pseudorandomness property of POWHF
easily follows from the pseudorandomness property of POWHF′, because the restriction of x to
the last m− 1 bits is also uniformly distributed and the value 1||0n−1 is added with probability
1/2.

We finally discuss that the derived POWHF is malleable. Given Gpr
K (x, r) adding 1||0n−1 to

this value flips the first bit in x:

Gpr
K (x, r)⊕ 1||0n−1 = Gpr

K (x⊕ 1||0m−1, r) for all K, x, r.

Recall that we have shown in Proposition B.2 that the starting family POWHF′ in Construc-
tion B.3 (with respect to the uniform distribution and the trivial uninvertible function) exists if

22

there are one-way permutations. Hence, under the same assumption we can construct our derived
family POWHF. Under the more general assumption that such a family POWHF′ with respect
to the uniform distribution and arbitrary hint exists, the constructed POWHF is pseudorandom
with respect to the uniform distribution and hint.

B.2 Proof of Theorem 3.1

Let POWHF = (K,G,V) be a pseudorandom POWHF with public randomness (with respect to
the uniform distribution and hint), derive from POWHF′ according to Construction B.3, where
m = k0 and n = k − k0. Let F ′ be an XOR-malleable one-way permutation family that
exists relative to an oracle according to Claim 3.3. For every s{0, 1}k−k0 , t ∈ {0, 1}k0 define
f(s‖t) = f ′left(s)‖f ′right(t), where f ′left, f

′
right are random instances of F ′. Clearly, the derived

family F is a partial one-way permutation family.
We now show that OAEPPOWHF,H [F] in not IND-CCA secure (in the RO model). An ad-

versary A is given a public key (f,K). Without querying the decryption oracle in the first
phase A outputs two arbitrary but distinct messages M0,M1. It gets back a challenge ciphertext
(r∗G , C∗

left‖C∗
right) of message Mb, where |C∗

left| = k − k0 and |C∗
right| = k0. In the second phase

algorithm A transforms the right ciphertext part through the XOR-malleable algorithm U to
get Cright

$← U(f ′right, C
∗
right, 1‖0k0−1). If U returns an answer then A queries (r∗G , C∗

left‖Cright)
to its decryption oracle. If the returned message M equals M0 ⊕ 1||0k−k0−k1−1 then A outputs
0, otherwise it outputs 1. If U fails then A outputs 1.

For the analysis assume that U succeeds to transform the ciphertext. This happens
with non-negligible probability. Under this condition we have for the challenge ciphertext
f ′left(s

∗)||f ′right(t
∗) where s∗ = Mb||0k0 ⊕ Gpr

K (r∗, r∗G) and t∗ = r∗ ⊕H(s∗):

Cright = f ′right

(
t∗ ⊕ 1‖0k0−1

)
= f ′right

(
(r∗ ⊕ 1‖0k0−1)⊕H(s∗)

)
C∗

left = f ′left(s
∗) = f ′left

(
Mb||0k0 ⊕ Gpr

K (r∗, r∗G)
)

= f ′left
(
(Mb||0k0 ⊕ 1||0k−k0−1)⊕ (Gpr

K (r∗, r∗G)⊕ 1||0k−k0−1)
)

= f ′left
(
(Mb||0k0 ⊕ 1||0k−k0−1)⊕ Gpr

K (r∗ ⊕ 1‖0k0−1, r∗G)
)

Thus, the submitted ciphertext is valid and the decryption oracle returns Mb ⊕ 1||0k−k0−k1−1.
In this case A’s output according to the decision about the answer M is correct. In case U ’s
transformation fails A outputs the fixed bit 1. It follows that the difference between the prob-
abilities that A answers 1 for the case b = 1 and for the case b = 0, is at least the probability
that U successfully transforms the ciphertext. This probability is non-negligible by assumption.

Therefore OAEPPOWHF,H [F], an instantiation of the G-oracle in the OAEPG,H [F] encryption
scheme with POWHF, is not IND-CCA in the RO model.

B.3 Proof of Theorem 3.4

Let again POWHF = (K,H,V) is the pseudorandom POWHF with public randomness derive
from POWHF′ through Construction B.3 (but this time the evaluation function is called H since
we replace the H-oracle). Let F ′ be once more an XOR-malleable one-way trapdoor family
relative to an oracle according to Claim 3.3. For every s ∈ {0, 1}k−k0 , t ∈ {0, 1}k0 let again
f(s‖t) = f ′left(s)‖f ′right(t), where f ′left, f

′
right are random instances of F ′.

23

The adversary A is given a public key (f,K). It immediately outputs two arbitrary
but distinct messages M0,M1 to receive the challenge ciphertext (r∗H, C∗

left‖C∗
right) of mes-

sage Mb. Algorithm A now tries to transform both ciphertext parts through U to get
Cleft

$← U(f ′left, C
∗
left, 1‖0k−k0−1) and Cright

$← U(f ′right, C
∗
right, 1‖0k0−1). If successful then A

queries the decryption oracle about (r∗H, Cleft‖Cright). If the answer M equals M0 ⊕ 1||0k−k0−k1−1

then A outputs 0, otherwise it outputs 1. If U fails to transform any of the two ciphertexts then
A outputs 1.

For the analysis assume that U succeeds to transform both ciphertexts. This happens with
non-negligible probability, because the preimage in the corresponding part is random or at least
pseudorandom. Given that U succeeds in both cases let s = s∗ ⊕ 1‖0k−k0−1 and t = t∗ ⊕ 1‖0k0−1

denote the two values encrypted in Cleft and Cright, respectively. Then,

t⊕Hpr
K (s, r∗H) = t∗ ⊕ 1‖0k0−1 ⊕Hpr

K (s, r∗H)

= t∗ ⊕Hpr
K (s⊕ 1||0k−k0−1, r∗H) = t∗ ⊕Hpr

K (s∗, r∗H)
= r∗

and the decryption oracle therefore returns M , where

M ||0k0 = s⊕G(r∗) = s∗ ⊕ 1||0k−k0−1 ⊕G(r∗) = Mb||0k0 ⊕ 1||0k−k0−1

Hence, A’s output is correct for successful transformations. It follows as in the proof for the
G-oracle that OAEPG,POWHF[F], an instantiation of the H-oracle in the OAEPG,H [F] encryption
scheme with POWHF, is not IND-CCA in the RO model.

