Probabilistic Reasoning via Deep Learning: Neural Association Models

Quan Liu[†]

[†]University of Science and Technology of China

Joint work with **Hui Jiang**[‡], **Zhen-Hua Ling**[†], **Si Wei**[§] and **Yu Hu**[§]

[‡]York University, Canada

[§]iFLYTEK Research, Hefei, China

July 10, 2016

Outline

- Neural Association Model (NAM)
 - Motivation
 - Model
 - Experiments
- NAM for Winograd Schemas
 - Winograd Schemas
 - Data Collection
 - NAM for Winograd Schemas

Neural Association Model

1. Motivation

Neural **Association** Model

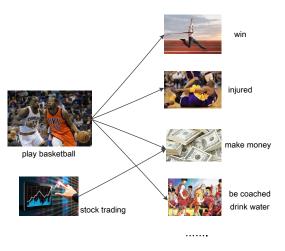
Main work

Motivation: Neural Model to Associate between Events

- Events emerge everywhere (→ massive) in our diary life.
- Events are discrete (→ sparse).
- Commonsense reasoning relies on the Association between Events.
- Association relationships
 - Causality, Temporal, Taxonomy, Entailment, etc.

Examples

• What are the possible events Associated with event "Play basketball"?



Association \neq Classification!

Motivation: Main Method

Neural Association Model: a neural model for probabilistic reasoning

- Associating two events via deep learning techniques:
- Predicting the conditional association probability $Pr(E_2|E_1)$ of two different events, E_1 and E_2 .

Application	E_1	E_2
Causal-Effect reasoning	cause	effect
Recognize lexical entailment	W_1	W_2
Recognize textual entailment	D_1	D_2
Language modeling	h	w
Knowledge link prediction	(e_i, r_k)	e_{j}

E.g. Causal-Effect reasoning

- \bullet $E_1 = \mathsf{cause} \; \mathsf{event}$
- $E_2 = \text{effect event}$

How likely E_2 is caused by E_1 ?

Advantages vs. Disadvantages

Advantages of NNs for reasoning

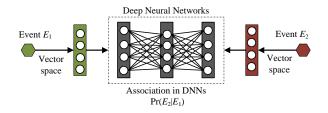
- Neural networks make universal approximation (Hornik et al., 1990).
 - Linear models can hardly do this.
 - Nickel, Murphy et al. (2015)
- Associating in continuous spaces improve scalability.
 - Graphical models suffer from the scalability issue.
 - Jensen (1996); Richardson and Domingos (2006)

Disadvantages

- Deep learning need big data, i.e., KBs.
 - Automated Knowledge Acquisition
 - Transfer Learning

2. Neural Association Model

A neural model for modeling the association probability of two events.



Key modules

- Representation: Represent discrete events into continuous vectors
- Association: Predict the association probability via deep learning

Association via DNNs

Distributed representations

All discrete events are represented in continuous vector spaces.

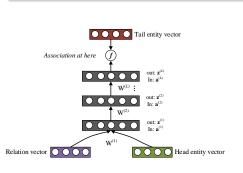
Two model structures for Association

- Deep Neural Networks (DNN)
- 2 Relation-modulated Neural Networks (RMNN)

2.1 Deep Neural Networks

Deep Neural Networks (DNN)

- Associating two events through deep neural networks
- For a multi-relation data $x_n = (e_i, r_k, e_j)$:
 - Entity vector: $e_i o \mathbf{v}_i^{(1)}$, $e_j o \mathbf{v}_j^{(2)}$ (Different embedding matrices)
 - Relation code: $r_k \to \mathbf{c}_k$



$$\mathbf{v}^{(0)} = [\mathbf{v}_i^{(1)}, \mathbf{c}_k]$$

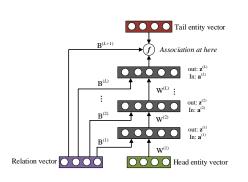
$$\bullet \ \mathbf{a}^{(\ell)} = \mathbf{W}^{(\ell)} \mathbf{z}^{(\ell-1)} + \mathbf{b}^{\ell}, \quad \ell = 1...L,$$

