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Abstract
There are limits to the ability to migrate or deploy ap-

plications across geographically distributed/loosely cou-
pled cloud resources, requiring substantial data move-
ment and/or uniformly visible and accessible storage ser-
vices across such distributed infrastructure. To address
these issues, we propose and explore the utility of FleCS
– an approach for providing FLExible Cloud Storage
services in distributed systems. FleCS provides stor-
age containers as a cloud-level abstraction that uniquely
identifies a subset of storage resources and their asso-
ciated attributes. Attributes determine certain container
properties, including those concerning data replication
and consistency, thereby creating opportunities to pay
those costs only for the state/data which require them.
FleCS exports to cloud applications an object-based stor-
age API that allows them to request the ‘right’ types
of storage, and to correspondingly group/classify their
data. Sample uses go beyond the established notions of
application-provided or derived hints to classify the ‘hot-
ness/coldness’ of data and/or to provide better energy-
efficient storage services, to also include application-
specific notions of data consistency and update strate-
gies.

FleCS and several types of storage containers are re-
alized for a prototype platform consisting of groups of
nodes, virtualized with the Xen hypervisor, with distinct
storage targets, each managed by a separate NFS server.
Evaluations use benchmarks based on popular cloud ap-
plications. A future target platform for evaluation is
a distributed OpenCirrus cloud infrastructure spanning
multiple data centers.

1 Introduction
Today’s cloud stacks are typically configured to provide
uniformly visible storage services to VMs running on
any node in the cloud platform. Internally, this property
may be enabled through use of centralized storage ser-
vices and by file systems such as NFS, or achieved on
top of distributed storage services using multiple physi-
cal storage targets [7], including across individual disks
present on each datacenter server node, and distributed
file system layers like HDFS [2]. This view simplifies

storage management services and the various manage-
ment tasks that rely on them, such as VM migration.
However, it requires cloud applications to tolerate vari-
able storage access latencies and bandwidths, creates po-
tential unfairness in terms of storage accessibility across
different applications, and prevents cloud platforms from
scaling across geographycially distributed locations.

Our research advocates an approach in which cloud
applications are provided with explicit knowledge and
guarantees about the storage resources they desire to use.
Specifically and in order to address the diversity in the
requirements of different applications and management
policies, this paper presents and explores the utility of
FleCS – an approach to providing FLExible Cloud Stor-
age services in distributed cloud environments. FleCS
implements the abstraction of storage containers, each
of which uniquely identifies a subset of storage resources
within a single namespace, similar to the ‘buckets’ in
Amazon’s S3 storage service. The contents of a con-
tainer are uniformly visible to all VMs/applications with
adequate permissions. However, containers can differ
from each other – as described by attributes associated
with them – in the access guarantees and properties they
provide to applications. Container attributes are im-
plemented by policy plugins associated with containers,
such as those realizing data replication and consistency
actions. Finally, applications can use private or shared
containers, and use multiple containers in order to differ-
entiate across the different types of data they use.

To illustrate the use of containers, consider for in-
stance, a social networking application, like the one rep-
resented via the event calendar benchmark Olio. Multi-
ple globally distributed user groups may use this service,
therefore it is important to distribute the corresponding
VMs across globally distributed cloud platforms. With
FleCS, this application may use multiple instances of
‘private’ or ‘local’ storage containers that capture events
private to a certain corporation or a certain social group,
and instances of ‘shared’ or ‘replicated’ containers for
events visible to others. ‘Local’ containers are confined
to the storage resources of individual cloud platform,
whereas ‘shared’ ones are replicated across storage re-
sources in each of the distributed clouds. These both im-
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proves the efficiency of storage access, while also allow-
ing us to deal with the slower and more limited cross-
cloud network links.

