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Abstract 
Deception is utilized by a variety of intelligent systems ranging from insects to human beings. It has been 
argued that the use of deception is an indicator of theory of mind [2] and of social intelligence [4]. We 
use interdependence theory and game theory to explore the phenomena of deception from the perspective 
of robotics, and to develop an algorithm which allows an artificially intelligent system to determine if 
deception is warranted in a social situation. Using techniques introduced in [1], we present an algorithm 
that bases a robot’s deceptive action selection on its model of the individual it’s attempting to deceive. 
Simulation and robot experiments using these algorithms which investigate the nature of deception itself 
are discussed.      

Keywords: deception, game theory, interdependence theory, interaction, hide-and-seek, 
theory of mind.  

1. Introduction 
Deception has a long and deep history with respect to the study of intelligent systems. Biologists 

and psychologists argue that deception is ubiquitous within the animal kingdom and represents 

an evolutionary advantage for the deceiver [5]. Primatologists note that the use of deception 

serves as an important potential indicator of theory of mind [2] and social intelligence [4]. 

Researchers in these fields point to numerous examples of deception by non-human primates. 

From a roboticist’s perspective, the use of deception and the development of strategies for 

resisting being deceived are important topics of study especially with respect to the military 

domain [7].  
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 But what is deception? McCleskey notes that deception is a deliberate action or series of 

actions brought about for a specific purpose [8]. Whaley recognizes that deception often includes 

information provided with the intent of manipulating some other individual [9]. Ettinger and 

Jehiel offer a related definition describing deception as, “the process by which actions are chosen 

to manipulate beliefs so as to take advantage of the erroneous inferences [10].” This definition 

has clear ties to game theory but does not relate to many of the passive, unintentional examples 

of deception found in biology. We adopt a definition for deception offered by Bond and 

Robinson that encompasses conscious and unconscious, intentional and unintentional acts of 

deception. These authors describe deception simply as a false communication that tends to 

benefit the communicator [5].  

 This paper investigates the use of deception by autonomous robots. We focus on the actions, 

beliefs and communication of the deceiver, not the deceived. Specifically, our central thesis is 

that modeling of the individual to be deceived is a critical factor in determining the extent to 

which a deceptive behavior will be effective. In other words, a robot must have specific 

knowledge about the individual that it is attempting to deceive—the mark—in order for the 

deceptive action to be effective. It is worth noting that a deceiver’s knowledge of the mark need 

not be explicit. The exploration of this thesis is important both for the creation of deceptive 

robots and for developing a better understanding of the nature of deception itself.  

     Consider, for example, the use of camouflage. Camouflage is the use of natural or artificial 

material to allow an otherwise visible object to remain indiscernible from the surrounding 

environment [7]. The act of camouflaging assumes that the mark has specific perceptual 

characteristics, such as color vision. A robot that relies on infrared, for example, will not be 

deceived by color-based camouflaging.  
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 We will use the following example to illustrate our ideas: a valuable robotic asset operates at 

a military base. The base comes under attack and is in danger of being overrun. If the robot is 

discovered by the attackers then they will gain valuable information and hardware. The robot 

must hide and select a deceptive strategy that will reduce the chance that it will be encountered. 

Throughout this article we will use this running example to explain portions of the theoretical 

underpinnings of our approach as well as to develop experiments based on the example. 

 The remainder of this paper begins by first summarizing relevant research. Next, we use 

game theory and interdependence theory to reason about the theoretical underpinnings of 

deception and to develop preliminary algorithms for the effective use of deception on a robot. 

Finally, we present a series of experiments which attempt to investigate the veracity of our 

thesis. The article concludes with a discussion of these results including directions for future 

research and the ethical implications of our research. 