- ReLU hidden layer activation: $\mathbf{z}^{(\ell)} = \max \left(0, \mathbf{a}^{(\ell)}\right), \ell = 1...L,$
- The associative probability: $f(x_n; \mathbf{\Theta}) = \sigma \left(\mathbf{z}^{(L)} \cdot \mathbf{v}_j^{(2)} \right),$ $\sigma(x) = 1/(1 + e^{-x}).$

2.2 Relation-modulated Neural Networks

Relation-modulated Neural Networks (RMNN)

- Improved over DNN
- Define and connect relation codes to all the layers of DNN



- $\mathbf{a}^{(\ell)} = \mathbf{W}^{(\ell)} \mathbf{z}^{(\ell-1)} + \mathbf{B}^{(\ell)} \mathbf{c}^{(k)}, \quad \ell = 1...L,$
- ReLU hidden layer activation: $\mathbf{z}^{(\ell)} = \max(0, \mathbf{a}^{(\ell)}), \ell = 1...L,$
- The associative probability: $f(x_n; \boldsymbol{\Theta}) = \\ \sigma\left(\mathbf{z}^{(L)} \cdot \mathbf{v}_j^{(2)} + \mathbf{B}^{(L+1)} \cdot \mathbf{c}^{(k)}\right).$

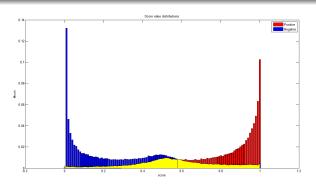
NAM: Final Training Objectives

Training sample: event pair $x=(E_1,E_2)$; score: $f(x;\Theta)=\Pr(E_2|E_1)$

Training objective

For each positive sample \boldsymbol{x}_n^+ and negative sample \boldsymbol{x}_n^- , To minimize:

$$Q(\mathbf{\Theta}) = -\sum_{x_n^+ \in \mathcal{D}^+} \ln f(x_n^+; \mathbf{\Theta}) - \sum_{x_n^- \in \mathcal{D}^-} \ln(1 - f(x_n^-; \mathbf{\Theta}))$$
 (1)



3. Experiments

Experiments

- Recognizing textual entailment
- Commonsense reasoning

3.1 Recognizing Textual Entailment (RTE)

Recognizing Textual Entailment

- Recognizing the entailment relationship between two sentences
 - Premise: "The man was assassinated."
 - Hypothesis: "The man is dead."
- Datasets
 - The Stanford Natural Language Inference (SNLI) Corpus
- Experiments: 2-class recognition

Model	Accuracy (%)
Edit Distance Based	71.9
Classifier Based	72.2
With Lexical Resources	75.0
Neural Association Model	84.7

• NAM model performs better than many traditional methods.

3.2 Commonsense Reasoning

Commonsense reasoning

- Task investigated in this work
 - Answering simple commonsense questions
 - Judge the truth of commonsense triples
 - "Is a camel capable of journey across desert?"
 - Triple: (camel, capable of, journey across desert).
- Datasets
 - From ConceptNet 5, a commonsense KB (Speer and Havasi 2012).
 http://conceptnet5.media.mit.edu/
 - We extract 14 popular commonsense relations (CN14).

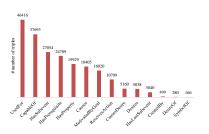
Dataset	#Rel	#Entities	# Train	# Dev	# Test
CN14	14	159,135	200,198	5,000	10,000

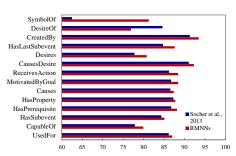
Results

Overall results on CN14

Model	Accuracy (%)
DNN	85.7
RMNN	86.1

Results on different relations





NAM shows some potentials for commonsense reasoning.

Application: NAM for Winograd Schemas

Winograd schemas

Typical Winograd schemas example

Co-reference cannot be resolved without commonsense knowledge.