Containers permit applications to specialize storage
for the different types of data they use and consequently,
to efficiently operate across diverse storage resources, in-
cluding in distributed clouds spanning different datacen-
ters. Containers support such diversity via policy plugins
that can implement general or application-specific meth-
ods to cope with physical constraints like limited stor-
age access bandwidths or highly variable access laten-
cies [11]. Plugins, therefore, enrich containers to pro-
vide applications with desirable properties, one exam-
ple being the use of replication to provide higher levels
of availability, another being improved energy efficiency
through storage consolidation [2] or even by migrating
computations to where energy costs are currently lowest.

Containers can be enriched in arbitrary ways. They
may provide cross-data center storage functionality by
fully mirroring all state across cloud boundaries, so as
to provide services for disaster recovery. They may use
policies that carefully place cloud state for shared use
by multiple virtual machines across multiple storage tar-
gets [6, 1]. They may even be built on top of distributed
cloud file systems [7]. However and in contrast to such
approaches, containers operate at a higher level of ab-
straction, in ways that can be visible to applications,
so that they can avoid the potential costs incurred by
lower level approaches that may have to move large vol-
umes of potentially unnecessary data across inter-cloud
links, or that may apply replication and consistency ac-
tions to applications that does not require them. Fur-
ther, containers can be constructed to take advantage of
prior work on mechanisms that specialize storage ser-
vices to certain sharing and consistency requirements [4],
or to better support certain management objectives like
energy-efficiency [2], including via use of application-
level hints [9]. Finally, containers are similar to existing
work in that they offer higher-level, non-POSIX compli-
ant storage APIs [7, 9, 4, 5]

To use FleCS containers, applications must explicitly
request the ‘right’ types of storage and then use such
storage with appropriate types of data. This generalizes
upon the notions of application-provided or derived hints
to classify the ‘hotness/coldness’ of data and provide
more energy-efficient storage services [9], application-
provided handlers for customized key-value stores [5] or
the use of modified application-specific APIs [4] used
to otherwise establish data groupings. Toward this end,
FleCS exposes to cloud applications an object-based file
system interface, similar to other object-based storage in-
terfaces [3, 12], including popular cloud stores such as
Amazon’s S3 storage service, which allows placement
of entire objects, not low-level storage blocks, in specific
storage containers. Internally, the current implementa-
tion of FleCS containers uses a standard file system to
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Figure 1: FleCS architecture.

represent objects, using a one-to-one mapping of objects
to files.

Summarizing, this paper makes the following contri-
butions:

• We introduce FleCS – an architecture for supporting
flexible and diverse storage services in virtualized
cloud environments – and its accompanying typed
storage container abstraction and API, which allow
applications to express data groupings and classify
data that need to be handled in a certain manner.
This is particularly important in distributed cloud
environments, where the costs of uniformly mak-
ing all data visible and accessible from all nodes
in the (potentially geographically) distributed cloud
infrastructure can be prohibitive.

• We describe our prototype realization of FleCS and
several types of storage containers (e.g., temporary,
replicated, partitioned) on a platform consisting of
groups of nodes virtualized with the Xen hypervisor
and with multiple and separate storage targets, each
managed by a separate NFS server.

• We demonstrate the feasibility and utility of the
FleCS approach by evaluating its overheads and
showing opportunities for improved operating costs
and efficiency, for different types of containers, and
with benchmarks using the FleCS API.

2 FleCS Architecture
Figure 1 illustrates the components of the FleCS archi-
tecture. Each node in a cloud environment is running a
FleCS server, deployed as part of the node-level virtual-
ization layer – e.g., in dom0 in Xen. Guest VMs interact
with the FleCS server via a VM-resident FleCS client,
exporting to guest applications the FleCS API. Appli-
cations, running in VMs, use the FleCS API to request
storage containers with a certain property by specifying
one of multiple supported attributes. The current model
assumes that storage containers with different attributes
are made available to cloud users as different storage ser-
vices provided by the cloud platform, and details regard-
ing their implementation are hidden from VMs.

