
Evolving Beyond Requirements Creep:
A Risk-Based Evolutionary Prototyping Model

Ryan A. Carter1, Annie I. Antón1, Aldo Dagnino2, Laurie Williams1

1 College of Engineering, North Carolina State University, Raleigh, NC 27695-7534
2 Asea Brown Boveri Inc., Power T&D Company 1021 Main Campus Drive, Raleigh, NC 27606

1 {aianton, racarter, lawilli3}@eos.ncsu.edu, 2 {aldo.dagnino@us.abb.com}

Abstract
Evolutionary prototyping focuses on gathering a

correct and consistent set of requirements. The process
lends particular strength to building quality software by
means of the ongoing clarification of existing
requirements and the discovery of previously missing or
unknown requirements. Traditionally, the iterative
reexamination of a system’s requirements has not been the
panacea that practitioners sought, due to the
predisposition for requirements creep and the difficulty in
managing it. This paper proposes the combination o f
evolutionary prototyping and an aggressive risk-
mitigation strategy. Together, these techniques support
successful requirements discovery and clarification, and
they guard against the negative effects of requirements
creep. We embody these techniques in a comprehensive
software development model, which we call the EPRAM
(Evolutionary Prototyping with Risk Analysis and
Mitigation) model. The model was intentionally designed
to comply with the Level 2 Key Process Area of the Software
Engineering Institute’s Capability Maturity Model.
Validation is currently underway on several software
development efforts that employ the model to support the
rapid development of electronic commerce applications.

1. Introduction
Prototyping has gained acceptance in the software

engineering community as a credible model for software
creation. It has been listed with more traditional process
methodologies, such as the Waterfall and Spiral models
[Jal00]. Due to the rising costs of software and the lower
frequency of systems meeting customer needs,
evolutionary prototyping has become a viable software
development model [Dav92]. It addresses a number of
problems that are not adequately addressed in more
traditional software process models: numerous
maintenance requests [Gra89], premature freezing of
requirements [Som95], difficulty in revisiting previous
model stages [Pre01, Som95], lack of consideration of user-
system interfaces [Gra91], and miscommunication between
developers and customers [Gra91]. Evolutionary
prototyping provides other benefits including:

• the clarification of management and user requirements
[LSZ93];

• the ability to uncover missing or previously unknown
requirements [Gra91, Dav92];

• the flexibility to meet changing constraints for
software systems [NC98, FD89];

• the provision of a method whereby users,
management, and developers can communicate about
systems [Gra89, Gra91, LSZ93];

• the easing of maintenance tasks [Gra89, Gra91];
• the creation of ‘better’ user interfaces [Gra89, Gra91,

LSZ93];
• prototyping with quality [Dav92, Roy90]; and
• the ability for developers to reflect on lessons learned

during system development [FD89].
Requirements creep refers to significant additions or

modifications to the requirements of a software system
throughout the lifecycle, resulting in extensions to and
alteration of the software’s functionality and scope.
Requirements creep can be especially troublesome to
developers when it is not properly managed, due to the
detrimental impact such changes may have on cost,
resources, quality, or the ability to deliver a system that
incorporates the new requirements on time. While it can be
argued that the majority of software applications have
unstable requirements and that some degree of
requirements creep is observed in all requirements
methodologies [Jon96], evolutionary prototyping i s
particularly susceptible to significant changes in
requirements [Gra89, Gra91].

Electronic commerce (e-commerce) software developers
are under pressure to develop applications at a record pace.
The widespread lack of process discipline and procedural
guidance available for such market-driven environments
handicaps e-commerce software developers’ ability to
handle requirements creep. For this reason, requirements
creep is rampant in e-commerce as the innovator often
discovers requirements as the system is incrementally
implemented. This paper proposes a risk-based
evolutionary prototyping model, the EPRAM
(Evolutionary Prototyping with Risk Analysis and
Mitigation) model, that explicitly addresses the challenges
inherent in these small, rapid development efforts.

We ensured that our model follows the intent and
guidance (thus adhering to the spirit) of the CMM by first
tailoring the Software Engineering Institute’s (SEI)
Capability Maturity Model (CMM) [PWC94] for use by
small software development teams of no more than 12
individuals. We used this tailoring as the basis for the
EPRAM. The EPRAM model and its associated techniques
facilitate the construction of a complete and consistent set
of system requirements, and mitigate the ill effects of
requirements creep by supporting the early detection and
resolution of requirements conflict.

The EPRAM model is currently undergoing validation
in various e-commerce projects in which security and
privacy are paramount; early indications demonstrate that
the EPRAM model is effective for rapid software
development. The model is being employed in five
projects for three companies (Newton Instruments, Blue
Cross Blue Shield of North Carolina, and Haht Software)

within the North Carolina State University (NCSU) E-
commerce Studio [AE00]. Once the model is refined based
on the lessons learned during these five development
efforts, it will be further validated during the development
of Web applications at Asea Brown Boveri (ABB).

