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Abstract—Software engineers build software systems in increas-
ingly regulated environments, and must therefore ensure that
software requirements accurately represent obligations described
in laws and regulations. Prior research has shown that graduate-
level software engineering students are not able to reliably deter-
mine whether software requirements meet or exceed their legal
obligations and that professional software engineers are unable
to accurately classify cross-references in legal texts. However,
no research has determined whether software engineers are
able to identify and classify important ambiguities in laws and
regulations. Ambiguities in legal texts can make the difference
between requirements compliance and non-compliance. Herein,
we develop a ambiguity taxonomy based on software engineering,
legal, and linguistic understandings of ambiguity. We examine
how 17 technologists and policy analysts in a graduate-level
course use this taxonomy to identify ambiguity in a legal text. We
also examine the types of ambiguities they found and whether
they believe those ambiguities should prevent software engineers
from implementing software that complies with the legal text. Our
research suggests that ambiguity is prevalent in legal texts. In 50
minutes of examination, participants in our case study identified
on average 33.47 ambiguities in 104 lines of legal text using our
ambiguity taxonomy as a guideline. Our analysis suggests (a) that
participants used the taxonomy as intended: as a guide and (b)
that the taxonomy provides adequate coverage (97.5%) of the
ambiguities found in the legal text.

I. INTRODUCTION

Most people who bother with the matter at all would

admit that the English language is in a bad way, but

it is generally assumed that we cannot by conscious

action do anything about it.

– George Orwell

Orwell’s Politics and the English Language details ways

authors conceal their actual meaning behind vague or am-

biguous language. He believed much of this was due to

sloppiness, and that writers could actually do something

about it, but for readers of ambiguous language, rewriting

is not an option. More importantly, ambiguity sometimes

accurately conveys an authors intent. Legal texts are sometimes

intentionally ambiguous [1]. Requirements engineers have

long recognized that natural language is often ambiguous [2].

Resolving ambiguities in source documents for requirements

remains an area of active research. In particular, researchers

have not focused on identifying ambiguities in legal texts that

govern software systems, which is critical because ambiguities

in legal texts can neither be ignored nor easily removed. Many

approaches to resolving ambiguity in software requirements

rely on disambiguation or removal of the ambiguity. These

may simply not be an option for software engineers addressing

ambiguity in a legal text. This paper explores ambiguity in

a legal text from the U.S. healthcare domain and whether

software engineers can actually do something about it.
Our prior research focused on compliance with the Health

Insurance Portability and Accountability Act (HIPAA)1 [3], [4].

Non-compliance with HIPAA can result in significant fines.

The U.S. Department of Health and Human Services (HHS)

fined WellPoint $1.7 million2, a Massachusetts healthcare

provider $1.5 million3, and Cignet Health $4.3 million4 for

non-compliance with HIPAA. In 2009, Congress amended

HIPAA with the HITECH Act, which was passed as a part

of the American Recovery and Reinvestment Act5. HITECH

outlines a set of objectives that incentivize Electronic Health

Record (EHR) systems development by providing payments

to healthcare providers using EHRs with certain “meaningful

uses,” which are further detailed by the U.S. Department of

Health and Human Services (HHS), the federal agency charged

with regulating healthcare in the United States [5].
The first step for engineers building HITECH-regulated

systems is examining the text of the regulation and extract-

ing requirements from it. Unfortunately, extracting software

requirements from regulations is extremely challenging [1], [6],

[7]. Even reading and understanding these documents may be

beyond the capability of professional engineers [8]. Identifying

ambiguous statements and understanding why those statements

are ambiguous are critical skills for requirements engineers

reading legal texts. Even outside of the legal domain, too much

unrecognized ambiguity is considered one of the five most

important reasons for failure in requirements analysis [9]. To

our knowledge, this paper is the first to examine identification

and classification of ambiguities in a legal text for the purpose

of software requirements analysis.
Many types of ambiguities exist, and each type must be

1Pub. L. No. 104–191, 110 Stat. 1936 (1996)
2http://www.hhs.gov/ocr/privacy/hipaa/enforcement/examples/

wellpoint-agreement.html
3http://www.hhs.gov/ocr/privacy/hipaa/enforcement/examples/

meei-agreement.html
4https://www.huntonprivacyblog.com/2011/02/articles/

hhs-fines-cignet-health-4-3-million-for-violation-of-hipaa-privacy-rule/
5Pub. L. No. 111–5, 123 Stat. 115 (2009)
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disambiguated differently by requirements engineers. Herein,

we define an ambiguity taxonomy consisting of six broad

ambiguity types based on definitions used in requirements

engineering, law, and linguistics. Lexical ambiguity refers to

a word or phrase with multiple valid meanings. Syntactic

ambiguity refers to a sequence of words with multiple valid

grammatical interpretations regardless of context. Semantic am-

biguity refers to a sentence with more than one interpretation in

its provided context. Vagueness refers to a statement that admits

borderline cases or relative interpretation. Incompleteness is a

grammatically correct sentence that provides too little detail

to convey a specific or needed meaning. Referential ambiguity

refers to a grammatically correct sentence with a reference

that confuses the reader based on the context provided. Each

of these types of ambiguity are described in more detail in

Section III-A. Some types of ambiguity require additional

analysis or disambiguation before implementation can begin.

In Section II, we compare and contrast the approaches that

prior researchers have taken to different types of ambiguity.

Ambiguities complicate reading, understanding, and examin-

ing legal texts for software requirements. Herein, we conduct

a case study to determine how prevalent ambiguity is in

legal texts. Our findings suggest that ambiguity is prevalent

in legal text. In 50 minutes of examination, participants

in our case study identified on average 33.47 ambiguities

in 104 non-blank lines of legal text6 using our ambiguity

taxonomy as a guideline. Participants did not, however, achieve

a strong level of agreement on the exact number and type

of ambiguity, regardless of whether we measured agreement

over all participants or just over the two groups we examined

(technologists and policy analysts).

The remainder of this paper is organized as follows. Sec-

tion II introduces related work and background information.