The FleCS server relies on one or more policy plug-
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ins, each of which specifies the implementation of the
FleCS operations in a manner that is consistent with the
attribute(s) described by the policy. For instance, a plu-
gin for a container that provides “reliability” may rely
on replication to realize the attribute/property. As a re-
sult, creating this type of container will result in physical
storage allocation on multiple physical storage servers
(perhaps even the distribution/distance of those physical
locations is further specified by the target attribute), and
will enforce execution of appropriate consistency proto-
col with each put/get access to container data, again as
specified by the policy plugin. Stated technically, policy
plugin provide concrete implementations for the FleCS
API, including any necessary translations from the FleCS
abstracts to those required by the underlying policy im-
plementation.

The model can support existing cloud solutions as
well, for instance via a 1-to-1 mapping exists between
a VMs disk image and a FleCS container with a “per-
sistent” property. Each VM may use one or more con-
tainers, and each container may be used by one or more
VMs/applications.
FleCS Containers. The storage containers are the main
storage abstraction in FleCS. Similarly to the Amazon’s
S3 ‘buckets’, they represent a single namespace contain-
ing data objects. In our current prototype there is one-
to-one mapping between these data objects and files, but
our next steps are relaxing this requirement, for instance
to better deal with files of arbitrarily large sizes. A key
distinction of the FleCS containers, is that we associate
with them properties – attributes – that go beyond the
simple ‘availability zone’ notion provided in S3, which
indicates high-level information regarding the grouping
of the physical storage backing a certain bucket.

Each container is uniquely identified with its identifier.
Support for user-readable names will be added in the fu-
ture; the current prototype uses numeric container iden-
tifiers only. Internally, FleCS maintains several types of
information regarding each container, including the plu-
gin policy associated with the container attribute, prove-
nance and access rights, policy-specific information re-
garding physical storage involved in the realization of the
container, policy-specific metadata (container metadata
in Figure 1), etc. There may be more than one container
of certain type, each of which may be allocated on dif-
ferent physical resources.

For each container accessed by any of the VMs de-
ployed on a cloud node, FleCS creates an instance for
the corresponding policy plugin (currently accomplished
through use of separate threads). Internally, each in-
stance maintains its own policy-specific metadata needed
for locating objects and performing actions related to
data placement, consistency and update strategies, nec-
essary to maintain the desired attribute.

Figure 1 illustrates several examples of storage con-
tainers. These include (i) ‘temporary’ – e.g., mapped to

objects opaque data objects
container attribute, size
object access operations put and get, delete
container operation create, load, list, delete
container metadata ID, name, policy, storage servers
attributes local, replicate-*, partition

Table 1: FleCS API elements.

node-local storage or even tmpfs, and useful for main-
taining volatile state, (ii) ‘replicated’ across different
physical storage servers, e.g., for critical state for which
we require greater reliability, where replication with
greater consistency is needed, or even for shared state be-
ing accessed from different sites, where replication tech-
niques relying on weaker/eventual consistency methods
may be acceptable, and (iii) ‘partitioned’ across multi-
ple physical servers, e.g., for state which requires high-
availability and scalability. In these examples, the policy
plugin specifies the manner in which physical cloud stor-
age is allocated for different containers. Other types of
containers may specify other functionality, as described
further below in this section.
FleCS API. Table 1 shows the basic components, their
features and supported operations, which constitute the
FleCS API. Containers are created by supplying to the
create operation one of several storage attributes pro-
vided by the cloud infrastructure. The resulting unique
identifier is used to tag any subsequent container ac-
cesses, based on which they are routed to the appropriate
plugin instance in the FleCS server. FleCS exports to
VMs an object-based API, represented via put and get
operations on data objects. Each container represents a
single name space, and objects are uniquely identified
within a container. Internally, the implementation of the
container may use different identifiers, and it is the plu-
gin’s responsibility to implement the necessary transla-
tions from the FleCS object identifier to the container-
internal object identifier (e.g., server IP address and path-
name). In our current implementation, objects corre-
spond to files stored on one or more NFS servers, and
each of the container instances translate the object ID to
the corresponding NFS pathname. Similarly, operations
on objects currently operate on entire file boundary. The
object maximum size is a configurable parameter.
Benefits of FleCS containers. The ability to group
cloud storage into semantically meaningful groups, cre-
ates opportunities to enhance the cloud-level storage
management tasks. For instance, substantial research
has been focused on determining optimal, or improved
data placement in distributed environments where multi-
ple physical servers are shared and accessed from multi-
ple distinct locations [8, 1, 6]. With FleCS, such meth-
ods can be made more efficient, by specifically applying
them to those containers – i.e., data and state – which
require them. Similar arguments apply to the opportuni-
ties to simplify other storage management methods, such
as QoS and performance isolation, or those concerned
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with matching properties of the storage service, such as
replication degree, to the workload requirements or load
levels [5, 10, 9].