2. Related Work 
Game theory has been extensively used to explore the phenomena of deception. As a branch of 

applied mathematics, game theory focuses on the formal consideration of strategic interactions, 

such as the existence of equilibriums and economic applications [11]. Signaling games, for 

example, explore deception by allowing each individual to send signals relating to their 

underlying type [12]. Costly versus cost-free signaling has been used to determine the conditions 

that foster honesty. Floreano et al. found that deceptive communication signals can evolve when 

conditions conducive to these signals are present [13]. These researchers used both simulation 

experiments and real robots to explore the conditions necessary for the evolution of 

communication signals. They found that cooperative communication readily evolves when robot 

colonies consist of genetically similar individuals. Yet when the robot colonies were genetically 
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dissimilar and evolutionary selection of individuals rather than colonies was performed, the 

robots evolved deceptive communication signals, which, for example, compelled them to signal 

that they were near food when they were not. Floreano et al.’s work is interesting because it 

demonstrates the ties between biology, evolution, and signal communication and does so on a 

robotic platform.  

 Ettinger and Jehiel have recently developed a theory for deception based on game theory 

[10]. Their theory focuses on belief manipulation as a means for deception. In game theory, an 

individual’s type, ii Tt ∈ , reflects specific characteristics of the individual and is privately known 

by that individual. Game theory then defines a belief as, ( )iii ttp − , reflecting individual i's 

uncertainty about individual -i's type [11]. Ettinger and Jehiel demonstrate the game theoretical 

importance of modeling the mark. Still, their definition of deception as “the process by which 

actions are chosen to manipulate beliefs so as to take advantage of the erroneous inferences” is 

strongly directed towards game theory and their own framework. The question thus remains, 

what role does modeling of the mark play for more general definitions of deception such as those 

offered by [5]. As mentioned above, our goal is to explore the phenomena of deception from as 

general a perspective as possible. Our belief is that by taking this broad approach we will 

uncover aspects of the phenomena of deception that apply not just to robot-robot interaction, but 

also to human-robot and interpersonal interaction.  

 Deception can also be explored from a social psychological perspective. Interdependence 

theory, a type of social exchange theory, is a psychological theory developed as a means for 

understanding and analyzing interpersonal situations and interaction [14]. The term 

interdependence specifies the extent to which one individual of a dyad influences the other. 

Interdependence theory is based on the claim that people adjust their interactive behavior in 
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response to their perception of a social situation’s pattern of rewards and costs. Thus, each 

choice of interactive behavior by an individual offers the possibility of specific rewards and costs 

(also known as outcomes) after the interaction. Interdependence theory and game theory 

represent social situations computationally as an outcome matrix. An outcome matrix represents 

a social situation by expressing the outcomes afforded to each interacting individual with respect 

each pair of potential behaviors chosen by the individuals. 

3. Representing Interactions 
The outcome matrix is a standard computational representation for interaction [14]. It is 

composed of information about the individuals interacting, including their identity, the 

interactive actions they are deliberating over, and scalar outcome values representing the reward 

minus the cost, or the outcomes, for each individual. Thus, an outcome matrix explicitly 

represents information that is critical to interaction. Typically, the identity of the interacting 

individuals is listed along the dimensions of the matrix.  
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Figure 1. An example of an independent situation is depicted on the left and an example of a dependent situation is 
depicted on the right. In the example of an independent situation,, the action selection of the second individual does 
not have an effect the outcome received by the first individual. In the dependent example, on the other hand, the 
action selection of the second individual results in a gain or lose of 7 units of outcome (a measure of utility) by the 
first individual.     
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Figure 1 depicts an interaction involving two individuals. In this article, the term individual is 

used to indicate a human, a social robot, or an agent. We will focus on interaction involving two 

individuals: dyadic interaction. An outcome matrix can, however, represent interaction involving 

more than two individuals. The rows and columns of the matrix consist of a list of actions 

available to each individual during the interaction. Finally, a scalar outcome is associated with 

each action pair for each individual. Outcomes represent unitless changes in the robot, agent, or 

human’s utility. Thus, for example, an outcome of zero reflects the fact that no change in the 

individual’s utility will result from the mutual selection of that action pair.    

 Because outcome matrices are computational representations, it is possible to describe them 

formally. Doing so allows for powerful and general descriptions of interaction. The notation 

presented here draws heavily from game theory [11]. A representation of interaction consists of 

[15]: 

1) a finite set N of interacting individuals;  

2) for each individual Ni∈  a nonempty set iA  of actions; and 

3) the utility obtained by each individual for each combination of actions that could have 

been selected.  