Section III describes our case study methodology. Section IV

details the results of our case study. In Section V, we discuss

the implications of this work. Section VI presents potential

threats to the validity of this work. Finally, in Section VII, we

summarize our work and provide directions for future work in

this area.

II. RELATED WORK

The majority of software requirements specifications are

written in natural language, which is inherently ambiguous and

imprecise [9]. However, software engineers do not yet have a

single, comprehensive, accepted definition for ambiguity [10].

Ambiguity has been defined as a statement with more than

one interpretation [11]. The IEEE Recommended Practice for

Software Requirements Specifications states that a requirements

specification is unambiguous only when each requirement

has a single interpretation [12]. Lawyers, on the other hand,

depend on ambiguity to ensure that laws and regulations are not

dependent on transient standards [10]. For example, lawyers

might require “reasonable” encryption practices rather than

6We had 16 lines of legal text in our tutorial and 121 total lines in our
survey. Seventeen of the lines in our survey were blank.

specifying a particular encryption algorithm or standard that

might be outdated in a few years. Linguists have created

detailed ambiguity classifications. In this section, we present re-

lated work on ambiguity in requirements engineering, focusing

on legal requirements, and in linguistics.

A. Ambiguity in Requirements Engineering

Common sense suggests that an unambiguous statement

would have only a single, clear interpretation. But how should

we classify statements that have no interpretations? Vague or

incomplete statements may not have a valid interpretation. For

a requirements engineer, a statement that depends heavily on

domain knowledge may also, at first, appear uninterpretable.

Herein, we consider vague or incomplete statements to be

ambiguous because they are not unambiguous. That is, we

consider them to be ambiguous because they do not have a

single, clear interpretation.

Requirements engineers may tolerate requirements with

multiple interpretations early in the development of a new

set of software requirements [13]. In addition, some statements

may be innocuous because only one possible interpretation

would be reasonable, and these statements are unlikely to lead

to misunderstandings [11], [14]. Requirements with statements

having more than one reasonable interpretation are nocuous and

likely to lead to misunderstandings if not clarified [11], [14].

Legal domain knowledge would be required to differentiate

between innocuous and nocuous requirements in this study.

Since we do not assume our case study participants have

the necessary background, we do not consider the difference

between nocuous and innocuous to be meaningful. Chantree et

al. make an additional distinction between acknowledged am-

biguities, which are known to engineers, and unacknowledged

ambiguities, which are unknown to engineers [11]. Our case

study focuses only on identifying (i.e. acknowledging) ambi-

guity in legal texts. We consider unacknowledged ambiguity

to be outside the scope of our work.

Many software engineering approaches to ambiguity involve

the development of tools or techniques for recognizing or

eliminating ambiguity in software requirements. For example,

Gordon and Breaux use refinements to resolve potential

conflicts between regulations from multiple jurisdictions [15].

Researchers have used natural language processing to detect

and resolve ambiguity in software requirements [16]–[18]. Van

Bussel developed a machine learning approach to detecting

ambiguity in requirements specifications [19]. Popescu et al.

developed a semi-automated process for reducing ambiguity

in software requirements using object-oriented modeling [20].

None of these approaches focused exclusively on identifying

and classifying ambiguity in legal texts to which software

systems must comply.

Antón et al. examine conflicts between policy documents

and software requirements [21]. Although conflicts between

policy documents, legal texts, and software requirements may

not necessarily be a form of ambiguity, these conflicts inspired

our work in two primary ways. First, Antón et al. state that

alignment between policies and software requirements must
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be flawless to avoid conflicts [21]. Even potential conflict

should be addressed [21]. These assertions support the use

of a broad definition of ambiguity. Second, although linguists

view vagueness or generality as having a single, albeit broad,

meaning [22] that is sometimes used to force readers to come

to their own understanding or interpretation [23], Antón et al.

explicitly state that incompleteness is a form of engineering

ambiguity that must be addressed for policy compliance.

B. Ambiguity in Linguistics

Empson’s book on literary criticism identifies seven types

of ambiguity [23]. This book led to our ambiguity taxonomy

for the purposes of evaluation or criticism. Many authors use

language simply to provoke a reaction in the reader, and some

authors use Empson’s ambiguity types for that purpose. We

chose not to map Empson’s concepts of discovery, incoherence,

and division [23] to our taxonomy because their primary utility

is for literary criticism or interpretation.

Berry et al. identified linguistic types of ambiguities [10],

which they classify according to six broad types, some of

which have sub-types. For example, pragmatic ambiguity

includes referential ambiguity and deictic ambiguity. Their

classification is similar to other classifications of linguistic

ambiguity [22]. Berry et al. also examine legal ambiguity [10].

They describe the legal principles used to interpret ambiguity

when encountered rather than defining ambiguity. Consider the

following legal principle:

AMBIGUUM FACTUM CONTRA VENDITOREM INTER-

PRETANDUM EST: An ambiguous contract is to be

interpreted against the seller.

This principle does not define ambiguity, rather it provides

a mechanism for resolving it in contract law. This principle

supports intentionally ambiguous language in legal writing by

providing an context in which it can be disambiguated. Unfor-

tunately, requirements engineers do not have the appropriate

domain knowledge to interpret this language clearly, and they

cannot simply ignore it or remove it. Thus, they must learn to

recognize it and seek help from a legal domain expert.

Linguists and philosophers often classify ambiguity in a

finer granularity than we do herein. For example, Sennet’s

syntactic classification ambiguity includes the subtypes phrasal,

quantifier and operator scope, and pronouns [22]. Similarly,

lexical ambiguity could be classified as either homonymy or

polysemy [10]. Linguists and philosophers continue to debate

the nature of ambiguity and correct usage of natural lan-

guage [24]. In particular, classifying types of ambiguity is itself

often ambiguous [25]. Even seemingly simple grammatical

corrections can quickly balloon into fundamental arguments.

Attempting to define what constitutes an arbitrator for “correct”

usage in English is extremely challenging [26]. A discussion

of the nuance involved in interpreting or correcting language

use is outside the scope of this investigation.