FleCS creates opportunities to improve the cost and
the efficiency of cloud-level storage management tasks,
and to permit the support of richer storage management
policies. We make these claims due to multiple factors.
First, by exporting the availability of different types of
storage services to cloud applications, FleCS allows ap-
plications to specify and explicitly use distinct types of
storage – i.e., different containers. In this manner, ap-
plications provide hints regarding the management tasks
which are suited for their storage needs. The benefits of
using application-provided information to improve sys-
tem behavior are well-understood, and have been demon-
strate in context ranging from operating system and net-
working services, to management of large-scale systems,
and beyond In addition, such hints may be necessary to
express certain application-specific constrains, such as
regulatory policy which restrict data placement locations
for financial or health applications.

Next, by grouping state with different storage require-
ments or properties, FleCS makes it more feasible to
develop storage management policies which would oth-
erwise rely on the ability on “learn” and maintain, dy-
namically and in a black-box manner, some informa-
tion regarding the VM access patterns and needs. Ex-
amples include policies requiring isolation guarantees to
be provided across different datasets, such as when cer-
tain datasets contain more important or more frequently
access data. In order to provide different timing and
performance for map-reduce tasks accessing the “hot”
vs. “cold” dataset [2], needed are runtime methods to
identify the different type of data and the applications
that use them. Although related research is focused on
developing such methods, the FleCS approach can sim-
plify the problem and lead to more effective and lower
overhead mitigation and management techniques that re-
duce such ‘heat’. Similarly, distributed cross-cloud ap-
plications, such as the event calendaring application de-
scribed in Section 1, can benefit from use of containers
labeled as “private” or “shared”, where the replication
overheads are incurred for accesses to contents of the
“shared” container only.

In summary, FleCS creates opportunities to pay ad-
ditional storage costs – in terms of physical storage re-
sources, runtime overheads of storage accesses, or dol-
lars – only for the state/data which require them. As
a result, it not only improves the efficiency of differ-
ent types of storage services, but it may also eliminate
critical overheads from service implementations, which
would otherwise be rendered useless.

3 Implementation
We have implemented a prototype of the FleCS architec-
ture for platforms virtualized with the Xen hypervisor.

The FleCS server is implemented as a multi-threaded
user-level process in dom0, with separate threads man-
aging the accesses to separate containers, as specified
by the policy plugin corresponding to the container at-
tribute. The FleCS client is implemented as a user-level
library, and, in the current implementation, the interac-
tion between the client and the server process in dom0 is
performed via TCP sockets. Currently, we support plu-
gins for the three types of containers shown in Figure 1
– ‘temporary’, ‘replicated’, and ‘partitioned’. Each con-
tainer is uniquely identified via the Xen ID of the VM
requesting the container creation. Finally, we currently
make simplifying assumptions regarding the metadata
management for containers, and assume that it is repli-
cated at each node.

Our future extension of this implementation will im-
prove the efficiency of the VM-FleCS interactions, al-
low support for human-readable container names, pro-
vide support for scalable metadata operations, e.g., via
use distributed hash tables and caching, and add mecha-
nisms for access control and configuration management
(as shown in Figure 1).

Finally, our prototype cloud platform is a very simplis-
tic one. A future target platform for evaluation is a dis-
tributed OpenCirrus cloud infrastructure spanning multi-
ple data centers.