Let ii
j Aa ∈  be an arbitrary action j from individual i’s set of actions. Let ( )N

kj aa ,,1 K  denote a 

combination of actions, one for each individual, and let iu  denote individual i’s utility function, 

where ( ) ℜ→N
kj

i aau ,,1 K  is the utility received by individual i if the individuals choose the 

actions ( )N
kj aa ,,1 K . The term O  is used to denote an outcome matrix. A particular outcome 

within a matrix can be expressed as a function of an outcome matrix and an action pair, thus 

( )iii aaO −
12 , io12= . The variable o denotes an outcome value. The term io12  denotes that it is 
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individual i’s outcome from the first row and second column of the matrix. The superscript -i is 

used to express individual i's partner. Thus, for example, iA  denotes the action set of individual i 

and iA−  denotes the action set of individual i’s interactive partner. As mentioned above, an 

individual’s type, ii Tt ∈ , is determined prior to interaction, reflects specific characteristics of 

the individual and is privately known by that individual. A belief, ( )iii ttp − , expresses individual 

i's uncertainty about individual -i's type.  

3.1  Representing Social Situations 

The term interaction describes a discrete event in which two or more individuals select 

interactive behaviors as part of a social situation or social environment. Interaction has been 

defined as influence—verbal, physical, or emotional—by one individual on another [16]. The 

term situation has several definitions. The most apropos for this work is “a particular set of 

circumstances existing in a particular place or at a particular time” (World English Dictionary, 

2007). A social situation, then, characterizes the environmental factors, outside of the individuals 

themselves, which influence interactive behavior. A social situation is abstract, describing the 

general pattern of outcome values in an interaction. An interaction, on the other hand, is concrete 

with respect to the two or more individuals and the social actions available to each individual. 

For example, the prisoner’s dilemma describes a particular type of social situation. As such, it 

can, and has been, instantiated in numerous different particular social environments ranging from 

bank robberies to the trenches of World War I [17]. Interdependence theorists state that 

interaction is a function of the individuals interacting and of the social situation [18]. Although a 

social situation may not afford interaction, all interactions occur within some social situation. 

Interdependence theory represents social situations involving interpersonal interaction as 

outcome matrices.  
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 In previous work, we presented a situation analysis algorithm that calculated characteristics 

of the social situation or interaction (such as interdependence) when presented with an outcome 

matrix [3]. The interdependence space is a four-dimensional space which maps the location of all 

interpersonal social situations [19]. A matrix’s location in interdependence space provides 

important information relating to the interaction. The interdependence and correspondence 

dimensions are of particular importance for recognizing if a situation warrants deception. The 

interdependence dimension measures the extent to which each individual’s outcomes are 

influenced by the other individual’s actions in a situation. In a low interdependence situation, for 

example, each individual’s outcomes are relatively independent of the other individual’s choice 

of interactive behavior (Figure 1 left for example). A high interdependence situation, on the other 

hand, is a situation in which each individual’s outcomes largely depend on the action of the other 

individual (Figure 1 right for example). Correspondence describes the extent to which the 

outcomes of one individual in a situation are consistent with the outcomes of the other 

individual. If outcomes correspond then individuals tend to select interactive behaviors resulting 

in mutually rewarding outcomes, such as teammates in a game. If outcomes conflict then 

individuals tend to select interactive behaviors resulting in mutually costly outcomes, such as 

opponents in a game. Our results showed that by analyzing the interaction, the robot could better 

select interactive actions [3]. 

3.2 Partner Modeling 

Several researchers have explored how humans develop mental models of robots (e.g. [20]. A 

mental model is a term used to describe a person’s concept of how something in the world works 

[21]. We use the term partner model (denoted im− ) to describe a robot’s mental model of its 
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interactive human partner. We use the term self model (denoted im ) to describe the robot’s 

mental model of itself. Again, the superscript -i is used to express individual i's partner [11].  

 In prior work, Wagner presented an interact-and-update algorithm for populating outcome 

matrices and for creating increasingly accurate models of the robot’s interactive partner [1]. The 

interact-and-update algorithm constructed a model of the robot’s partner consisting of three types 

of information:  

1) a set of partner features ( )i
n

i ff −− ,,1 K ;  

2) an action model,  iA− ; and  

3) a utility function iu − .  