III. CASE STUDY METHODOLOGY

Our case study methodology is based upon the

Goal/Question/Metric (GQM) model [27]–[29]. The GQM

model starts with a set of goals. Each goal is addressed by at

least one question, with each measured by at least one metric.

Following this paradigm focuses the case study on the research

questions and minimizes extraneous test participant tasks. Our

research goal formulated using the GQM template is:

Analyze empirical observations for the purpose

of characterizing ambiguity identification and

classification with respect to legal texts from the

viewpoint of students in a graduate-level Privacy

course in the context of § 170.302 in the HITECH

Act.

Given this research goal, we formulate the following ques-

tions:

Q1: Does the taxonomy provide adequate coverage of the

ambiguities found in § 170.302?

Q2: Do participants agree on the number and types of

ambiguities they identify in § 170.302?

Q3: Do participants agree on the number and types of

intentional ambiguities they identify in § 170.302?

Q4: Do participants agree on whether software engineers

should be able to build software that complies with each

paragraph of § 170.302?

Q5: Does an identified ambiguity affect whether participants

believe that software engineers should be able to build

software that complies with each paragraph of § 170.302?

The remainder of this Section is organized as follows: We

first discuss important terminology, providing definitions for

each ambiguity type in our taxonomy. Subsection III-B details

our participant selection criteria and all materials used for

this study. We introduce measures to evaluate each of these

questions in Subsection III-C.

A. Terminology

Case study participants were asked to identify ambiguity in

the HITECH Act, 45 CFR Subtitle A, § 170.302. We provided

participants with a taxonomy that defines six separate types

of ambiguity. Table I outlines these ambiguity types. Note

that they are not mutually exclusive: a single sentence from a

legal text may exhibit more than one ambiguity type. Although

this ambiguity taxonomy is designed to be broadly applicable,

it is not guaranteed to be comprehensive. Sentences may be

ambiguous in ways that do not fall into one of these six types.

To introduce our ambiguity taxonomy, we employ example

ambiguities identified by our study participants rather than the

examples used in our study tutorial, shown in Table I.

Lexical ambiguity occurs when a word or phrase has

multiple valid meanings. Consider § 170.302(d): “Enable a user

to electronically record, modify, and retrieve a patient’s active

medication list as well as medication history for longitudinal

care.” A medication history for longitudinal care could mean

either a complete medication history in a particular arrangement

or an abbreviated medication history used only for a particular

purpose. A requirements engineer must disambiguate this prior

to implementation. Another example: “Melissa walked to the

bank.” This could mean that Melissa walked to a financial

institution or she walked to the edge of a river.
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TABLE I
CASE STUDY AMBIGUITY TAXONOMY

Ambiguity Type Definition Example

Lexical A word or phrase with multiple valid meanings Melissa walked to the bank.

Syntactic A sequence of words with multiple valid grammatical interpretations regardless
of context

Quickly read and discuss this tutorial.

Semantic A sentence with more than one interpretation in its provided context Fred and Ethel are married.

Vagueness A statement that admits borderline cases or relative interpretation Fred is tall.

Incompleteness A grammatically correct sentence that provides too little detail to convey a
specific or needed meaning

Combine flour, eggs, and salt to make fresh
pasta.

Referential A grammatically correct sentence with a reference that confuses the reader based
on the context

The boy told his father about the damage. He
was very upset.

Syntactic ambiguity occurs when a sequence of words has

multiple valid grammatical parsings. Consider § 170.302(f):

“Enable a user to electronically record, modify, and retrieve

a patient’s vital signs. . . ” Here, “electronically” may refer

to all the verbs “record, modify, and retrieve” or only to

“record.” It seems unlikely that the U.S. government wants

EHR vendors to “electronically modify a patient’s vital signs.”

But, electronic recording or retrieving seem like reasonable re-

quirements. Again, a requirements engineer must disambiguate

prior to implementation. Also: “Quickly read and discuss this

paragraph.”

Semantic ambiguity occurs when a sentence has more

than one interpretation based entirely on the surrounding

context. Each word in the sentence has a distinct meaning

and the sentence has a single parse tree, but the correct

interpretation of the sentence requires more context. Consider

§ 170.302(j): “Enable a user to electronically compare two

or more medication lists.” Comparing two lists is reasonably

clear if a context for the comparison is provided. These lists

could be compared for length, cost, drug interaction, or any

number of other factors. In addition, these lists could belong

to the same patient or different patients, depending on the

comparison’s purpose. Other examples: “Fred and Ethel are

married.” and “Fred kissed his wife, and so did Bob.” Further

context is needed to determine if Fred and Ethel are married

to each other or separately. Nor do we know if Fred has cause

to be annoyed.

Vagueness occurs when a term or statement admits border-

line cases or relative interpretation. Consider § 170.302(h)(3):

“Electronically attribute, associate, or link a laboratory test

result to a laboratory order or patient record.” What constitutes

attributing, associating, or linking? Must these records always

be displayed together or would simply having an identifier

and allowing a physician to find one given the other suffice?

Similarly, consider: “Fred is tall.” If Fred was a North American

male and 5’2" tall, then the claim is not true. If Fred was 7’0"

tall, then the claim is supported. Somewhere in between lie

heights that reasonable people might disagree as to constituting

“tall.”

Incompleteness occurs when a statement fails to provide

enough information to have a single clear interpretation.

Consider § 170.302(a)(2): “Provide certain users with the

ability to adjust notifications provided for drug-drug and drug-

allergy interaction checks.” This sentence omits information

that would allow requirements engineers to identify which

users should have this ability or what options they would have

to adjust notifications. Incompleteness must be resolved for the

requirements to be implemented. Similarly, “Combine flour,

eggs, and salt to make fresh pasta.” omits some necessary

information such as quantity of materials and techniques to be

employed.