C Proof of Theorem 4.1

Let A be an arbitrary probabilistic polynomial-time algorithm. Let Game0
A,b(k) denote the origi-

nal attack ofA on the encryption scheme PSS-IPOWHF,H [F] where always message Mb is encrypted
in the challenge ciphertext. Let Game1

A,b(k) denote the game where we replace Gpr
K (ω∗, rG) in

the challenge ciphertext by a uniformly and independently distributed string u∗. All games are
described formally in Figure 1.

Note that in Game2
A,b the distribution of the data is independent of bit b.Hence, the prob-

abilities Pr
[
Game2

A,1(k) = 1
]

and Pr
[
Game2

A,0(k) = 1
]

for b = 1 and b = 0, respectively, are
identical. Therefore,

Pr
[
Game0

A,1(k) = 1
]
− Pr

[
Game0

A,0(k) = 1
]

=
1∑

i=0

Pr
[
Gamei

A,1(k) = 1
]
− Pr

[
Gamei+1

A,1(k) = 1
]

+Pr
[
Game2

A,1(k) = 1
]
− Pr

[
Game2

A,0(k) = 1
]

+
0∑

i=1

Pr
[
Gamei+1

A,0(k) = 1
]
− Pr

[
Gamei

A,0(k) = 1
]

and it suffices to show that Pr
[
Game0

A,b(k) = 1
]
− Pr

[
Game1

A,b(k) = 1
]

and
Pr

[
Game1

A,b(k) = 1
]
− Pr

[
Game2

A,b(k) = 1
]

are negligible for any b ∈ {0, 1}. by flip-

24

Experiment Game0
A,b(k):

((f−1,K, rG), (f,K, rG)) $← EK(1k)
(M0,M1, state) $← AH,D(sk,·)(f,K, rG)
Compute ciphertext (C∗, s∗):

Pick r∗
$← {0, 1}k

Compute ω∗ ← H(Mb||r∗)
Compute C∗ ← f(ω∗)
Compute s∗ ← Gpr

K (ω∗, rG)⊕Mb||r∗

d
$← AH,D(sk,·)−{(C∗,s∗)}((C∗, s∗), state)

Experiment Game1
A,b(k):

((f−1,K, rG), (f,K, rG)) $← EK(1k)
(M0,M1, state) $← AH,D(sk,·)(f,K, rG)
Compute ciphertext (C∗, s∗):

Pick r∗
$← {0, 1}k

Compute ω∗ ← H(Mb||r∗)
Compute C∗ ← f(ω∗)

Pick u∗
$← {0, 1}k−k1

Compute s∗ ← u∗ ⊕Mb||r∗

d
$← AH,D(sk,·)−{(C∗,s∗)}((C∗, s∗), state)

Experiment Game2
A,b(k):

((f−1,K, rG), (f,K, rG)) $← EK(1k)
(M0,M1, state) $← AH,D(sk,·)(f,K, rG)
Compute ciphertext (C∗, s∗):

Pick r∗
$← {0, 1}k

Pick ω∗
$← {0, 1}k1

Compute C∗ ← f(ω∗)
Pick u∗

$← {0, 1}k−k1

Compute s∗ ← u∗ ⊕Mb||r∗

d
$← AH,D(sk,·)−{(C∗,s∗)}((C∗, s∗), state)

Figure 1: Games in the Proof of Theorem 5.1: Shaded areas indicate the differences between the
games. It is always assumed that the output (M0, M1, state) of A in the first phase satisfies |M0| = |M1|.

ping A’s output bit we can always assume that the differences are positive. In the sequel we fix
the bit b.

Simulating the Decryption Oracle. We first describe how to simulate decryption queries
in the games without knowing the secret key f−1. This is accomplished through the random
oracle mode and via one procedure D which works for all games. In addition to a ciphertext
(C, s) this procedure gets the public data f,K, rG and a list LH , representing A’s queries to H
and the answers as input. The procedure checks if there is exactly one pair (M ||r, ω) in LH such
that C = f(ω) and s = Gpr

K (ω, rG)⊕ (M ||r). If so, it outputs M , else it returns ⊥.
We next prove that this decryption procedure may substitute the actual decryption oracle

except with negligible simulation error probability in both games. More formally, this means that
for every decryption request in the game we run D (on the list LH of communication between A
and H up to this point) instead of D. Let DecErrori denote the event that D returns a different
answer than D for the i-th decryption query in the corresponding game, given that the first i−1
replies were identical. It then suffices to show that the probability of DecErrori is negligible for

25

arbitrary i. Recall that we call a ciphertext valid iff D returns a message M 6= ⊥.
First note that collisions (M ||r, ω), (M ′||r′, ω) for different M ||r 6= M ′||r′ in the list LH

are unlikely and happen with negligible probability only at any point. This holds in all games,
because the values ω are picked at random. So we can condition on the event that there are no
such collision and analyze Pr [DecErrori] under this condition, i.e., it suffices to discuss the case
of missing entries in LH , as this is the only case when D’s behavior diverges; if there is a unique
entry in LH then D gives the same answer as the genuine decryption oracle.

Behavior in Game Zero. Assume that A submits some (C, s) to the decryption oracle with
the i-th query in Game0

A,b such that there is no matching entry in LH . Let ω, M, r denote
the unique values such that f(ω) = C and s = Gpr

K (ω, rG)⊕ (M ||r). Let ω∗,Mb, r
∗ denote the

corresponding values for the challenge ciphertext (C∗, s∗) = (f(ω∗),Gpr
K (ω∗, rG)⊕ (Mb||r∗)).

• If we are in the first phase of the game, before A receives the challenge ciphertext, and
there is no value for M ||r in LH , then ω = H(M ||r) is an unknown random value and the
probability that f(ω) = C is negligible.

• If we are in either phase and M ||r 6= Mb||r∗ and there is no entry in LH , then the value
ω = H(M ||r) is again independently distributed (in particular, independent of H(Mb||r∗))
and the probability that f(ω) = C is again negligible.

• If we are in the second phase and have M ||r = Mb||r∗ then we must also have ω =
ω∗ = H(Mb||r∗) and s = s∗ = Gpr

K (ω∗, rG)⊕ (Mb||r∗). But then (C, s) = (C∗, s∗) equals
the challenge ciphertext, and we presume that A never submits this ciphertext to the
decryption oracle.