The remainder of this paper is organized as follows.
Section 2 provides an overview of the relevant related work.
Section 3 presents the EPRAM model. In Section 4, we
explain our tailoring of the CMM and its impact on the
iterative process. Section 5 discusses our preliminary
validation efforts as well as our plans for future work.

2. Background and Related Work
An evolutionary prototyping model must address

several practical issues, which we discuss below in the
context of related work.

2.1 Prototyping in Requirements Engineering
In requirements engineering, prototyping is employed

to: generate user interface prototypes in conjunction with
scenarios [EKK99]; support walkthroughs with
stakeholders to elicit and validate requirements [Sut97,
SR98]; reduce ambiguity, incompleteness, and
inconsistency during requirements capture [ABR94, RL93];
and incrementally replace specifications with
implementations [OS94]. Evolutionary prototyping has
been successfully employed in “real world” projects
[LSZ93, NC98]. On the other hand, evolutionary
prototyping models lack adequate support for requirements
evolution and risk management [BS96, Gra98]. Baskerville
et al. advocate risk analysis for controlling the
evolutionary prototyping process [BS96].

Walker Royce stresses the importance of quality metrics
such as flexibility and ease of change throughout the life of
a software project [Roy90]. This can be especially
meaningful in operational, iterative, and evolutionary
prototyping. Davis notes the advantages of operational
prototyping, such as built-in quality, as well as the pitfalls,
including the inability to quickly implement experimental
features [Dav92]. Iterative prototyping is classified as
either vertical or horizontal. In vertical prototyping, one or
more system components are developed with full
functionality in each prototype release; whereas in
horizontal prototyping, all system components are
developed with limited, yet increasing functionality with
each release [Nie93]. We characterize our evolutionary
prototyping model as horizontal.

2.2 Managing Risk During Requirements
Engineering

Risk management in iterative software development is a
key factor for project success [BS96]. However, managing
risks during the software lifecycle and, in particular, during
requirements engineering activities, is especially
challenging in rapid software development. Boehm’s
Spiral and Win-Win models have explicit risk resolution
sectors that serve to manage risks [Som95, BI96], and Hall
addresses identification, analysis, resolution, mitigation,
and management of software risks [Hal98]. Risk
management is also employed within the context of
aligning e-commerce application requirements with
corresponding security and privacy policies [AE01]. The
EPRAM incorporates the risk and compliance assessment
activities of Antón and Earp [AE01] and the risk
identification and ranking processes of Baskerville et al.
[BS96] to form a comprehensive risk mitigation strategy.

 Many industries use decision making business
models to manage risk during the development phases of a
product. For example, ABB uses a phased business
decision-making model to ensure that a project meets the
business criteria of an organization at all times during the
development lifecycle. This business decision-making
model is referred to as the Gate Model and has checkpoints
that represent Go/No-Go (Stop/Change) decision points.
The model ensures that a customer will receive a high-
quality and high-value product. Each gate in the model is a
decision point at which Senior Management and a Gate
Model Committee determine whether to continue or
terminate a project based on its benefit, status, risk,
resource, and technology considerations. The diagram in
Figure 1 represents the objectives of progressing from one
gate to another during a product development cycle. When
a project begins, the level of risk and fuzziness is very
high; as the project proceeds through the gates, the level of
risk ideally decreases. At the same time, as the project
evolves and moves through the gates, the level of
knowledge and maturity in the project team increases.
Successive refinements to the EPRAM model will involve
adaptation to this gate model to facilitate its adoption by
ABB.

Figure 1. Levels of Risk and Knowledge in the Gate
Model

2.3 Tailoring the Capability Maturity Model
A growing number of software organizations are turning

to the CMM as a viable mechanism to build quality into
their software processes [JB97]; however, small
organizations are experiencing difficulties in adopting the
CMM due to lack of resources, tools, and training [OC99].
The CMM is often customized to support the varying needs
of different organizations, and tailoring the CMM to adapt
to organizational needs is an accepted practice [GQ95,
Jal00, JB97, JB00, KHT00, OC99, Pau98, Pau99]. Some
practitioners have tailored it to fit smaller, non-traditional
organizations [KHT00, OC99] with mixed results. Such
tailorings are undoubtedly required to adequately support
the smaller team structure found in common rapid
development environments.