Referential ambiguity occurs when a word or phrase in a

sentence cannot be said to have a clear reference. Consider

§ 170.302(n): “For each meaningful use objective with a

percentage-based measure, electronically record the numerator

and denominator. . . ” The meaningful use objectives that use a

percentage-based measure are not referenced directly, which

leaves the requirements engineer to determine which objectives

must comply with this legal obligation. Other examples include

pronouns and their antecedents. “The boy told his father about

the damage. He was very upset.” The pronoun ‘he’ could refer

to either the boy or the father. Also: “There are many reasons

why lawyers lie. Some are better than others.”

We created our ambiguity taxonomy based on those ambi-

guity types that are relevant for regulatory compliance. It is

not intended to be comprehensive with respect to all types of

ambiguity. A word, phrase, sentence, or paragraph with more

than one meaning may not fit in our taxonomy. For this case

study, participants were instructed to classify such sentence as

an Other ambiguity.

Because we chose a section of legal text from the HITECH

Act primarily for its important implications for software

development, this study was not designed to guarantee that

all types of ambiguities appear in the legal text. For example,

there may be no referential ambiguity in the legal text. It is

also possible that a paragraph from this legal text has a single

interpretation with a single, clear meaning. In our taxonomy,

such statements are called Unambiguous statements.

Requirements engineers can use our ambiguity taxonomy

as a guide when evaluating legal text for ambiguity. Each

statement could be evaluated for each of the six ambiguity

types in sequence from the beginning to the end of the text.

If no ambiguity can be found in those six categories, then

the requirements engineer could consider the statement to
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be unambiguous. Each discovered ambiguity could then be

examined for intent. Requirements engineers may be able

to disambiguate an intentional ambiguity. For example, the

legal phrase “reasonable security practices” is vague, but

it could be clarified by a specific government or industry

security standard. Unresolved intentional ambiguities and all

unintentional ambiguities must be disambiguated by a legal

expert.

B. Study Participants and Materials

We selected participants for our case study from a population

of all students enrolled in a graduate-level class at the Georgia

Institute of Technology, entitled Privacy Technology, Policy,

and Law. This course was held during the 2014 spring semester

and jointly listed by the College of Computing (CoC) and the

Scheller College of Business (CoB). Eighteen students elected

to participate.

Our case study materials consisted of a tutorial and a survey.

We conducted the tutorial in the class session prior to the survey.

During the tutorial, we briefly described the motivation for this

research, explained the ambiguity taxonomy, and defined each

ambiguity type using illustrative examples for each ambiguity

type. After a short question and answer period about the

ambiguity types, we presented a worked example of a legal

text similar to what the students would be asked to analyze in

the survey. The example legal text consisted of a paragraph

from the HIPAA7. This example provided participants with an

experience as similar as possible to that of the survey itself and

allowed us to demonstrate each of the types of annotations that

might be required of the participants during the survey. During

the tutorial, we did not tell the participants which section of

legal text would be covered in the survey.

We chose to conduct the tutorial and the survey in consecu-

tive class sessions to allow participants more time to understand

our ambiguity taxonomy. At the beginning of the class session

during which we conducted the survey, we briefly recapped the

tutorial and described two examples for each ambiguity type

in our taxonomy. We provided study participants 50 minutes

to complete the study. The first question asked the participant

to self-identify as one of the following roles:

1) I am a technologist, and I am more interested in creating,

building, or engineering software systems than I am in

legal compliance or business analysis.

2) I am a business analyst, and I am more interested in

creating a business based on technologies than I am in

building technologies.

3) I am a legal analyst, and I am more interested in

regulatory compliance than I am in building technologies

or in business analytics.

We selected the HITECH Act, 45 CFR Subtitle A, § 170.302,

which contains 23 paragraphs, as the legal text for this study.

This section specifies the certification criteria for EHRs under

Meaningful Use Stage 1. Compliance with this regulation

7The exact paragraph used in the tutorial was 45 CFR Subtitle A,
§ 164.312(a).

is a required qualification for the HITECH incentives that

depend upon the use of a certified EHR. Non-compliance

with this regulation would result in both regulatory penalties

and loss of marketplace reputation. For each paragraph,

participants identified ambiguities using a response block.

The response block allowed participants to identify ambiguity

type(s) identified, the line number on which it was identified,

and whether the participant believed it to be intentional (i.e.

an ambiguity the author meant to include) or unintentional (i.e.

an ambiguity that was accidentally included). The distinction

between intentional and unintentional ambiguities is one of

the ways that requirements engineers can determine when they

must consult a legal expert to resolve the ambiguity.

We created line numbers to simplify the annotation of am-

biguities in the legal text. When a paragraph within § 170.302

contained a cross reference to another section of legal text

within HITECH, we provided the referenced legal text without

line numbers both to provide participants additional context

to disambiguate the target legal text and to indicate that cross

referenced legal texts were simply provided for context. The

response block contained space for each of the six ambiguity

types, a space labeled ‘Other’ for ambiguities that did not

fall into one of our six types, and a space labeled ‘None’ for

participants to indicate that the paragraph was unambiguous.

If participants identified an ambiguity in the legal text, they

wrote the respective line numbers in the appropriate space. If

participants believed that the ambiguity was intentional, they

also circled the line numbers after writing them. Finally, for

each paragraph, participants were asked to agree or disagree

with the following statement: “Software engineers should be

able to build software that complies with this legal text.” We

call paragraphs for which participants agree with this statement

“implementable,” and we call those for which participants

disagree “unimplementable.” We use responses to this question

to determine whether identified ambiguities in § 170.302 affect

participants’ beliefs about building compliant software.

C. Study Analysis

In addition to the standard mean and variance statistics,

we employ two specialized measures for describing group

participant agreement. The intraclass correlation coefficient

(ICC) measures the variability of a set of responses with

quantitative values across N participants [30]. Because we

gave the same survey to each participant and performed

calculations directly upon responses without first averaging,

we employ ICC with the oneway effects model and with a

single measure of interest as recommended by McGraw and

Wong [30]. In cases where the responses were categorical

instead of quantitative, we employ Fleiss’ kappa [31]. Both

measures compute inter-rater reliability for a fixed number

of participants and range from inverse-correlated (-1.0) to

un-correlated (0.0) to perfectly correlation (1.0). To perform

the statistical computations, we used the R Project8 with the

Interrater Reliability (IRR) package,9 which supports both ICC

8http://www.r-project.org/
9http://cran.r-project.org/web/packages/irr/

87



and Fleiss’ kappa. We analyzed the collected data to answer

the questions identified above in Section III as follows:

Q1 Measures: An affirmative answer to this question requires

(1) high coverage of identified ambiguities by the taxon-

omy and (2) minimal use of the “Other” type.