Hence, the probability of event DecErrori is negligible and D simulates D correctly with over-
whelming probability.

Behavior in Games One and Two. We address D’s behavior in experiment Game1
A,b. This

case is a bit more demanding, as the challenge ciphertext (C∗, s∗) now contains a fake value s∗,
where the POWHF value is replaced by a random value, and the adversary may for example at
some point submit (C∗, s) for the right value s = Gpr

K (ω∗, rG)⊕Mb||r∗. Denote again by ω, M, r
and ω∗,Mb, r

∗ the values associated to the i-th decryption query and to the challenge ciphertext.

• Suppose A asks about M ||r in the first phase or about M ||r 6= Mb||r∗ in either phase, and
there is no entry in LH , then it follows as before in Game0

A,b that the submitted ciphertext
is valid with negligible probability only.

• Assume A submits for the first time a ciphertext (C, s) in the second phase which correctly
encodes M ||r = Mb||r∗. First observe that the value s∗ in the challenge ciphertext is
distributed independently of Mb||r∗. Furthermore, since there is no corresponding entry
in LH the adversary has not asked H about Mb||r∗ before. But then the only information
about Mb||r∗ available to the adversary (in an information-theoretical sense) is that this
value must be different from all (at most polynomially many) entries in LH . Hence, r∗

still has superlogarithmic entropy, given the adversary’s view, and the probability that A
submits M ||r = Mb||r∗ is negligible (over the distribution of r∗).

It follows as for Game0
A,b that D gives the same answers as D, except with negligible probability.

The same holds for Game2
A,b, with exactly the same argument as for Game1

A,b. The only difference

26

between the games here occurs if A accidently queries H about Mb||r∗; but then the decryption
simulation works perfectly anyway.

Comparing Games Zero and One. We next show that the difference between Game0
A,b and

Game1
A,b is negligible. Assume towards contradiction that this probability was non-negligible.

Then we construct an algorithm Bb (for fixed bit b), refuting the pseudorandomness of the
POWHF.

Algorithm Bb is given (K, rG , u∗) as input, where K is a random POWHF key and either
(rG , u∗) $← GK(ω∗, rG) for random rG

$← Coins(K) and ω∗
$← {0, 1}k1 , or (rG , u∗) is completely

random. In addition, Bb is given side information hint(ω∗) = (f, f(ω∗)) where f is drawn from
F , independently of whether the input (rG , u∗) is pseudorandom or random. Note that this
function hint is uninvertible by the one-wayness of f .
Bb starts a simulation of A for input (f,K, rG). Algorithm Bb perfectly simulates the random

oracle H as usual by returning random answers for new queries and repeating replies for identical
queries. All communication is stored in a list LH . Bb also uses the decryption procedure D (on
LH , f,K, rG) to simulate A’s decryption queries. If A outputs a message pair M0,M1 for the
challenge ciphertext then Bb outputs (C∗, s∗) where C∗ ← f(ω∗) is taken form hint(ω∗) and
s∗ ← u∗ ⊕ (Mb||r∗) for the given u∗ and random r∗

$← {0, 1}k0 . Whenever A makes a query
(M, r) to H then Bb checks whether u∗ = s∗ ⊕ (M ||r) or not. If true, then Bb stops with output
1 immediately, else it continues the simulation. If this test never succeeds then Bb at the end
outputs A’s final answer.

We analyze Bb’s success probability. Clearly, in case of a pseudorandom u∗, algorithm Bb

returns 1 with probability at least Pr
[
Game0

A,b(k) = 1
]

(minus a negligible error probability for
the simulation of D by procedure D). This is true since Bb sometimes even stops prematurely
with output 1, namely, if A asks H about the right value Mb||r∗, and given that this does not
happen the simulation perfectly mimics Game0

A,b.
On the other hand, if u∗ is truly random, then (under the condition that no decryption

errors occur) A asks H about Mb||r∗ with negligible probability only. This is true as the the
adversary’s view is essentially independent of Mb||r∗ —again, only the fact that Mb||r∗ is not
among the previous H-queries is known— and therefore the probability that A at some point
puts an H-query M ||r such that

s∗ ⊕M ||r = u∗ ⊕Mb||r∗ ⊕M ||r = u∗

for this random and unknown r∗, is negligible. Given that A never queries H about Mb||r∗,
algorithm Bb perfectly simulates experiment Game1

A,b. Hence, Bb outputs 1 for random u∗ with
probability at most Pr

[
Game1

A,b(k) = 1
]

(plus a negligible amount). Since both probabilities
for the games are assumed to be non-negligibly apart, this contradicts the pseudorandomness of
the POWHFs.

Comparing Games One and Two. The adversary can only notice a difference between the
games if she queries H about the right value Mb||r∗. Since the distribution of the challenge
ciphertext is independent of r∗ the adversary only has a negligible success probability for such
a query.

We conclude that the encryption scheme is IND-CCA in the RO model.

27

D Proof of Theorem 5.1

Let A be an arbitrary probabilistic polynomial-time algorithm. We consider the following se-
quence of games, described formally in Figure 2:

• Game0
A,b(k): Describes the chosen-ciphertext attack of A on the G-instantiation of the

encryption scheme, where Mb is encrypted in the challenge ciphertext.

• Game1
A,b(k): Same as in Game0

A,b, except that we substitute the hash value H(σ∗,Mb) in
the challenge ciphertext of the asymmetric part by an independent random value ω∗.

• Game2
A,b(k): Similar to Game1

A,b, but in the challenge ciphertext we replace Gpr(K, σ∗, r)
by a uniformly distributed string u∗.

• Game3
A,b(k): Same as Game2

A,b, but for the challenge ciphertext we replace the computation
of C∗

sym ← Esym(u∗,Mb) by an encryption of a fixed string 0|M0| = 0|M1|.