 We use the notation ii Am −− .  and ii um −− .  to denote the action model and utility function 

within a partner model. The dot is used to convey that the action model and utility function are 

contained within an overall partner model im . Wagner used partner features for partner 

recognition. Partner features, such as hair color, height, and age, allow the robot to recognize the 

partner in subsequent interactions. The partner’s action model contained a list of actions 

available to that individual. The partner’s utility function included information about the 

outcomes obtained by the partner when the robot and the partner select a pair of actions. Wagner 

showed that the algorithm could produce increasingly accurate partner models which, in turn, 

resulted in accurate outcome matrices. The results were, however, limited to static, not dynamic, 

models of the partner. 

 The self model also contains an action model and a utility function. The action model 

contains a list of actions available to the robot. Similarly the robot’s utility function includes 

information about the robot’s outcomes. 
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4. Deceptive Interaction 
This article explores deceptive interaction. We investigate deceptive interaction with respect to 

two individuals—the mark and the deceiver. It is important to recognize that the deceiver and the 

mark face different problems and have different information. The mark simply selects the action 

that it believes will maximize its own outcome, based on all of the information that it has 

accumulated. The deceiver, on the other hand, acts in accordance with Bond and Robinson’s 

definition of deception, providing a false communication for its own benefit [5]. With respect to 

our running example, the robot acts as the deceiver—providing false information as to its 

whereabouts. The mark then is the enemy soldier searching for the robot. We will assume 

henceforth that the deceiver provides false communication through the performance of some 

action in the environment. The sections that follow begin by examining the phenomena of 

deception, how to decide when to deceive, and finally provide a method for deciding how to 

deceive.    

4.1 The Phenomena of Deception  

Bond and Robinson’s definition of deception implies the following five steps:  

1. The deceiver selects a false communication to transmit. 

2. The deceiver transmits the information contained within the false communication. 

3. The information is received by the mark. 

4. The mark interprets the information. 

5. The interpreted information influences the mark’s selection of actions.   
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Figure 2 A grasshopper uses camouflage to deceive potential predators. In this case, color and shaping 
transmitted by the grasshopper falsely communicate the presence of rock and moss masking the presence of the 
grasshopper.    

Consider, for instance, the use of camouflage by the grasshopper in Figure 2. First, the 

grasshopper’s biological processes produce a false communication in the form of color changes 

to the grasshopper’s body. The grasshopper’s change in color is transmitted visually to its 

surroundings. Predators receive the visual information and interpret the information to indicate 

that no grasshopper exists at that location. This interpretation inhibits the predator from selecting 

predation behaviors.  
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Figure 3 An example environment, true matrix, and induced matrix is pictured above. The environment contains 
three corridors in which the deceiver can hide. The true matrix reflects the deceiver’s knowledge of the action it 
intends to select. In the true matrix on the left the deceiver has randomly selected the GoLeft action. The matrix 
depicts the deceiver’s outcomes and their dependence on the mark’s action. The true matrix to the right depicts the 
decision problem faced by the mark with the outcomes that would result given the action selected by the deceiver. 
The induced matrix depicts the mark’s decision problem after the false communication. The outcome values ±10 
were arbitrarily chosen.   
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 Outcome matrices can be used to reason about the situation faced by the deceiver and the 

mark. Let DDD aaa 321 ,,  and MMM aaa 321 ,,  represent generic actions possessed by the deceiver and 

the mark respectively. We use the term true matrix to describe the outcome matrix representing 

the actual outcome obtained by both the mark and the deceiver had the false communication not 

occurred. From a game theoretic point of view, this is a situation of asymmetric information [22]. 