Q2 Measures: We counted the number of ambiguities each

participant identified per paragraph and the number and

type of each ambiguity found. Since this measure is

quantitative, we measured agreement with ICC.

Q3 Measures: We employed the same statistics as with Q2

with responses restricted to intentional ambiguities. That

is, we counted the number of intentional ambiguities each

participant identified per paragraph and the number and

type of each intentional ambiguity found. Because this

measure is quantitative, we measured agreement with ICC.

Q4 Measures: We tabulated participant responses to our

question of whether software engineers should be able to

build compliant software for each legal paragraph. Because

this data is categorical, agreement was measured with

Fleiss’ Kappa.

Q5 Measures: For paragraphs participants believe to be unim-

plementable, we calculated the percentage containing

identified ambiguities.

IV. CASE STUDY RESULTS

Eighteen students volunteered for our case study. Of these

eighteen participants, one provided complete responses to only

five of the 23 paragraphs, and we excluded those results. We

accepted responses from the remaining seventeen participants,

including one participant who identified 55 ambiguities in the

first eleven paragraphs and none in the remaining twelve. Some

participants failed to provide a response for all parts of the

response block for some questions. In each case, we removed

those responses from our analysis where appropriate.

As previously mentioned, we asked participants to self-

identify as either a: (1) technologist, (2) business analyst, or

(3) legal analyst. Because only one participant self-identified

as a legal analyst, we combined groups (2) and (3) to produce

a new group that we refer to as policy analysts. This resulted

in a roughly equal division of our seventeen participants with

nine in the technologist group and eight in the policy analyst

group.

We now discuss the results of our case study for each research

question discussed in Section III.

Q1: Does the taxonomy provide adequate coverage of the

ambiguities found in § 170.302?

Answer: Yes, on average, the participants identified 33.47

ambiguities for the paragraphs in § 170.302, including

ambiguities from each type in the taxonomy. The least

frequently identified ambiguity type is Semantic with an

average of 1.59. The most frequently identified type was

Vagueness with an average of 9.82. The ‘Other’ type had

an average of 0.82.

Both technologists and policy analysts identified ambiguities

from every type in the taxonomy. Figure 1 shows the total

ambiguities identified by participants for each paragraph in

§ 170.302.10 It also shows the relative totals for each ambiguity

type. Note that paragraph § 170.302(a), in which participants

found the most ambiguities, also includes the preamble text

that appears at the beginning of § 170.302 and prior to the

paragraph.

Table II shows the ambiguities (mean and standard devia-

tion) identified in each paragraph by (1) all participants, (2)

technologists, or (3) policy analysts. Intentional ambiguities

were relatively rare compared to unintentional ambiguities.

Some paragraphs are also appear to be less ambiguous than

others. For example, in Table II, paragraphs (b), (j), (o), (r),

and (w) each had less than one ambiguity on average for all

participants, whereas paragraphs (a), (c), (h), (f), and (n) all

had over two ambiguities on average.

The taxonomy ambiguity types overlap and the decision to

select one or more types is inherently subjective. Participants

used all six ambiguity types more frequently than the “Other”

type. Subsection III-A provides examples of each ambiguity

type as identified by the participants. Our analysis suggests (a)

that participants used the taxonomy as intended: as a guide

and (b) that the taxonomy provides adequate coverage (97.5%)

of the ambiguities found in §170.302.

In our prior work, we sought to compare participants’ under-

standing of the law to a consensus expert opinion on the law [7].

This comparison worked well as an evaluation technique

because rules exist for interpreting laws and regulations. Thus,

a correct interpretation can be differentiated from an incorrect

interpretation. Unfortunately, conducting a similar comparison

to assess the “correctness” of ambiguities as identified and

classified by participants in this work is not possible and would

be misleading if conducted. Ambiguity is subjective [26]. No

absolute authority exists to interpret ambiguity [26], so there

is no way to evaluate objective correctness.

Because no correct interpretation of ambiguity exists, any

comparison to a consensus expert opinion would misleadingly

imply that a correct interpretation exists. In the absence of

an objectively correct assessment, expertise is subjective. If a

reader finds a statement ambiguous, how can an “expert” prove

it is clear? Similarly, if a reader fails to interpret a statement

as ambiguous, how can an “expert” prove it to be so?

Analogies to other forms of communication may help

illuminate the nature of ambiguity. Comedians do not get

to blame their audience for not laughing at their jokes. There

is no such thing as an objectively humorous statement. Writers

do not get to blame their readers for not understanding their

point. Clear communication is the burden of the sender, not the

recipient. Thus, in the only sense possible, when participants

determine a statement was ambiguous to them, it is ambiguous.

Q2: Do participants agree on the number and types of

ambiguities they identified in § 170.302?