Clearly,

Pr
[
Game0

A,1(k) = 1
]
− Pr

[
Game0

A,0(k) = 1
]

=
2∑

i=0

Pr
[
Gamei

A,1(k) = 1
]
− Pr

[
Gamei+1

A,1(k) = 1
]

+Pr
[
Game3

A,1(k) = 1
]
− Pr

[
Game3

A,0(k) = 1
]

+
0∑

i=2

Pr
[
Gamei+1

A,0(k) = 1
]
− Pr

[
Gamei

A,0(k) = 1
]

In Game3
A,b(k) the challenge ciphertext and therefore the execution is independent of the value

b. Hence, the two probabilities Pr
[
Game3

A,0(k) = 1
]

and Pr
[
Game3

A,1(k) = 1
]

are equal. It
therefore suffices to show that the transition from Gamei

A,b(k) to Gamei+1
A,b(k) for all i = 0, 1, 2

and b ∈ {0, 1} cannot increase the advantage by more than a negligible amount. In the sequel
we fix the bit b and prove similarity of the three adjacent games Gamei

A,b(k), Gamei+1
A,b(k) for

i = 0, 1, 2.

Simulating the Decryption Oracle. As in the proof of Theorem 4.1 we first describe how to
simulate decryption queries in the games without knowing the secret key sk in the random oracle
model. Consider the following procedure D which has access to a list LH of all oracle queries A
makes in the corresponding experiment to H and all replies; D is also given pk,K, r as input.
For a decryption request (Casym, Csym), procedure D checks if there is a pair ((σ,M), ω) in LH

such that Casym = Easym(pk, σ, ω). If not or if there is more than one such pair then D returns
⊥. Else, it verifies that M = Dsym(Gpr(K, σ, r), Csym) and, if so, D returns M . Otherwise it
outputs ⊥.

We again consider the event DecErrori (relative to the game) that D gives a different answer
for the i-th decryption query than D, under the condition that both procedures coincide on the
first i − 1 decryption requests. Note that if D finds a unique matching entry ((σ,M), ω) in LH

then it gives the same answer as the original decryption procedure. It thus suffices to analyze

28

Experiment Game0
A,b(k):

((sk,K, r), (pk,K, r)) $← EK(1k)
(M0,M1, state) $← AH,D(sk,·)(pk,K, r)
Compute ciphertext C∗ = (C∗

asym, C∗
sym):

Pick σ∗
$← MsgSpasym(k)

Compute C∗
asym ← Easym(pk, σ∗;H(σ∗,Mb))

Compute C∗
sym ← Esym(Gpr(K, σ∗, r),Mb)

d
$← AH,D(sk,·)−{C∗}(C∗, state)

Experiment Game1
A,b(k):

((sk,K, r), (pk,K, r)) $← EK(1k)
(M0,M1, state) $← AH,D(sk,·)(pk,K, r)
Compute ciphertext C∗ = (C∗

asym, C∗
sym):

Pick σ∗
$← MsgSpasym(k)

Pick ω∗
$← Coinsasym(k)

Compute C∗
asym ← Easym(pk, σ∗; ω∗)

Compute C∗
sym ← Esym(Gpr(K, σ∗, r),Mb)

d
$← AH,D(sk,·)−{C∗}(C∗, state)

Experiment Game2
A,b(k):

((sk,K, r), (pk,K, r)) $← EK(1k)
(M0,M1, state) $← AH,D(sk,·)(pk,K, r)
Compute ciphertext C∗ = (C∗

asym, C∗
sym):

Pick σ∗
$← MsgSpasym(k)

Pick ω∗
$← Coinsasym(k)

Pick u∗
$← Keysasym(k)

Compute C∗
asym ← Easym(pk, σ∗;ω∗)

Compute C∗
sym ← Esym(u∗ ,Mb)

d
$← AH,D(sk,·)−{C∗}(C∗, state)

Experiment Game3
A,b(k):

((sk,K, r), (pk,K, r)) $← EK(1k)
(M0,M1, state) $← AH,D(sk,·)(pk,K, r)
Compute ciphertext C∗ = (C∗

asym, C∗
sym):

Pick σ∗
$← MsgSpasym(k)

Pick ω∗
$← Coinsasym(k)

Pick u∗
$← Keysasym(k)

Compute C∗
asym ← Easym(pk, σ∗, ω∗)

Compute C∗
sym ← Esym(u∗, 0|Mb|)

d
$← AH,D(sk,·)−{C∗}(C∗, state)

Figure 2: Games in the Proof of Theorem 5.1: Shaded areas indicate the differences between the
games. It is always assumed that the output (M0, M1, state) of A in the first phase satisfies |M0| = |M1|.

the probability of DecErrori under the condition that D does not find an entry ((σ,M), ω) in
LH although the ciphertext is valid. Here we can again assume that collisions in the list LH

at any point, i.e., pairs ((σ,M), ω), ((σ′,M ′), ω) with (σ,M) 6= (σ′,M ′), do not occur. This is
true with overwhelming probability as collisions among q values appear with probability at most
q2/|Coinsasym(k)|. Since q is assumed to be polynomial and Coinsasym must be a superpolynomial
set by the IND-CPA property, this term is negligible.

Below we let (Casym, Csym) denote the i-th decryption query (which can be assumed to be
valid) and denote by M,σ the unique values encrypted in (Casym, Csym). Recall that we consider
the case that this pair (M,σ) does not appear in list LH . Accordingly, (C∗

asym, C∗
sym) is the

challenge ciphertext (computed according to the game). For each game we can assign a pair
(Mb, σ

∗) to this challenge ciphertext, as defined by Figure 2 (where Mb is determined by A’s
output in the first phase and σ∗ through the encryption process).

Behavior in Game Zero. To analyze D’s behavior in Game0
A,b we use the fact that for a given

pair Casym, σ the probability that Casym = Easym(pk, σ;ω) for a random and independent value
ω ← Coinsasym(k) is negligible. Otherwise it would contradict the IND-CPA security of the

29

encryption scheme in a straightforward way.3 We distinguish between the following cases:

• If (Casym, Csym) is submitted in the first phase, before A sees the challenge, and there is no
entry (M,σ) in LH then H(M,σ) is an independent, uniformly distributed and unknown
string. The probability that Casym = Easym(pk, σ, H(σ,M)) is therefore negligible.

• Assume A’s query is made after having received the challenge ciphertext, but Casym 6=
C∗

asym and there is no list entry for (M,σ). If (σ,M) = (σ∗,Mb) then this would contradict
Casym 6= C∗

asym. Hence, the value H(σ,M) is independent of H(σ∗,Mb) and any other hash
value. But since there is no value in LH for (σ,M) it follows again that the probability
Casym = Easym(pk, σ, H(σ,M)) is negligible.