Consider Winapp, a company of five employees that
develops PC based client server software applications
[OC99]. Winapp has attempted to improve its software

0

10

20

30

40

50

60

70

80

90

100

before
G0

G0 G1 G2 G3 G4 G5 G6 G7

Risk, Fuzzyness Depth of Knowledge

%

process maturity. As the number, size, and complexity of
the company’s projects grew, the company faced increasing
difficulty tracking projects, requirements, and resources.
Winapp looked to the CMM for guidance for their process
improvements, but found the CMM a bit overwhelming.
Winapp initially experienced difficulties in adapting the
CMM to meet their specific needs for several reasons,
including their inability to support the amount of required
documentation, their lack of the resources called for by the
CMM, and the fact that their flat team structure is not
supported by the CMM. To remedy this, the company
extracted the applicable concepts of CMM process
improvement and established an improvement framework
according to selected key process ideals. The creation of a
CMM-inspired framework at Winapp yielded the perception
of significant improvements among the developers.
Despite the overhead incurred, developers perceived an
improvement in the requirements analysis activities of
157% and a decrease in the number of requirements faults
by 57% [OC99]. While these figures are admittedly
subjective, they indicate the need for process improvement
and process guidance within small organizations. The
catalyst for our work was our analysis of five teams within
Asea Brown Boveri during the Summer of 2000. We
observed that many of their development efforts were
evolutionary in nature, yet they lacked rigorous support for
requirements management. Thus, we tailored the CMM to
more appropriately support the demands of such efforts,
and we used that tailoring as the basis for the EPRAM
model. Before describing our tailoring of the CMM, we
introduce the EPRAM model.

3. The EPRAM Model
We now define the model and its subsequent phases.

Traditional evolutionary prototyping models include
requirements engineering, design, coding, testing,
customer evaluation, and enhancement reporting phases
[Dav92]. The EPRAM model extends this traditional
approach by incorporating risk management as it pertains
to e-commerce systems in particular, while imposing
adherence to the Level 2 KPAs (Key Process Area) in the
CMM.

This section provides an overview of the EPRAM
model, shown in Figure 2. In this figure, rectangles
represent process activities, dog-eared boxes (pages)
indicate documentation artifacts, thick arrows represent
major control flows through the process, narrow arrows
indicate data flowing to and from the activities, and the
block arrow depicts the risk mitigation process maintained
throughout the lifecycle. In this paper, we focus primarily
on the requirements activities – specifically, those
requirements activities that are unique to our evolutionary
prototyping model.

During each prototyping cycle, requirements are
reevaluated for completeness, consistency,
understandability, and compliance with any overriding
policies. The requirements considered during each
iteration may stem from many sources including, but not
limited to: previously established requirements; policies
(e.g. security and privacy policies [AE01]); stakeholders
(customers, users, and developers); organizational
responsibilities; other systems; or additional projects.
Requirements are agreed to during a negotiation process
stemming from the risk mitigation discussion; the agreed-
to requirements are then added to the requirements

documentation and are reflected in each subsequent
prototype release.

As is the case in most software processes, design of new
prototype releases occurs as the designers decide how the
new sets of requirements will be incorporated into the
revised prototypes. The architectural design, subsystem
and module specification, file structure, global data, and
interface design are revised and minimally documented as
necessary to ensure a solid system design and prototype
structure. The existing design document, if there is one, i s
also updated to reflect the changes.

At the end of each prototyping cycle, the stakeholders
are shown the tested prototype so that they may judge
whether or not it meets their expectations. If the customer i s
satisfied, the project is deemed successful and no
additional iterations are necessary; the system is delivered
and the project may then wrap up. If, however, there are
areas that are not addressed by the prototype, or the
prototype must be modified in some way, the new
requirements generated during customer evaluation are
recorded and a new evolutionary prototyping cycle begins.
This iterative approach all but invites requirements creep,
which we manage via risk analysis and mitigation.

Risk Mitigation
One of Royce’s top ten management principles is the

establishment of an iterative life-cycle process that
confronts risk early on [Roy98]. Our model extends the
traditional evolutionary prototyping process with an
aggressive risk mitigation strategy that helps control the
process and deter requirements creep. In the EPRAM model,
each requirement is assessed for risks and their potential
impacts [AE01]. The adoption of new technologies, such
as auctions [PFI99], cause changes in the requirements
which may introduce a conflict with respect to the
associated policy. Heuristics, available in [Dem00], are
applied to prevent such conflicts from being overlooked
during the analysis process. We are also adapting our
model so that it will be compliant with the risk
management structure of the Gate Model at ABB.