With respect to our running example, the true matrix represents the different outcome patterns 

resulting when the robot and enemy select hide and search actions. Figure 3 depicts this scenario 

assuming that the value in terms of utility of locating the deceiver is +10 and -10 if the deceiver 

does not locate the mark. A key facet of deception is the fact that the deceiver knows the true 

matrix but the mark does not. Consider, for instance the true matrix resulting from the deceiver’s 

decision to hide in the left corridor. The true matrix on the left side of Figure 3 depicts the matrix 

from the deceiver’s perspective. The true matrix on the right side of Figure 3 depicts the 

deceiver’s understanding of the decision problem faced by mark. It includes the true outcome 

values that the mark will receive by choosing to search the center or right corridor.  The 

deceiver’s task is to provide information or to act in a way that will influence the mark to select 

Ma2 =GoCenter, Ma3 =GoRight rather than Ma1 =GoLeft. To do this, the deceiver must 

convince the mark that 1) the selection of Ma1 =GoLeft is less beneficial then it actually is; 2) the 

selection of Ma2 =GoCenter, Ma3 =GoRight is more beneficial then is actually is or 3) both.  

 The deceiver accomplishes this task by providing a false communication, i.e. a set of tracks 

leading elsewhere. This communication is false because it conveys information which falsely 

reflects the outcome of a particular action choice. The false communication results in another 

matrix which we term the induced matrix (Figure 3 bottom). The induced matrix represents the 

situation that the false communication has been led the mark to believe is true. In our running 
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example, the hiding robot might create muddy tracks leading up to the center corridor (the false 

communication) while in fact the robot is actually hiding in the left corridor.    

 The preceding discussion has detailed several basic interactive situations and concepts 

underlying deception. Numerous challenges still confront the deceiver. The deceiver must be 

able to decide if a situation justifies deception. The deceiver must also be capable of developing 

or selecting a strategy that will communicate the right misleading information to induce the 

desired matrix upon the mark. For instance, a robot capable of deceiving the enemy as to its 

whereabouts must first be capable of recognizing that the situation demands deception. 

Otherwise its deception strategies are useless. In the sections that follow, we first develop a 

method that allows the robot to determine if deception is necessary. Afterward, we detail a 

method for how to deceive.       

4.2  Deciding when to Deceive1 

Recognizing if a situation warrants deception is clearly of importance. Although some 

application domains (such as covert operations) might demand a robot which simply deceives 

constantly and many other domains will demand a robot which will never deceive, this article 

focuses on robots which will occasionally need to deceive. The problem then for the robot, and 

the purpose of this section, is to determine on which occasions the robot should deceive.       

 Section 3.1 detailed the use of outcome matrices as a representation for interaction and social 

situations. As described in that section, social situations represent a generic class of interactions. 

We can then ask what type of social situations justifies the use of deception? Our answer to this 

question will be with respect to the dimensions of the interdependence space. Recall from section 

3.1 that the interdependence space is a four-dimensional space describing all possible social 

                                                 
1 Portions of this discussion have also appeared in (Wagner & Arkin, 2009) © 2009 IEEE.  
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situations (see [3] for a depiction of the interdependence space). Posed with respect to the 

interdependence space, our task then becomes to determine which areas of this space describe 

situations that warrant the use of deception and to develop and test an algorithm that tests 

whether or not a particular interaction warrants deception. 

 As before, Bond and Robinson’s definition of deception, providing a false communication 

for one’s own benefit, will serve as our starting place [5]. With respect to the task of deciding 

when to deceive there are two key conditions in the definition of deception. First, the deceiver 

provides a false communication and second that the deceiver receives a benefit from this action. 

The fact that the communication is false implies conflict between the deceiver and the mark. If 

the deceiver and the mark had corresponding outcomes a true communication could be expected 

to benefit both individuals. The fact that the communication is false demonstrates that the 

deceiver cannot be expected to benefit from communications which will aid the mark. In our 

running example, a robot that leaves tracks leading to its actual hiding position is not deceiving 

because it is providing a true communication. On the other hand, all signals leading the mark 

away from the robot’s hiding place will benefit the robot and not benefit the mark. 
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Figure 4  A two dimensional representation of the interdependence space showing the correspondence 
dimension (X) and the interdependence dimension (Y) is presented above. Areas of low interdependence 
(independent outcomes bottom half of graph) tend not to warrant deception because the actions of the mark will 
have little impact on the deceiver. Similarly, areas of correspondence (right portion of the graph) do not require false 
communication as actions beneficial for the mark are also beneficial for the deceiver. It is only the top left of the 
graph, representing areas in which the deceiver depends on the actions of the mark and is also in conflict with the 
mark, in which deception is warranted.  