• Let C∗
asym = Casym for the query in the second phase. Then the symmetric parts must

be distinct. In this case we have inequality Mb 6= M for the encapsulated messages in
C∗

sym, Csym (as both asymmetric parts encrypt the same value σ = σ∗). Once more, since
(M,σ) does not appear in LH and is different from (Mb, σ

∗) the probability that the hash
value H(σ,M) yields Casym is again negligible.

Overall, D gives the same answer for the i-th query as D does, except with negligible error.

Behaviors in Games One, Two and Three. D’s behavior in these games is even simpler
to analyze, as the challenge ciphertext is now independent of the hash function. If there is no
entry in LH for M ||r, no matter whether M ||r = Mb||r∗ or not, then the hash value H(M ||r)
is an independent secret random value, and the probability for Casym = Easym(pk, σ;H(M ||r))
is negligible. Note that our analysis does not rely on the possibility that A realizes that the
ciphertext in these games is fake or submits an invalid ciphertext derived as a modification of
the challenge ciphertext; we only care about the difference in D’s and D’s answers for decryption
queries here.

Comparing Games Zero and One. We show that the probability that A queries H about
the challenge values (σ∗,Mb) during experiment Game0

A,b is negligible. Assume that this was
not the case. Then we construct an algorithm Bb (for fixed bit b), successfully attacking the
one-wayness of the POWHF with respect to the following uninvertible function hint defined by

hint(σ∗) =
(
pk, C∗

asym

)
where (sk,pk) $← EKasym(1k), C∗

asym
$← Easym(pk, σ∗).

Presuming the security of the encryption scheme this function is uninvertible for the well-spread
distribution σ∗

$← MsgSpasym(k) since it is an independent encryption of σ∗. The IND-CPA
property of the encryption scheme also implies that one can replace this function hint by the
trivial uninvertible function hint(σ∗) = 0.4

3If this probability was non-negligible for some σ, Casym then we could construct a (non-uniform) CPA-attacker
with “wired” σ, Casym, and which gives σ and some σ′ 6= σ to the encryption oracle to receive a challenge
ciphertext C∗

asym. If Casym = C∗
asym then this attacker outputs 1, else it returns 0. If σ′ is encrypted in this

challenge ciphertext then it can never equal Casym which encrypts σ. In the other case the random encryption
equals Casym with non-negligible probability by assumption. Hence, this attacker would distinguish the two cases
with non-negligible probability.

4Formally, we can replace the value hint(σ∗) by an independent encryption of the all-zero string, and this
information can be simulated given the trivial value 0. This is done on the “POWHF level”, of course, not here
in the proof.

30

Attacker Bb (with binary output) is given as input (K, hint(σ∗), (r, u∗)), where u∗ is either
Gpr(K, σ∗, r) or Gpr(K, σ′, r) for an independent sample σ′. Algorithm Bb initially picks an index
i between 1 and Q, the polynomial bound on the number of hash queries A makes. It starts an
emulation of A mounting a chosen-ciphertext attack. In particular, Bb perfectly simulates A’s
access to random oracle H in the common way, i.e., by keeping track of previous queries in a
list LH , returning the same answer if queried twice, and generating random answers if queried
for the first time. Any decryption query of A is answered by running procedure D described
above for list LH and K, r,pk. If A generates a pair of challenge messages (M0,M1) then Bb

computes C∗
sym ← Esym(u∗,Mb) for the given value u∗ and returns (C∗

asym, C∗
sym) where C∗

asym is
taken from hint(σ∗). If A (or D) makes the i-th query (σ,M) to H then A∗ stops and outputs
1 if and only if Gpr(K, σ, r) = u∗.

Given input u∗ = Gpr(K, σ∗, r) and that A or D queries H about (σ∗,Mb) at some point,
algorithm Bb guesses the right query with probability 1/Q. This holds as the simulation up to
the right query is identical to A’s attack Game0

A,b, except for a negligible error probability due
to the error in simulated decryption queries. Since the probability of asking H about the pair is
non-negligible by assumption, attacker Bb thus outputs 1 with non-negligible probability for the
case u∗ = Gpr(K, σ∗, r).

On the other hand, given u∗ = Gpr(K, σ′, r) the probability that Gpr(K, σ, r) = u∗ for any
query σ of A is negligible by the one-wayness and the collision-intractability of the POWHF.
Specifically, the probability that some query includes the value σ′ is negligible by the (regular)
one-wayness of the POWHF. Any other H-query about (σ,M) for σ 6= σ′ resulting in the same
value u∗ would give a collision. Both arguments can be easily turned into formal algorithms
refuting the one-wayness and collision-resistance, respectively. Thus, Bb outputs 1 for u∗ =
Gpr(K, σ′, r) with negligible probability only.

It follows that the random variables (K, x,Bb(K, hint(σ∗), (r, u∗))) for the two cases are easy
to distinguish, contradicting the one-wayness of the POWHF. Given that A never queries H
about (σ∗,Mb) it is clear that the hash value is independently distributed, and that the outputs
of A in Game0

A,b and Game1
A,b are indistinguishable.

Comparing Games One and Two. We show that any non-negligible difference in A’s output
for the two games would refute the pseudorandomness of the POWHF (K,G,V). Specifically,
suppose that Pr

[
Game1

A,b(k) = 1
]
− Pr

[
Game2

A,b(k) = 1
]

is non-negligible as a function of
parameter k (by flipping A’s output bit we can always guarantee that the difference is non-
negative for infinitely many k’s). Then we construct the following probabilistic polynomial-
time algorithm Bb (for fixed bit b) which gets as input a tuple (K, hint(σ∗), (r, u∗)) and uses
A to decide whether (r, u∗) is the output of G or random. Here the probabilistic function
hint(σ∗) = (pk, C∗

asym) is defined as above.
Algorithm Bb runs a black-box simulation of A and emulates A’s access to random oracle

H with the usual technique. It also uses procedure D to simulate decryption queries. For
the simulation Bb takes K, r from its input (K, hint(σ∗), (r, u∗)) and pk from hint(σ∗). When
A outputs the challenge message pair (M0,M1) algorithm Bb creates a ciphertext by letting
C∗

sym ← Esym(u∗,Mb) for the given value u∗ and returns C∗ = (C∗
asym, C∗

sym) where C∗
asym

originates from hint(σ∗). Algorithm Bb continues A’s attack as before and outputs A’s prediction
d.