Answer: We evaluated agreement using intraclass correlation

finding only slight to fair agreement between all partici-

10One participant found a total of 55 ambiguities through paragraph
§ 170.302(k) and none in the remainder of the legal text.
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TABLE II
AMBIGUITIES IDENTIFIED IN EACH PARAGRAPH OF THE HITECH ACT, 45 CFR SUBTITLE A, § 170.302

Paragraphs (a) - (l) (mean, std dev)
Type Intent (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

U 2.7, 1.8 0.9, 0.7 2.3, 0.5 1.1, 0.7 1.2, 0.8 2.0, 1.1 1.0, 0.9 1.6, 1.2 0.9, 0.9 0.8, 0.9 1.3, 1.4 1.2, 1.0
Tech I 0.6, 0.5 0.1, 0.3 0.1, 0.3 0.0, 0.0 0.0, 0.0 0.1, 0.3 0.1, 0.3 0.7, 0.7 0.1, 0.3 0.1, 0.3 0.2, 0.4 0.1, 0.3

C 3.2, 1.7 1.0, 0.8 2.4, 0.5 1.1, 0.7 1.2, 0.8 2.1, 1.1 1.1, 0.9 2.2, 0.8 1.0, 0.8 0.9, 0.9 1.6, 1.3 1.3, 1.1

U 3.5, 3.5 0.9, 0.6 1.6, 1.5 1.5, 1.0 1.3, 0.8 2.6, 2.0 1.4, 1.9 2.5, 2.7 1.9, 1.8 0.9, 0.8 1.3, 1.6 0.9, 0.9
Policy I 0.5, 0.7 0.0, 0.0 0.0, 0.0 0.3, 0.4 0.3, 0.4 0.1, 0.3 0.0, 0.0 0.8, 0.8 0.0, 0.0 0.1, 0.3 0.1, 0.3 0.0, 0.0

C 4.0, 3.3 0.9, 0.6 1.6, 1.5 1.8, 1.1 1.5, 1.0 2.8, 2.0 1.4, 1.9 3.3, 2.4 1.9, 1.8 1.0, 0.9 1.4, 1.6 0.9, 0.9

U 3.1, 2.8 0.9, 0.7 2.0, 1.1 1.3, 0.9 1.2, 0.8 2.3, 1.6 1.2, 1.5 2.0, 2.1 1.4, 1.5 0.8, 0.9 1.3, 1.5 1.1, 1.0
Combined I 0.5, 0.6 0.1, 0.2 0.1, 0.2 0.1, 0.3 0.1, 0.3 0.1, 0.3 0.1, 0.2 0.7, 0.7 0.1, 0.2 0.1, 0.3 0.2, 0.4 0.1, 0.2

C 3.6, 2.6 0.9, 0.7 2.1, 1.2 1.4, 1.0 1.4, 0.9 2.4, 1.6 1.2, 1.5 2.7, 1.8 1.4, 1.4 0.9, 0.9 1.5, 1.5 1.1, 1.0

Paragraphs (m) - (w) (mean, std dev)
(m) (n) (o) (p) (q) (r) (s) (t) (u) (v) (w)

U 1.3, 0.8 2.2, 1.2 0.6, 0.7 0.7, 1.1 1.0, 0.9 0.4, 0.5 1.0, 0.8 0.2, 0.4 1.3, 0.8 1.0, 0.8 0.7, 0.9
Tech I 0.1, 0.3 0.3, 0.7 0.3, 0.5 1.0, 1.1 0.3, 0.5 0.1, 0.3 0.4, 0.7 0.2, 0.4 0.8, 0.4 0.3, 0.7 0.0, 0.0

C 1.4, 0.8 2.6, 1.3 0.9, 1.0 1.7, 0.9 1.3, 0.9 0.6, 0.7 1.4, 1.2 0.4, 0.5 2.1, 0.6 1.3, 0.7 0.7, 0.9

U 1.0, 1.2 1.5, 1.2 0.5, 0.5 0.6, 0.7 0.6, 0.7 0.8, 0.8 1.0, 1.3 0.8, 1.4 0.9, 0.9 0.4, 0.7 0.5, 0.9
Policy I 0.3, 0.4 0.0, 0.0 0.4, 0.7 0.5, 0.7 0.3, 0.4 0.0, 0.0 0.4, 0.5 0.1, 0.3 0.4, 0.5 0.3, 0.4 0.0, 0.0

C 1.3, 1.3 1.5, 1.2 0.9, 0.9 1.1, 1.1 0.9, 0.6 0.8, 0.8 1.4, 1.2 0.9, 1.4 1.3, 1.0 0.6, 0.7 0.5, 0.9

U 1.2, 1.0 1.9, 1.3 0.5, 0.6 0.6, 0.9 0.8, 0.9 0.6, 0.7 1.0, 1.1 0.5, 1.0 1.1, 0.9 0.7, 0.8 0.6, 0.9
Combined I 0.2, 0.4 0.2, 0.5 0.4, 0.6 0.8, 0.9 0.3, 0.5 0.1, 0.2 0.4, 0.6 0.2, 0.4 0.6, 0.5 0.3, 0.6 0.0, 0.0

C 1.4, 1.1 2.1, 1.3 0.9, 1.0 1.4, 1.0 1.1, 0.8 0.6, 0.8 1.4, 1.2 0.6, 1.0 1.7, 0.9 1.0, 0.8 0.6, 0.9
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Fig. 1. Ambiguities identified in each paragraph of the HITECH Act, 45 CFR
Subtitle A, § 170.302

pants on the number and types of ambiguities identified

for each paragraph in § 170.302.

When examining our results according to ambiguity type,

the participants demonstrate fair agreement (ICC: 0.316,

p < 0.0001). This indicates that participants successfully

identified different ambiguity types according to our taxonomy

classifications. Although there is clearly room for improve-

ment, we believe these results are encouraging given the

training, time, and conditions we were able to provide our

participants. If we examine participant agreement regarding

whether or not each paragraph was unambiguous, we find

that participants demonstrate slight agreement (FK: 0.0446,

p = 0.00288). Participants unanimously agreed that paragraph

§ 170.302(h) was ambiguous and every participant except one

rated § 170.302(a) as ambiguous. For the other 21 paragraphs,

participants exhibited little agreement.

Figure 2 shows which ambiguity types participants identified

most. Each type (labeled on the x-axis) has two bars. The

bar on the left (with hash marks) represents the number of

ambiguities identified by technologists, and the one on the

right (without hash marks) represents the number identified

by policy analysts. Each bar is divided into two parts. The

lower part (with a lighter shade) represents the proportion

of the total that are unintentional ambiguities identified, and

the upper part (with a darker shade) represents intentional

ambiguities. For example, both technologists and policy makers

identified roughly the same number of Syntactic ambiguities.