The EPRAM’s risk mitigation procedure borrows from
the strategy given in [BS96] to neutralize the negative
consequences of requirements modification. A risk list of
identified trouble areas is maintained and reexamined at the
beginning of each iteration. New risks are added by the
analysts as risks are surfaced by system developers or
stakeholders, as well as due to changes in the application
domain, problem domain, computer systems, and/or the
development environment. Each risk is evaluated to
determine its consequences, and the team assigns priorities
to those risks so they may be emphasized and mitigated
accordingly. Both the severity and the probability of each
risk are ranked on a scale from low (1) to high (5). The
severity and probability values are multiplied together to
form the risk score. The higher that this score is, the more
risk is associated with the given issue. Finally, the
development team determines resolution strategies for
those risks of most concern (those with the higher risk
scores). The team first addresses the higher-risk issues,
developing and documenting mitigation strategies for
those specific issues. Whereas analysis of each risk may be
considered a subjective process, analysis of each new
requirement is more systematic since each requirement
must undergo a policy compliance and requirements

conflict check before its incorporation into the subsequent
prototype release.

To demonstrate how the risk analysis and mitigation
process of the EPRAM model works, we provide a brief
example in which there is a risk that the customer will fail
to remain actively involved with a project. In such a case,
the developers add this failure to the risk list during the
risk analysis phase of the evolutionary prototyping cycle.
Within the risk meeting, the team determines that the risk i s

very likely to occur (thus receiving a probability score of
5) and will be moderately severe if it does occur (thus
receiving a severity score of 3). These values are multiplied
together such that the risk receives a risk score of 15. If
this score is one of the higher risk scores, the team
determines a mitigation strategy for this risk – possibly
including requests for an on-site customer representative or
weekly meetings with customer representatives.

Government
Policy

Identification of Risk
Mitigation Strategies

Reqts. Gathering /
Integration

Delivery to Customer

Risk Analysis

Maintenance

Customer Evaluation

Implementation

Debugging / Testing

Design

Project Planning Project
Plan

Design
Doc.

Reqts
Doc.

New or
Changed

Reqts

Security
Policy

Consolidated Requirements

New Design

New Prototype

Correct Prototype

Acceptable Evaluation

Prototype

Non Acceptable Evaluation

R
is

k
M

iti
g
a
tio

n
 a

n
d
 M

a
n
a
g
e
m

e
n
t f

o
r

th
e
 P

ro
to

ty
p
in

g
 C

yc
le

Existing Design

Updated Design

Existing Requirements

Updated Requirements

New / Changed Reqts

Policy Data

New / Changed Reqts

Existing Prototype

Newly Updated Prototype

Updated Prototype

Existing Project Plan

Updated Project Plan

KEY

Documentation

Process Activity

Risk Mitigation

Data Flow

Process Flow

Cycle Boundary

activity

Figure 2. The Evolutionary Prototyping with Risk Analysis and Mitigation (EPRAM) model

Privacy
Policy

Negotiated Requirements

Risk
Doc.

Existing Risks

Updated Risks

Existing Requirements

Risk Mitigation Strategies

The EPRAM model also employs risk analysis to check
proposed requirements for compliance with established
policies. Consider the stakeholder requirement for users’
names and addresses to be automatically transferred to a
third party that will fulfill users’ order. Such new
requirements are discussed during the risk analysis
meeting and compared to existing policies. In the case of
this requirement, it is discovered that the organization’s
privacy policy states that any user’s personally identifiable
information will not be shared with those outside the
organization; therefore, the requirement and the privacy
policy are in conflict. Since the likelihood that the conflict
will occur is certain (thus receiving a probability score of
5) and the credibility of the organization as a guardian of
privacy is at stake (thereby receiving a severity score of 5),
a suitable solution, such as modifying the requirement or
the policy, must be developed. The alternatives are
negotiated with the stakeholders and an adequate
resolution is achieved.

Requirements Evolution
Stakeholders are allowed to change the system

requirements in response to new releases of the prototype,
and the prototype is iteratively modified in response to
these new requirements. This may result in an increase to
the system scope. The question thus arises: How will the
EPRAM model benefit the development organization by
guarding against requirements creep? The EPRAM
model’s risk mitigation support helps practitioners
identify requirements changes that create significant risk
within a project. It allows them to decide what requirement
additions are valid from a policy or development
standpoint; negotiate cost, scope, quality, and schedule
with the customer; and modify the prototype accordingly.
The EPRAM model encourages development teams to
negotiate risk mitigation strategies with the stakeholders
to alleviate the effects of requirements changes. Finally,
during requirements evolution we identify and resolve
inconsistencies across the requirements and policies by
providing specific heuristics [Car01, Dem00]. The ultimate
goal is to ensure consistency between the requirements, all
policies, and the system’s functionality [AEP01].