It is clear that Bb outputs 1 for a hash function input (K, hint(σ∗),G(K, σ∗, r)) with the

31

same probability as A does in experiment Game1
A,b (except for a negligible error for simulating

the decryption requests). On the other hand, Bb outputs 1 with the same probability as A in
experiment Game2

A,b for random values (r, u∗) (again, up to a negligible error). By assumption the
probabilities have non-negligible difference. This, however, contradicts the pseudorandomness of
the POWHF and our initial assumption about A’s advantage must have been wrong.

Comparing Games Two and Three. It follows straightforwardly from the IND-CPA se-
curity of the symmetric encryption scheme that A’s output in games Game2

A,b and Game3
A,b is

indistinguishable. If A’s advantage would be non-negligible for the two experiments then it would
be easy to distinguish encryptions of Mb and 0|Mb| in a chosen-plaintext attack, by emulating
the experiments with knowledge of the asymmetric decryption key.

This proves that the derived scheme is IND-CCA.

E Proof of Theorem 5.2

Let A be a probabilistic polynomial-time algorithm. We consider again a sequence of games,
formally described in Figure 3, such that the starting game corresponds to A’s attack scenario
and the final game is independent of b:

• Game0
A,b describes the attack on the encryption scheme when message Mb is encrypted.

• Game1
A,b describes the game where we replace the symmetric encryption key G(σ∗) in the

challenge ciphertext by an independent key κ∗.

• Game2
A,b modifies Game1

A,b insofar as the challenge ciphertext now contains an (asym-
metric) encryption Easym(pk, σ∗, u∗) with an independent random value u∗ instead of
H(K, σ∗||Mb, r).

• Game3
A,b is identical to Game2

A,b, except that the symmetric part of the challenge ciphertext
now contains an encryption of 0|Mb| instead of Mb.

With the same argument as in the proof of Theorem 5.1 it suffices to show that the differences
Pr

[
Gamei

A,b = 1
]
(k)−Pr

[
Gamei+1

A,b(k) = 1
]

are negligible for all i = 0, 1, 2 and b ∈ {0, 1}. Fix
again the bit b for this.

Simulating the Decryption Oracle. Analogously to the proofs of Theorems 4.1 and 5.1
we again first describe a procedure to simulate decryption queries. This procedure D takes as
input a ciphertext (Casym, Csym), a list LG of queries of A and answers random oracle G as well
as pk,K, r. It checks if there are pairs (σ, κ) in LG such that for m ← Dsym(κ, Csym) it holds
Casym = Easym(pk, σ,Hpr(K, σ||m, r)). If there is a unique pair then D returns m, else if returns
⊥.

Let DecErrori once more denote the event that D returns a different answers than D for the
i-th query, conditioning on equal replies for the first i − 1 decryption requests (when D is run
instead of D in the corresponding game). The i-th query (Casym, Csym), which we can assume
to be valid, uniquely determines some σ and therefore some M . In particular, collisions in the
list LG cannot occur. Since D yields the same answer for this query if there is exactly one entry

32

Experiment Game0
A,b:

((sk,K, r), (pk,K, r)) $← EK(1k)
(M0,M1, state) $← AG,D(sk,·)(pk)
Compute ciphertext C∗ = (C∗

asym, C∗
sym):

Pick σ∗
$← Keys(1k)

Compute C∗
asym

$← Easym(pk, σ∗;Hpr
K (σ∗||Mb, r

∗))
Compute C∗

sym ← Esym(G(σ∗),Mb)
d

$← AG,D(sk,·)−{C∗}(C∗, state)

Experiment Game1
A,b:

((sk,K, r), (pk,K, r)) $← EK(1k)
(M0,M1, state) $← AG,D(sk,·)(pk)
Compute ciphertext C∗ = (C∗

asym, C∗
sym):

Pick σ∗
$← MsgSpasym(k)

Compute C∗
asym

$← Easym(pk, σ∗;Hpr
K (σ∗||Mb, r

∗))

Pick κ∗
$← Keyssym(k)

Compute C∗
sym ← Esym(κ∗ ,Mb)

d
$← AG,D(sk,·)−{C∗}(C∗, state)

Experiment Game2
A,b:

((sk,K, r), (pk,K.r)) $← EK(1k)
(M0,M1, state) $← AG,D(sk,·)(pk)
Compute ciphertext C∗ = (C∗

asym, C∗
sym):

Pick σ∗
$← MsgSpasym(k)

Pick u∗
$← Coinsasym(1K)

Compute C∗
asym

$← Easym(pk, σ∗; u∗)
Pick κ∗

$← Keyssym(k)
Compute C∗

sym ← Esym(κ∗,Mb)
d

$← AG,D(sk,·)−{C∗}(C∗, state)

Experiment Game3
A,b:

((sk,K, r), (pk,K.r)) $← EK(1k)
(M0,M1, state) $← AG,D(sk,·)(pk)
Compute ciphertext C∗ = (C∗

asym, C∗
sym):

Pick σ∗
$← MsgSpasym(k)

Pick u∗
$← Coinsasym(1K)

Compute C∗
asym

$← Easym(pk, σ∗;u∗)
Pick κ∗

$← Keyssym(k)

Compute C∗
sym ← Esym(κ∗, 0|Mb|)

d
$← AG,D(sk,·)−{C∗}(C∗, state)

Figure 3: Games in the Proof of Theorem 5.2: Shaded areas indicate the differences between the
games. It is always assumed that the output (M0, M1, state) of A in the first phase satisfies |M0| = |M1|.

(σ, κ) in LG we condition again on that there is no value (σ, κ) in LG. Let σ∗ be the value that
is encrypted in C∗

asym.

Behavior in Game Zero. We distinguish between the cases that σ 6= σ∗ and σ = σ∗. Possibly,
σ∗ has not been determined at this point, if we are still in the first phase of the attack.

• Suppose σ 6= σ∗, which happens also with overwhelming probability if the query is sub-
mitted before seeing the ciphertext. Since there is no entry in LG about σ the value G(σ)
has not been defined yet, not even implicitly through σ∗ in the challenge ciphertext since
σ 6= σ∗. Since we can assume that G(σ) is given through a random and unknown key κ the
probability that Csym is a valid ciphertext under this key is negligible by the INT-CTXT
property. This is straightforward to formalize. Hence, rejecting such a query through D is
correct with overwhelming probability.