In contrast, technologists and policy analysts differ in their

identification of Incompleteness. Technologists identified over

100 Incompletenesses, with about a quarter of those being

intentional, whereas policy analysts only identified about 50

Incompletenesses, most of which were unintentional.

The largest disagreement between technologists and policy

analysts occurred in the Lexical and Incompleteness ambiguity

types. Policy analysts found on average 4.4 times more lexical

ambiguity than technologists, and technologists found 1.8

times more incompletenesses than policy analysts. This may

be indicative of their respective professional training and

background. Lexical ambiguities are more commonly associated

with grammar, writing, and linguistics, whereas Incompleteness

comes primarily from software engineering. Table III details

additional examples of both agreement and disagreement. Note

that the number of Vaguenesses identified differs greatly,

which may also be a result of training because Vagueness

and Incompleteness are similar, overlapping ambiguity types.

Technologists are trained to identify Incompleteness and

Vagueness in formal specifications, which may carry over into

identifying those ambiguity types in § 170.302.

Q3: Do participants agree on the number and types of

intentional ambiguities they identified in § 170.302?

Answer: We evaluated agreement using intraclass correlation

and found a slight level of agreement between participants
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TABLE III
AMBIGUITIES IDENTIFIED BY TYPE

Type Intent Lexical Syntactic Semantic Vagueness Incompleteness Referential Other

U 1.0, 1.9 2.9, 3.5 1.4, 2.2 5.6, 3.1 8.2, 5.5 7.3, 4.6 1.0, 1.2
Tech I 0.0, 0.0 0.0, 0.0 0.0, 0.0 3.0, 2.8 3.2, 5.7 0.0, 0.0 0.0, 0.0

C 1.0, 1.9 2.9, 3.5 1.4, 2.2 8.6, 3.1 11.4, 10.3 7.3, 4.6 1.0, 1.2

U 3.9, 5.0 3.3, 3.3 1.6, 3.0 7.8, 8.0 6.1, 2.7 5.4, 4.7 0.6, 1.0
Policy I 0.5, 1.0 0.0, 0.0 0.1, 0.3 3.5, 4.2 0.1, 0.3 0.4, 1.0 0.0, 0.0

C 4.4, 5.0 3.3, 3.3 1.8, 2.9 11.3, 9.0 6.3, 2.7 5.8, 4.4 0.6, 1.0

U 2.4, 4.0 3.1, 3.4 1.5, 2.6 6.6, 6.0 7.2, 4.5 6.4, 4.8 0.8, 1.1
Combined I 0.2, 0.7 0.0, 0.0 0.1, 0.2 3.2, 3.5 1.8, 4.5 0.2, 0.7 0.0, 0.0

C 2.6, 4.1 3.1, 3.4 1.6, 2.6 9.8, 6.7 9.0, 8.2 6.6, 4.6 0.8, 1.1

Fig. 2. Ambiguities Identified by Type

on the number and types of intentional ambiguities

identified for each paragraph in § 170.302.

Participants agreed less on the number and type of intentional

ambiguities than they did on the number and type of total

ambiguities. Participants exhibited slight agreement on inten-

tional ambiguities, whether measured by number (ICC: 0.141,

p < 0.0001) or type (ICC: 0.201, p < 0.0001). The set of

intentional Incompletenesses identified by the participants drove

this difference. Table III shows that technologists identified an

average of 3.2 intentional Incompletenesses compared to a 0.1

average for policy analysts. If we remove all incompletenesses

from the calculation, the level of agreement for the number of

identified ambiguities is roughly the same as before (ICC 0.134,

p < 0.0001) and the level of agreement for the ambiguity type

increases (ICC: 0.39, p < 0.0001).

Regardless of the agreement level, the fact that participants

of both groups were able to identify intentional ambiguities at

all is important because intentional ambiguity is a fundamental

part of legal texts [1]. Intentional ambiguity holds important

implications for software requirements that must comply with

laws and regulations [1], [3], [6], [7], [10], [32]. Consider

§ 170.302(p), which reads as follows:

(p) Emergency access. Permit authorized users (who

are authorized for emergency situations) to access

electronic health information during an emergency.

This paragraph describes the “break the glass” scenario in

which physicians otherwise unable to access certain health

records would be allowed access. The definition of an “emer-

gency situation” or what it means to be “authorized for

emergency situations” is not provided. Thirteen participants

flagged this as an intentional ambiguity. This recognition

is important because intentional ambiguities must first be

identified before they may be disambiguated. Moreover, they

must be periodically reevaluated regarding ambiguity and the

author’s intent.

Q4: Do participants agree on whether software engineers

should be able to build software that complies with each

paragraph in § 170.302?

Answer: We evaluated agreement using Fleiss’ kappa and

did not find agreement between participants on whether

paragraphs from § 170.302 were implementable.

Participant agreement was not statistically significant for

the group as a whole (FK: 0.0052, p = 0.788) or for the

technologists as a group (0.0455, p = 0.116). The policy

analysts disagreed slightly on the legal text’s implementability

(FK: −0.124, p = 0.0111). This is consistent with other

findings for similar tasks involving the evaluation of legal

texts for software engineering purposes. Prior research notes

that determining whether software requirements have met or

exceeded their legal obligations is challenging [7]. Maxwell

found identification and classification of legal cross references

to be similarly challenging for professional engineers [6].

Q5: Does an identified ambiguity affect whether participants

believe that software engineers should be able to build

software that complies with each paragraph in § 170.302?

Answer: Yes, 89% of unimplementable paragraphs contained

an unintended ambiguity, whereas only 48% of imple-

mentable paragraphs contained an ambiguity.

Of the 83 paragraphs found to be unimplementable by the

participants, 74 contained unintentional ambiguities. Of the

216 paragraphs found to be implementable, 104 contained

unintentional ambiguities. We expected that those paragraphs

that Participants identified as implementable would only rarely
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contain unintentional ambiguities, but our results indicate

that 48% of the implementable paragraphs were deemed to

contain unintended ambiguities. Prior research has shown

for a similar task (identifying legally implementation-ready

requirements) that individuals working alone tend to be too

liberal (i.e. accept as implementation-ready requirements that

need further refinement) and groups working together tend to

be too conservative (i.e. reject requirements that have actually

met their legal obligations) [7], [33].