4 Initial Results
Testbed. We next present the results for the preliminary
evaluation of the feasibility and utility of the FleCS ap-
proach described in this paper. The results are gathered
on a small datacenter prototype consisting of four Xeon
nodes, virtualized with the Xen 3.0.3 hypervisor, run-
ning RHEL 5.6, kernel version 2.6.18. Two nodes serve
as NFS servers, each with a 6-disk RAID5 storage array
with 400GB HDDs. All components are interconnected
via 1Gbps Ethernet. To emulate wide-area delays for ac-
cess to remote storage, we insert configurable delays on
one of the FleCS server - NFS server datapaths.
Feasibility. First, we compare the costs (i.e., latency)
of the put and get operations of the different types of
FleCS containers currently supported in our prototype,
with a baseline case corresponding to direct access to
one of the NFS server managing one storage array. The
benchmark application running in a guest VM performs
repeated accesses to objects/files of different sizes, and
measures the latencies associated with each data size.
In all cases we disable client-side caching and ensure
I/O operations interact with the storage servers. Fig-
ure 2 shows the results of these measurements. First, we
observe that containers can be efficiently realized – the
replicated and partitioned containers provide similar I/O
access properties as the NFS-based baseline case. Fur-
thermore, FleCS creates opportunities to seamlessly use
different type of storage services, including those access-
ing local disks, such as for containers holding temporary,
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Figure 2: Feasibility of FleCS containers. Figure 3: FleCS containers in distributed datacenters.

volatile data. Concretely, in these experiments, we real-
ize temporary containers via tmpfs, which may be suit-
able for certain temporary data. This has the potential
of resulting in significant performance improvements for
certain types of workloads, and we plan to further inves-
tigate this in the future.

Clearly, the exact performance levels provided by var-
ious types of containers vary based on the network la-
tencies associated with accessing the storage targets in-
volved in the container realization. To show these effects
we artificially introduce delays on the I/O path for one of
the storage targets available in our system, so as to model
accesses to remote datacenters – specifically using delays
measured when pinging servers at UT Austin and Stan-
ford University. Figure 3 demonstrates that the effects of
the remote access have linear impact on the I/O perfor-
mance provided by the given container, as expected, and
that FleCS does not introduce any hidden overheads.

Utility. In order to demonstrate the utility of FleCS,
we conduct a simple experiment evaluating the perfor-
mance of multiple map-reduce word-count applications
implemented for FleCS, operating across two different
data sets, stored in two separate containers. One appli-
cation uses dataset 1, the remaining applications access
dataset 2 only. Due to the small size of our testbed, we
cannot create sufficient number of map-reduce VMs that
create contention for the storage resource. Therefore we
also use a ‘load generator’ VM running the fio bench-
mark, which performs random accesses to dataset 2 only.
The results compare the performance observed in the fol-
lowing scenarios: (1) both datasets are placed in two con-
tainers stored at different storage servers, (2) dataset 2
is realized with a ‘replicated’ FleCS container, and dis-
tributed across both storage targets, and (3) both datasets
are replicated with the same degree of replication, which
is common for current cloud storage solutions which do
not differentiate between the different storage needs. The
goal of the experiment is to demonstrate that with FleCS
we can achieve performance improvements while lim-
iting the storage costs and complexities only to those
workloads which require them. The final version of this
paper will include the results from these measurements.

5 Conclusions and Future Work
This paper presents FleCS and its associated abstrac-
tions, and explores their utility in supporting diverse and
flexible cloud storage services. Through use of stor-
age containers, and their associated attributes, FleCS
provides applications with explicit knowledge about the
properties of the storage resources they desire to use,
and, in turn, uses that knowledge to maintain such prop-
erties in a manner which limits the costs only to data/state
that require them. FleCS enables realizations of range of
storage services with acceptable costs, include those tar-
geting cross-cloud storage interactions. We are continu-
ing to evolve the FleCS prototype and to develop and ex-
periment with realistic applications and use cases, which
we hope to include in the final version of this paper.
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