• Suppose σ = σ∗ and C∗
sym = Csym. Then we must also have M = Mb and C∗

asym 6= C∗
asym.

But then Casym cannot be a valid encryption, and rejecting this ciphertext is correct.

The final case, σ = σ∗ and C∗
sym 6= Csym, needs a more thorough treatment. Assume that there

is no entry in LG and that the ciphertext is valid, i.e., should not be rejected by D. We first claim

33

that the probability that A has queried random oracle G about σ∗ at this point is negligible.
If A would query G about σ∗ with non-negligible probability then it would be straightfor-

ward to derive an algorithm Bb (with fixed bit b) refuting the POWHF-encryption assump-
tion. Namely, algorithm Bb is given as input (pk,K, r, C∗

asym) and simulates A’s attack by
supplying a perfect simulation of the random oracle G as usual, and simulating the decryp-
tion queries through procedure D. If Bb is given a message pair M0,M1 and state from A
—which describes an efficient distribution M(pk,K, r) on the messages— then it picks κ∗ at
random and computes C∗

sym ← Esym(κ∗,Mb) and returns (C∗
asym, C∗

sym) to continue A’s simula-
tion. Bb initially also guesses a number j among the at most polynomially many G-queries and
aborts the simulation immediately if A puts the j-th query σ to G. Then Bb checks whether
C∗

asym = E(pk, σ,Hpr(K, σ||Mb, r)). If so, Bb outputs the guess 1, else it outputs the guess 0.
For the analysis note that, if the probability that A queries G about σ∗ before submitting

the i-th decryption query is non-negligible, then Bb guesses the right query with non-negligible
probability, too. In this case Bb predicts the type of input correctly, and for the other cases Bb

outputs the fixed bit 0. Overall the advantage of Bb is thus non-negligible, and we conclude that
A cannot query G about σ∗ with more than negligible probability.

Conditioning on that A has never queried G about σ∗ replacing the value G(σ∗) by an
independent random key κ∗ generates the same view for A, and thus A triggers event DecErrori
also with non-negligible probability if we substitute G(σ∗) by κ∗. We next prove that this,
together with σ = σ∗ and C∗

sym 6= Csym, contradicts the integrity of ciphertexts of the symmetric
scheme.

We construct again an algorithm Bb, but this time Bb refutes the INT-CTXT property of the
symmetric encryption scheme. Algorithm Bb is given access to an encryption oracle Esym(κ∗, ·)
for an unknown key κ∗. It tries to predict the index i by guessing a random j and then starts
to simulate A’s attack. Bb again provides a simulated random oracle G and answers decryption
requests with D. All other complementary inputs to A like the public key (pk,K, r) are chosen
by Bb. For the challenge ciphertext Bb computes an encryption C∗

asym for random σ∗ itself and
queries the given oracle about Mb to get C∗

sym. It returns (C∗
asym, C∗

sym) to A. If A eventually
outputs the i-th decryption query (Casym, Csym) then Bb stops with output Csym.

Note that if the probability for DecErrori and σ = σ∗, Csym 6= C∗
sym for a valid Csym, is

non-negligible for some i, then Bb guesses the right index with non-negligible probability. Under
this condition Bb generates a valid but new ciphertext under the unknown key κ∗, contradicting
the ciphertext integrity of the symmetric scheme.

In summary, events DecErrori only occur with negligible probability. It follows that D simu-
lates decryption queries with overwhelming probability.

Behavior in Games One, Two and Three. The indistinguishable behavior of D and D
in these games follows as in the previous case from the INT-CTXT property of the symmetric
encryption scheme. The reason is that the challenge ciphertext is independent of oracle G, and
if there is no entry for σ in LG then the key of the symmetric scheme is an undetermined random
value.

Comparing the Games. The indistinguishability of A’s output primarily follows from the
analysis of D’s behavior in Game0

A,b. Specifically,

• For Game0
A,b and Game1

A,b we have already shown in the analysis of D for Game0
A,b that A

queries G about σ∗ with negligible probability only. We can thus replace the value G(σ∗)

34

in the challenge ciphertext by an independent key κ∗ without altering A’s output behavior
significantly.

• For Game1
A,b and Game2

A,b this follows analogously to the analysis of D in Game0
A,b and the

POWHF-encryption property.

• For Game2
A,b and Game3

A,b indistinguishability for these two games obviously follows from
the IND-CPA property of the symmetric encryption scheme.

This proves that the H-instantiation of the Fujisaki-Okamoto transformation is IND-CCA for
random oracle G.

F Proof of Theorem 6.1

Recall that our idea is to construct a “bad” VPRF (which exists if any VPRF exists) which
reveals signatures for free, but whose outputs are still pseudorandom. To ensure this pseudoran-
domness, even though the VPRF outputs signatures which usually have some structure, we use
the key privacy trick of [2]. There, to make sure that RSA-encryptions for users with different
k-bit moduli N0, N1, N2 . . . do not reveal the actual receiver, the sender searches for ciphertexts
belonging to

⋂
i ZNi . One possibility to ensure this privacy —which we also take advantage of to

achieve pseudorandomness— is to look for RSA values of k − 1 bits, because all moduli have at
least k bits. We first define an intermediate VPRF which is then modified to obtain our “bad”
VPRF:

Definition F.1 Let (K∗,H∗,V∗) be any verifiable pseudorandom function with unbounded input
length and output length `(k) = 2k. Then construct (K,H,V) as follows:

1. K(1k): The key generation algorithm remains unchanged, K(1k) = K∗(1k).

2. H(fk, x): Parse x as x = (N, e,m) for a k-bit modulus N and a (k + 1)-bit prime e.5 If
x is not of the form (N, e,m) then compute (z0, π0)

$← H∗(fk, 〈0〉k ||x)), let y be the first
k − 1 bits of z0 and return (y, (z0, π0)).

Else, if x = (N, e,m), then compute (zi, πi)
$← H∗(fk, 〈i〉k ||x) and yi ← ze

i mod N for all
i = 1, 2, . . . , k. Take y to be the first among the values yi such that |yi| = k − 1 or, if
no such yi exists, then set y ← 0k−1. Output y and the vector of preimages and proofs
π = (zi, πi)i=1,2,...,k as the proof for y.