4. Customizing the CMM for Small E-
Commerce Teams

As previously mentioned, the EPRAM model i s
intended for use by teams of no more than 12 individuals
in organizations yearning for a more disciplined and
mature approach to software development. To this end, the
SEI’s CMM is an important standard by which the
“maturity” of a software process can be judged. The CMM
includes a set of rigorous practices that impose large
amounts of overhead that may be especially detrimental for
small resource-challenged organizations. It is widely
applicable given a willingness to tailor it and the SEI
advocates such tailoring [PCC93]. While we were initially
hesitant about using the CMM due to its overhead and
rigor, we found it possible to incorporate the practices that
support our process model while tailoring the remaining
practices so that they made sense in the context of the
environments in which we would employ the EPRAM
model.

The CMM contains five levels of increasing maturity. It
reinforces a series of best practices through its use of Key
Process Areas (KPAs) for each level of maturity. Each KPA

is subdivided into goals that must be met before that KPA
is satisfied. Additionally, all KPAs must be satisfied before
a process obtains the recognition of having achieved a
given maturity level. For purposes of this paper, we focus
on the Repeatable Level (Level 2) which provides a suitable
basis for process quality without introducing overhead
unnecessary for small teams. We examined five of the six
KPAs in the Repeatable Level of the CMM: Requirements
Management, Software Project Planning, Software Project
Tracking and Oversight, Software Quality Assurance, and
Software Configuration Management [PCC93], but omitted
Subcontract Management, as it is not often relevant to the
entrepreneurial rapid development environments targeted
by our efforts.

As previously mentioned, the CMM does not directly
support rapid, iterative, poorly-resourced software
development efforts. For this reason, we were initially
concerned that our EPRAM model may not meet the CMM’s
strict practices for process maturity, and yet, we realized the
need to incorporate the ideals of the CMM. We opted for
“some” improvement, recognizing that the introduction of
any process improvements would, at a minimum, yield far
better quality in the organization as well as the resulting
process. The EPRAM model, introduced in Section 3,
accommodates small teams, working on small e-commerce
applications. The CMM Level 2 KPAs are incorporated as
much as possible so our model upholds the spirit of the
CMM and benefits from its process improvement guidance
[JB00].

Our CMM tailoring began by determining the roles and
responsibilities for a team’s members. We established nine
roles for each team; one person may have multiple roles or
multiple people may fulfill a single role. Each role i s
assigned to one of three groups (the Software Engineering
Group, the Software Development Group, or the Software
Quality Assurance Group) that collaborate in specific areas
or for a particular purpose during a project. Once the roles
and responsibilities were defined, we extracted and
discussed each CMM Level 2 goal, commitment, ability,
activity, measurement, and verification. In many cases, the
tailoring simply required a bit of “wordsmithing” and/or
clarification to more adequately reflect the needs of the
smaller organizations for which the model is intended;
however, others required more significant changes. There
are 115 elements (Goals, Commitments, Abilities,
Activities, Measurement, and Verification) in the five KPAs
that we considered for Level 2. Of these, 43 were modified,
9 were rejected as not applicable, and 1 was marked as
optional. Consider the examples provided in Table 1 which
show a small sample of the efforts expended to tailor the
CMM. Commitment 1 concerns the documentation of the
procedures used to manage requirements as contained in an
organization’s project policy. We restructured the original
CMM commitment to include project roles and policy
sections. In the second example (Ability 4 in Table 1), we
broadened the definition of ‘training’ for requirements
management activities which is more narrowly defined
under the original context of the CMM. We maintained the
spirit of the CMM throughout our tailoring efforts as i t
reflected new team roles, established a hierarchy of team
leadership, accounted for limited resources, satisfied the
demands for rapid development, and removed overhead that
was not applicable to the new process model for our target

audience. The final tailored CMM served as the basis for
the EPRAM model.

5. Discussion and Future Work
Fowler argues that the requirements engineering

community often loses sight of the fact that requirements
should be modifiable [Fow00]. He asserts that software
should be just that – soft, meaning that it should be as
malleable as possible. Perhaps this is even more
appropriate for e-commerce development environments.
Requirements that are appropriate today may not be
appropriate throughout the duration of the entire project
due to, for example, increased pressure to “go live” before
one’s competitors.

Evolutionary prototyping, strengthened by risk
analysis and mitigation, ensures the continual revisiting of
a system’s requirements through each prototyping cycle.
Such a process provides the stability to minimize the ill-
effects of significant requirements creep while providing
the freedom to continually improve the requirements for a
software system. In light of this flexibility, we contend
that the EPRAM model is a lighter-weight method; it i s
people-oriented and readily adapts to changing
requirements.

Traditional software development methodologies and
the CMM impose a disciplined process, making an
organization’s software process and practices more
predictable and efficient. However, these methodologies
are considered cumbersome to follow, imposing a high
degree of formalism, and slowing the development process.
These methodologies are often referred to as heavy
methodologies [Fow00]. In response to heavy
methodologies, a new generation of software development
methodologies, referred to as lightweight or agile, has
arisen. These methodologies are characterized by their
adaptability, speed, collaboration, and efficiency. Light
methods thrive on change, deliver fast results, and must be
adaptive as well as people-oriented, while still meeting
formal documentation and project management criteria.
Lightweight methodologies are targeted at software teams
for which external competition creates extreme pressure on
the delivery process and changes in project requirements
are the norm.