- Statement: Marry made sure to thank <u>Susan</u> for all the help <u>she</u> had received.
- Q: who had received the help?
- Answer: Marry

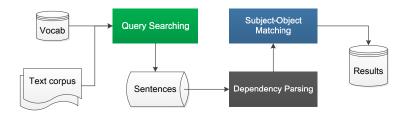
Commonsense knowledge: receive help → thank

Association between Events: $Pr(thank|receive \ help) > Pr(thank|give \ help)$

NAM for Winograd Schemas

Modules for Solving Winograd Schemas

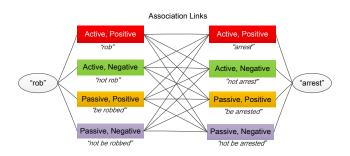
- Neural Association Model
- Data Collection: how to collect training data for NAM?
- System framework for data collection



1. Data Collection

Query Search in Text Corpus

- Search query: keyword pairs formed from a common vocabulary.
 - Vocabulary: 7500 common verbs and adjectives.
 - E.g. (arrest ... because ... rob); (decide ... because ... explain)
- Each word/phrases have 4 variations \rightarrow 16 patterns for each query.



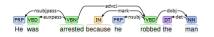
We want to gather the number of active association links.

1. Data Collection

Association knowledge from dependency parsing

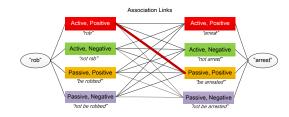
- Subject/Object Matching ⇒ Assigning Association links
- Collect the number of active links

"He was arrested because he robbed the man."



- (he, nsubjpass, arrest), (he, nsubj, rob)
- "rob" and "arrest" share a same subject "he"
- "nsubjpass" ⇒ passive

"rob" \Rightarrow "be arrested"



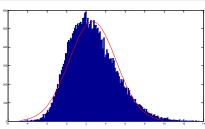
Data collection results

Copora for data collection

- BookCorpus (Zhu et al., 2015)
- CBTest corpus (Hill et al., 2016)
- Gigaword 5 (Parker, Robert, et al., 2011)

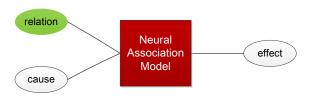
Results: highly associated pairs

- We extracted about 100,000 highly associated pairs.
 - (know \Rightarrow clear), (believe \Rightarrow not disagree), (be released \Rightarrow not hold).
- Typical PMI distributions

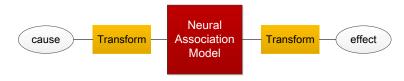


2. NAM for Winograd Schemas

NAM RelationCode: Treat the 16 dimensions as distinct relations



NAM TransMatrix: Do linear transformation for each word/phrases



2. NAM for Winograd Schmeas

Datasets

- From http://www.cs.nyu.edu/faculty/davise/papers/WS.html
- We labelled 70 schemas related to cause effect reasoning.
 - Available at http://home.ustc.edu.cn/~quanliu/

Results

• We now achieve 61.4% accuracy on the Winograd CE datasets.

Model	Accuracy (%)
NAM TransMatrix	59.6
NAM RelationCode	61.4

Table: Performance of NAM.

Answering examples

 $\bullet \ \ \text{``tasty''} \ \to \ \text{``be eaten''}$

- >> Schema_51-A: the fish ate the worm. it was tasty
 - Ques: what was tasty?
 - Cand: the worm/the fish
 - · Answer: the worm

[*] DNN Scores

Candidate	Cause	Effect	Gold Label	Score
1	tasty	be eat	YES	0.875606
2	tasty	eat	NO	0.304860

[*] Final Decisions

- Score for A: 0.875606
- Score for B: 0.304860
- System decision: A

Answering examples

 $\bullet \ \ \text{``hungry''} \ \to \ \text{``eat''}$

- >> Schema_51-B: the fish ate the worm. it was hungry
 - Ques: what was hungry?
 - . Cand: the worm/the fish
 - · Answer: the fish

[*] DNN Scores

Candidate	Cause	Effect	Gold Label	Score
1	hungry	be eat	NO	0.227095
2	hungry	eat	YES	0.929566

[*] Final Decisions

- Score for A: 0.227095
- Score for B: 0.929566
- System decision: B

Future works

Data level

- Collect more useful data for commonsense reasoning
- Automatic construction from text/KBs
- Human labelling

Model level

- Toward more complex probabilistic reasoning problems
- Neural association model for transfer learning

Thank You! (Q&A)