3. V(vk, x, y, π) : Parse x as x = (N, e,m). If this fails then check that y equals the first
k − 1 bits in the proof π = (z0, π0) and that V∗(vk, 〈0〉k ||x, z0, π0) = 1. Accept if both tests
succeed.

Else, if x = (N, e,m), then V ′ parses π as π = (zi, πi)i=1,2,...,k. It recomputes all yi =
ze
i mod N and checks that y equals the first yi with k− 1 bits (or that y = 0k−1 if no such

yi exists). V also verifies each proof πi for zi by running V∗(vk, 〈i〉k ||x, zi, πi). Accept if
all tests succeed.

5We presume an appropriate encoding, e.g., encode strings s1 . . . sn ∈ {0, 1}n by doubling the individual bits
to s1s1 . . . snsn and using 01 as a separation mark between blocks.

35

Lemma F.2 The tuple (K,H,V) in Construction F.1 is a verifiable pseudorandom function with
unbounded input length and output length `(k) = k − 1.

Proof: Completeness and unique provability are clear. For the pseudorandomness assume for
the moment that H∗ returns truly random values. Note that a random 2k-bit value reduced
modulo the k-bit integer N is statistically close to a uniform value on ZN . Since e is relatively
prime to N the e-th power of this value is almost uniform on ZN as well, and therefore we
obtain a (k − 1)-bit string yi with probability close to 2k−2/2k ≥ 1/4. If the probability for
a pseudorandom H∗ would diverge from this significantly, say drop by a factor of 1/2, then it
would be easy to distinguish random from pseudorandom values. Hence, with probability at
least 1− (7/8)k our algorithm H finds a (k − 1)-bit string in k trials and does not output 0k−1.
We can thus simply condition on the event that H never returns 0k−1 because of unsuccessful
trials.

We next show that a successful attack on our protocol would contradict the pseudorandomness
of the underlying ensemble (K∗,H∗,V∗). Let A be an adversary attacking our protocol as in
Definition 2.2 and outputting d = b with non-negligible probability ε(k) over 1/2 (without having
queried the challenge x). We construct adversary A∗ = (A∗1,A∗2), running in two phases, for
(K∗,H∗,V∗) as follows:

• A∗1 gets vk generated by (vk, fk)← K∗(1k) as input.

• A∗1 starts a simulation of A1 for input vk. For any oracle query x of A1 toH(fk, ·), algorithm
A∗1 tries to parse x = (N, e,m) and asks H∗(fk, ·) either about 〈0〉k ||x to get (z0, π0) or
about values 〈i〉k ||x to receive answers (zi, πi) for i = 1, 2, . . . , k. In the first case, A∗1 sets
y to be the first k−1 bits of z0 and returns (y, (z0, π0)). In the other case, if x = (N, e,m),
for each answer (zi, πi) of H∗(fk, ·) adversary A∗1 computes yi ← ze

i mod N and lets y be
the first among these values such that |yi| = k − 1. Return (y, (yi, πi)i=1,2,...,k) to A1.

• If A1 outputs a challenge x and state then A∗1 first determines again whether x is of the
form (N, e,m). If not, then A∗ submits 〈0〉k ||x as its own challenge with state state. The
answer z, either pseudorandom (b∗ = 0) or random (b∗ = 1), is truncated by A∗2 to the
first k − 1 bits and returned to A2 with state.

If x = (N, e,m), on the other hand, then A∗1 first chooses j ← {1, 2, . . . , k} at random.
For i = 1, 2, . . . , j − 1, j + 1, . . . , k it submits queries 〈i〉k ||x to oracle H∗(fk, ·) to receive
answers zi. A∗1 then outputs 〈j〉k ||x as the challenge and state information state. Given
the pseudorandom or random answer zj , depending on bit b∗, and the remaining k − 1
values zi adversary A∗2 computes the reply y for A2 by returning the first yi in the list with
k− 1 bits. If this index is different from j then A∗2 stops immediately with random output
d∗

$← {0, 1}.

• Simulate all further oracle queries as before, and finally output the guess d∗ = d of A2.

The simulation is perfect if the challenge x of A is not well-formed, i.e., not of the form (N, e,m).
In particular, since we use a fixed-length encoding for the numbers 〈0〉k , 〈1〉k , . . . , 〈k〉k adversary
A∗ only submits its own challenge to the oracle H∗(fk, ·) if A does so with its challenge in its

36

simulated attack againstH(fk, ·). Hence, in the case that the challenge is not of the form (N, e,m)
adversary A∗ outputs d∗ = b∗ with the same probability as A manages to output d = b.

Suppose that the adversary outputs a well-formed challenge x = (N, e,m). Given that H
never outputs 0k−1 because of unsuccessful trials the adversary A∗ guesses the challenge index
j correctly with probability 1/k. In this case, the simulation perfectly mimics an attack on
(K,H,V) and A∗ outputs d∗ = b∗ whenever A outputs d = b. If the choice of A′ is wrong, which
happens with probability 1−1/k, then A∗ outputs a correct guess with probability 1/2. Overall,
the probability that a′ = b′ therefore equals 1/2 + ε(k)/k in this case.

In both cases the success probability of A∗ attacking (K∗,H∗,V∗) would be non-negligibly larger
than 1/2. This, however, would contradict the pseudorandomness of (K∗,H∗,V∗).

The idea of the VPRF is that it gives away valid signatures with very high probability. If
queried about some (N, e, x) then, except with very small probability with which the answer
y equals 0k−1, the proof πi contains a value yi = y together with an e-th root zi of yi. This
root is a valid signature under the key (N, e). We are now ready to prove the insecurity of the
RSA-FDH instantiation with respect to our “bad” VPRF in Construction F.1 and complete the
proof:

The adversary gets the public key pk = (N, e) of FDH-RSA and the verification key vk of
the VPRF as input. It also gets oracle access to H(fk, ·). The adversary submits x← (N, e,m)
for some message m to the VPRF to receive (y, π) where π = (zi, πi)i=1,2,...,k. Except with
negligible probability (with which the VPRF returns 0k−1) the adversary gets a value y = yi

and a value zi in π such that yi = ze
i mod N . The adversary outputs the message x and the

signature σ = zi. Apparently, these values satisfy σe = ze
i = yi = y = H(fk, x) mod N and fulfill

the verification equation of the signature scheme.

37