V. DISCUSSION

Perhaps the most interesting results for this case study are

the qualitative results. When preparing the materials for this

case study, we examined § 170.302 many times to identify and

classify its ambiguities. Our participants were given 50 minutes

to accomplish the same task, yet they found several subtle

ambiguities that eluded us. For example, consider § 170.302(q):

(q) Automatic log-off. Terminate an electronic

session after a predetermined time of inactivity.

We found the phrase “predetermined time of inactivity” to

be incomplete or perhaps vague because no purpose is stated;

making it a challenge to determine how much inactivity is

allowable. It could be considered vague because “after” admits

borderline or relative cases: does it mean immediately after or at

some point after? Most participants identified the statement in

the same way, but one participant identified “time” as lexically

ambiguous. It could mean either duration or a time of day. If

interpreted as the latter, then it could be interpreted as requiring

EHRs to terminate an electronic session after closing time.

Paragraph § 170.302(o) provides another interesting example:

(o) Access control. Assign a unique name and/or

number for identifying and tracking user identity

and establish controls that permit only authorized

users to access electronic health information.

Two respondents found this paragraph to be both unambigu-

ous and also not implementable. How could an unambiguous

statement be unimplementable? This may seem unintuitive at

first, but the halting problem can be stated unambiguously and

cannot be implemented. Similarly, the absolute nature of the

phrase “permit only authorized users to access electronic health

information” could be interpreted as impossible to implement

because it is not a wholly technological problem.

VI. THREATS TO VALIDITY

Case study research is incomplete without a discussion of

concerns that may threaten results validity. Internal validity

refers to the causal inferences made based on experimental

data [34]. Herein, we do not attempt to determine causality

for any part of this research. Our goal is simply to determine

whether and how participants identify and classify ambiguity

in legal texts.

Construct validity refers to the appropriate use of evaluation

metrics and measures [34]. We specifically avoided the use

of absolute measures of ambiguity to conform with the term

as expressed in accepted IEEE standards [12]. To calculate

other statistical measures, we used accepted statistics for

agreement (ICC and Fleiss’ kappa) and scrupulously followed

recommended practices in applying them. Our case study

participants may have become fatigued and stopped responding

to the questions in our survey. To mitigate the impact of survey

fatigue, we adjusted our statistical measures to account for the

three surveys that contained unanswered questions.

Providing participants with only a single section of the

HITECH Act and the text of cross-references contained within

it is another threat to construct validity. The complete text

would have unreasonably increased participant fatigue. Note

that providing additional text could allow participants to either

disambiguate ambiguities identified in our study or discover

additional ambiguities resulting from potentially conflicting

material.

External validity refers to the ability to generalize the

findings to other domains [34]. We have mitigated threats

to external validity by selecting a section in the HITECH

Act that is representative of the style, tone, and wording of

obligations found in the rest of the act. In addition, we chose

a participant population with as many different backgrounds

as possible rather than limiting our research to stakeholders

with an engineering background. Unfortunately, two important

threats of this type remain. First, our study employs a small

population of students rather than a large population of

practitioners. Although the findings of our study align with

similar case studies that examine legal texts for engineering

purposes [6], [7], students enrolled in a graduate class may not

be representative of practicing engineers, lawyers, managers,

and policy makers. Second, we selected a legal text from a

single domain. Healthcare is a popular domain for regulatory

compliance software engineering research, but other domains,

like finance, also have extensive regulatory requirements. To

address these threats, we plan to adapt what we have learned

from this study for a broader, web-based examination of

ambiguity identification and classification for multiple legal

domains in the future.

Reliability refers to the ability of other researchers to

replicate this methodology. We assiduously detailed both our

methods and our evaluation techniques. In addition, we have

made our case study tutorial and survey materials available

online for researchers interested in replicating our results.11 We

do not believe reliability is a serious concern for this research.

VII. SUMMARY AND FUTURE WORK

The development of methods to improve and demonstrate

legal compliance with federal privacy and security regulations

in software systems is critical. Stakeholders of regulated

software systems, and in particular requirements engineers,

must be able to identify ambiguities in legal text and understand

their implications for software systems. To this end, we created

a taxonomy with six ambiguity types intended to encompass

a broad definition of ambiguity within the context of legal

texts. We conducted a case study to examine how students

11http://www.cc.gatech.edu/~akmassey/documents/
ambiguity-case-study-materials.pdf
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in a graduate privacy class identify and classify ambiguity

for § 170.302 in the HITECH Act. Our research suggests

that ambiguity is prevalent in legal texts. In 50 minutes of

examination, participants in our case study identified on average

33.47 ambiguities in 104 lines of legal text using our ambiguity

taxonomy as a guide.

Participants did not exhibit strong agreement on the number

and type of ambiguities present in the legal text. This may

be due to the 50-minute time limit or to the complexity of

the task. Our analysis suggests (a) that participants used the

taxonomy as intended: as a guide and (b) that the taxonomy

provides adequate coverage (97.5%) of the ambiguities found

in §170.302. This suggests that the ambiguity taxonomy is

sufficient for analyzing this particular legal text.

Participants were willing to accept paragraphs with unin-

tentional ambiguities as implementable (i.e. as something for

which software engineers should be able to build compliant

software). Prior research has shown that software engineers are

ill-equipped to perform similar tasks [6], [7]. Further research

is needed in this area to provide better guidance and improve

decision-making in this area.

We plan to conduct additional case studies on larger

populations to better understand ambiguity in legal texts and its

implications for software engineering. In particular, we seek to

conduct a larger online case study covering healthcare, finance,

and other regulated domains. A larger study would allow us to

evaluate multiple possible aids for identifying and classifying

ambiguity in legal text. In addition, we plan to examine whether

identifying and classifying ambiguity improves software engi-

neering assessments of legal implementation readiness, which

our prior work has shown to be extremely challenging for

engineers to do with accuracy [7].
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