The requirements engineering and software engineering
communities have begun to examine and implement
lightweight methodologies to judge their impact on the
creation of quality software. Such an interest can be seen in
methodologies such as extreme programming, Crystal,
open source, Scrum, and others [Fow00]. We are currently

validating the “lightweightness” of the EPRAM model by
closely monitoring its use and evaluating the “denseness”
of the artifacts produced throughout the lifecycle.

According to Fowler, lightweight methods are adaptive
rather than predictive and people-oriented rather than
process-oriented [Fow00]; the EPRAM model fulfills these
criteria. The model recognizes that stakeholders often do
change the requirements and provides methods to manage
changing requirements. Evolutionary prototypes, by their
very nature, evolve to meet the expectations of the
stakeholders. The EPRAM model also encourages a people-
centric view of software creation as the model, itself, builds
on the skills and strengths of the individuals filling the
roles for the projects. Though roles are defined, they can be
combined and planned for so that interests and assets of the
individual practitioners are the underlying sources of the
team’s strength. Moreover, the evolutionary prototyping
process involves stakeholders at regular intervals
throughout the process, which in turn ensures that
stakeholder viewpoints and requirements are considered
throughout the development effort. Lightweight
methodologies call for less-formalized documentation;
future work includes an analysis of the amount of
documentation required by our model to determine the
appropriate degree of informality, documentation, and
sufficiency. Currently, we require requirements documents
to focus solely on enumerating the functional and
nonfunctional requirements as well as any policy-based
requirements. Based on the data we are currently collecting,
we may decide to further “lighten” what is required in all
documentation artifacts produced while employing the
EPRAM model.

The corporate climate is receptive to lightweight
methodologies due to their relevance in the rapid
development of continuously changing software
applications that must meet customers’ expectations. This
is evidenced by ABB’s interest in the application of these
methodologies and their investment in the development of
the EPRAM model. Additional work is currently underway
to justify the applicability of the risk mitigation
component of our lighter-weight methodology as related to
previously-established corporate risk analysis strategies
such as ABB’s Gate Model.

The EPRAM model is not limited to those seeking
lighter-weight processes; it also aids practitioners seeking
to manage requirements creep. According to Jones,
prototypes by themselves can reduce requirements creep by
10 to 25% [Jon96]. Requirements inspections also

Table 1. Example tailored CMM elements
CMM Element Rewrite / Reword / Clarify Rationale

Commitment 1: The project follows a
written organizational policy for
managing the system requirements
allocated to software.

The project follows a written project policy for managing
the system requirements allocated to software. This
policy typically specifies that allocated requirements are
documented; the allocated requirements are reviewed by
the requirements engineer under the project manager and
individuals responsible for the tasks listed; and the
software plans, work products, and activities are changed
to be consistent with changes to the allocated
requirements.

• Changed to reflect roles established
for the project.
• The project policy is the
organizational policy.
• Changed to denote sections within
the policy.

Ability 4: Members of the software
engineering group and other software-
related groups are trained to perform
their requirements management
activities.

Members of the project team and other software-related
groups are trained to perform their requirements
management activities. Training can take the form of on-
demand lecture, self-study, peer study, out-sourced
training, or other applicable methods.

The methods of training must be
flexible since smaller companies can
not afford extensive training (time or
cost).

minimize the rate of requirements creep because they enable
practitioners to systematically and methodically identify
errors and inconsistencies. Requirements inspections
reduce requirements creep by nearly 30% [Jon96]. The
EPRAM model introduces requirements inspection via a
series of risk assessment meetings held to discuss newly
identified requirements. Requirements are then assessed
for compliance with the governmental, security, and
privacy policies, as well as the existing requirements
[AE01].

Stakeholder involvement is also central to other
lightweight methodologies. Extreme programming, for
example, offers developers and customers the opportunity
to compromise on four variables (cost, time, scope, quality)
[Bec00]. Customers are allowed to choose the desired
values for three of these four variables, and the developers
determine the value of the last variable. For example, a
customer might state that they want “a high quality release”
on May 1 for $x, and the developers can tell them which of
the customer-prioritized requirements might make it into
that release. Or, a customer might state that they want a
high quality release with specified features for $y, and the
developers will determine when they can deliver the release.
In this same vein, the EPRAM model allows the
development team to determine when the added or modified
requirements, discovered during the customer evaluation
stage, will significantly change the scope. The team
analyzes and judges the impacts of the proposed changes.
Risk mitigation enables team members to dissuade
stakeholders from significant changes at the beginning of
each cycle; thereby encouraging the team to evaluate the
possible options and enter into negotiations with the
customer to reevaluate scope, quality, cost, and schedule
for the project. Significant changes often provide high
project risks and therefore, must be mitigated.

Even though we were very familiar with and had a deep
understanding of evolutionary prototyping and risk
mitigation strategies, it was important to tailor the CMM
before actually developing the EPRAM model to prevent us
from discarding CMM activities just to fit our model. By
tailoring the KPAs early on, we ensured that the tailored
version included the strongest guidelines rather than the
easiest-to-implement guidelines. Additionally, we ensured
that the CMM was tailored in such a way as to support
resource-challenged, small organizations.

During the development of the tailored Repeatable
Level, it became apparent that the CMM was resilient in its
ability to adapt to the changes that we were proposing and
the new development environments of e-commerce
applications. The maturity activities provide a credible
basis for the EPRAM model, and one that improves its
relevance to those organizations seeking to align
themselves with the SEI’s CMM. We are confident that the
CMM and the EPRAM model complement each other and
together build a solid approach to software development.

In closing, the EPRAM model is based upon three solid
elements: a firm CMM basis for maturity, an adaptive
evolutionary prototyping structure to accommodate
flexibility, and a comprehensive risk analysis and
mitigation strategy to ensure software quality and process
reliability. This triumvirate offers the foundation,
techniques, and methodologies needed by small resource-
challenged entrepreneurial software development teams
seeking process maturity for their organizations. Our

immediate plans involve further validation of the model,
including a study of the model in relation to other
established lightweight methodologies and the
appropriateness of the model’s artifacts in terms of level of
formality, consistency, completeness, and density.

Acknowledgements
This work was partially funded by Asea Brown Boveri

Grant #530493. The authors wish to thank Hema Srikanth,
Ashish Sureka, Kai Yang, and Lingyun Yang for their
assistance and discussions while tailoring the CMM model
upon which the EPRAM model is based.

References
[ABR94] R.D. Acosta, C.L. Burns, W.E. Rzepka & J.L.

Sidoran. A Case Study of Applying Rapid Prototyping
Techniques in the Requirements Engineering
Environment. First IEEE Int’l. Conf. on Requirements
Engineering, pp. 66-73, 1994.

[AE00] A.I. Antón & J.B. Earp. A Multidisciplinary
Electronic Commerce Project Studio for Secure Systems,
4th National Colloquim for Information Systems
Security Education (NCISSE), Washington, D.C.,
unnumbered pages, 23-25 May 2000.

[AE01] A.I. Antón & J.B. Earp. Strategies for Developing
Policies and Requirements for Secure Electronic
Commerce Systems, To appear in Recent Advances in
Secure and Private E-Commerce, Kluwer Academic
Publishers, 2001.

[AEP01] A.I. Antón, J.B. Earp, C. Potts & T.A. Aslpaugh.
The Role of Stakeholder Privacy Values in Requirements
Engineering, submitted to IEEE Int’l Symposium on
Requirements Engineering (RE‘01), 2001.

[BI96] B. Boehm & H. In. Identifying Quality-Requirement
Conflicts, IEEE Software, 13(2), pp. 25-35, March 1996.

[BS96] R.L. Baskerville & J. Stage. Controlling Prototype
Development Through Risk Analysis, MIS Quarterly,
20(4), pp. 481-504, December 1996.

[Bec00] K. Beck. Extreme Programming Explained,
Addison-Wesley, 2000.

[Car01] R.A. Carter. North Carolina State University M.S.
Thesis, April 2001.

[Dav92] A.M. Davis. Operational Prototyping: A New
Development Approach, IEEE Software, 9(5), pp. 70-78,
September 1992.

[Dem00] J.H. Dempster. Inconsistency Identification and
Resolution in Goal-Driven Requirements Analysis, M.S.
Thesis, NC State University, Raleigh, NC, May 2000.

[EKK99] M. Elkoutbi, I. Khriss & R.K. Keller. Generating
User Interface Prototypes from Scenarios, IEEE Int’l.
Symp. on Requirements Eng., pp. 150-158, 1999.

[FD89] D.A. Fern & S.E. Donaldson. Tri-Cycle: A Prototype
Methodology for Advanced Software Development, 22nd
Annual Hawaii Int’l. Conf. on System Sciences, Vol.II:
Software Track, pp. 377-386, 1989.

[Fow00] M. Fowler. Put Your Process on a Diet, Software
Development, 8(12), pp. 32-36, December 2000.

[GQ95] M. Ginsberg & L. Quinn. Process Tailoring and the
Software Capability Maturity Model, SEI Technical
Report, CMU/SEI-94-TR-024.

[Gra89] I. Graham. Structured Prototyping for Requirements

Specification of Expert Systems, IEEE Colloquium on
Expert Systems Lifecycle, pp. 5/1-5/3, 1989.

[Gra91] I. Graham. Structured Prototyping for Requirements
Specification in Expert Systems and Conventional IT
Projects, Computing & Control Engineering Journal,
2(2), pp. 82-89, March 1991.

[Hal98] E. Hall. Managing Risk, Addison-Wesley, 1998.
[Jal00] P. Jalote. CMM in Practice – Processes for

Executing Software Projects at Infosys, Addison-Wesley,
2000.

[JB97] D.L. Johnson & J.G. Brodman. Tailoring the CMM
for Small Businesses, Small Organizations, and Small
Projects, Software Process Newsletter, No.8, IEEE
Computer Society, Winter 1997.

[JB00] D.L. Johnson & J.G. Brodman. Applying CMM
Project Planning Practices to Diverse Environments,
IEEE Software, 17(4), pp. 40-47, July/August 2000.

[Jon96] C. Jones. Strategies for Managing Requirements
Creep, IEEE Computer, 29(6), pp. 92-94, June 1996.

[KHT00] K. Kautz, H.W. Hansen & K. Thaysen. Applying
and Adjusting a Software Process Improvement Model in
Practice: The Use of the IDEAL Model in a Small Software
Enterprise, 22nd Int’l. Conf. on Software Engineering,
pp. 626-633, 2000.

[LSZ93] H. Lichter, M. Schneider-Hufschmidt & H.
Zullighoven. Prototyping in Industrial Software Projects
– Bridging the Gap Between Theory and Practice, 15th
Int’l. Conf. on Software Eng., pp. 221-229, May 1993.

[NC98] N. Nunes & J.F. Cunha. Case Study: SITINA - A
Software Engineering Project Using Evolutionary
Prototyping, Proc. CAiSE'98/IFIP 8.1 EMMSAD'98
Workshop, 1998.

[Nie93] J. Nielsen. Usability Engineering, Academic Press
London, 1993.

[OC99] S. Otoya & N. Cerpa. An Experience: A Small
Software Company Attempting to Improve its Process.
Proc. Software Technology and Engineering Practice,
STEP '99, pp. 153-160, 1999.

[OS94] M.B. Ozcan & J.I.A. Siddiqi. Validating and
Evolving Software Requirements in a Systematic

Framework, First IEEE Int’l. Conf. on Requirements
Engineering, pp. 202-205, 1994.

[Pau98] M.C. Paulk. Using the Software CMM in Small
Organizations, Joint 1998 Proc. Pacific Northwest
Software Quality Conf. and the Eighth Int’l. Conf. on
Software Quality, pp. 350-361, October 1998.

[Pau99] M.C. Paulk. Using the Software CMM With Good
Judgment, ASQ Software Quality Professional, 1(3), pp.
19-29, June 1999.

[PCC93] M.C. Paulk, B. Curtis & M.B. Chrisis. Capability
Maturity Model for Software. Version 1.1, Software
Engineering Institute Technical Report, CMU/SEI-93-
TR, February 24, 1993.

[PFI99] Policy Framework for Interpreting Risk in
eCommerce Security. CERIAS Technical Report,
http://www.cerias.purdue.edu/techreports/public/PFIRES
.pdf, Purdue University, 1999.

[PWC94] M.C. Paulk, C.V. Weber, B. Curtis, M.B. Chrissis
et al. The Capability Maturity Model: Guidelines for
Improving the Software Process, Addison Wesley
Longman, Inc, 1994.

[Pre01] R.S. Pressman. Software Engineering – A
Practitioner’s Approach, McGraw-Hill, 2001.

[RL93] B. Ramesh & Luqi. Process Knowledge Based Rapid
Prototyping for Requirements Engineering. 1st IEEE Int’l
Symp. on Requirements Eng., pp. 248-255, 1993.

[Roy90] W. Royce. Pragmatic Quality Metrics for
Evolutionary Software Development Models, Proc. Conf.
on TRI-ADA‘90, pp. 551-565, 1990.

[Roy98] W. Royce. Software Project Management : A
Unified Framework, Addison Wesley, 1998.

[Som95] I. Sommerville. Software Engineering, Addison-
Wesley, 1995.

[SR98] A.G. Sutcliffe & M. Ryan. Experience with SCRAM,
a Scenario Requirements Analysis Method, 3rd Int’l.
Conf. on Requirements Eng., pp. 164-171, 1998.

[Sut97] A. Sutcliffe, A Technique Combination Approach to
Requirements Engineering, Third IEEE Int’l. Symposium
on Requirements Engineering, pp. 65-74, 1997.