The second condition requires that the deceiver receive a benefit from the deception. This 

condition implies that the deceiver’s outcomes are contingent on the actions of the mark. With 

respect to the interdependence space this condition states that the deceiver is dependent upon the 

actions of the mark. In other words, this is a situation of high interdependence for the deceiver. If 

this condition were not the case, then the deceiver would receive little or no benefit from the 

deception. Again, relating back to our running example, if the robot does not gain anything by 

hiding from the soldiers then there is no reason for deception. Figure 4 depicts a subspace of the 

interdependence space with respect to the two dimensions critical for deception. 
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Figure 5  An algorithm for determining whether or not a situation warrants deception is presented above [23]. 
The algorithm takes as input the robot’s self model and partner model. It uses the interact-and-update algorithm 
from [1] to produce an expected outcome matrix for the situation, O′ . Next the interdependence space algorithm 
from [3] is used to generate the interdependence space dimension values δγβα ,,,  for the situation. Finally, if the 

value for interdependence is greater then some application specific constant 1k  and the value for correspondence 

less than some application specific constant 2k , the situation warrants deception.   

Given the description above, we can construct an algorithm for deciding when to deceive 

(Figure 5). The aim is to determine if a situation warrants the use of deception. The algorithm 

draws heavily from our previous work in the area of human-robot interaction [1, 3]. The input to 

the algorithm is the robot’s model of itself and of its interactive partner. These models are used 

in conjunction with Wagner’s interact-and-update algorithm to produce an outcome matrix O′ , 

i.e., the true matrix (example in Figure 2) [1]. In the second step, the interdependence space 

mapping algorithm is used to calculate the situation’s location in the interdependence space [3]. 

If the situation’s location in the interdependence space indicates sufficient interdependence 

( 1k>α ) and conflict ( 2k<β ) then the situation can be said to warrant deception.  

 For robots, these conditions comprise necessary but not sufficient conditions for deception. 

Sufficiency also demands that the robot is capable of producing a false communication which 

will influence the mark in a manner beneficial to the deceiver. In order for this to be the case, the 

Situational Conditions for Deception  
 

Input: Self Model Dm ; Partner Model Mm  
Output: Boolean indicating whether or not the situation warrants deception. 
 
1.  Use the interact-and-update algorithm from [1] to create O′  from self model Dm  and partner 

model Mm  
2.  Use the interdependence space algorithm from [3] to calculate the interdependence space dimension 

values δγβα ,,,  from the outcome matrix. 

3.  If 1k>α  and 2k<β  
4.   return true  
5.  Else 
6. return false 
7. End if         © 2009 IEEE 
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deceiver must have the ability to deceive. The presence or absence of the ability to deceive rests 

upon the deceiver’s action set. Section 4.4 explores the robot’s decision of how to deceive.  

 We contend the algorithm in Figure 5  allows a robot to recognize when deception is 

justified. The following two sections test this hypothesis first qualitatively and quantitatively.  

4.2.1  Qualitative Comparison of Situational Conditions  

In this section we qualitatively compare examples of those situations which meet the conditions 

for deception expounded in the previous section from those which do not. Our goal is to 

demonstrate that the algorithm in Figure 5 meets the same situational conditions which 

intuitively reflect those situations that humans use deception. Additionally, we strive to show 

that situations in which humans rarely, if ever, use deception are also deemed not to warrant 

deception by our algorithm. The purpose of this analysis is to provide support for the hypothesis 

that the algorithm in Figure 5 does relate to the conditions underlying normative interpersonal 

deception. It is challenging, if not impossible, to show conclusively outside of a psychological 

setting that indeed our algorithm equates to normal human deception processes. 

  

 

 

 

 

 

Table 1 lists 5 different game/interdependence theoretic social situations. Each situation was used 

as the matrix O′  from the first step of our algorithm for the situational conditions for deception. 
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The values for constants were 49.01 =k  and 33.02 −=k . The rightmost column states whether 

or not the algorithm indicates that the situation warrants deception. 

 

 

 

 

 

Table 1 Qualitative exploration of the deception characteristics of several important social situations. Several 
situations, such as the Competitive situation and the Prisoner’s dilemma, indicate that these situations 
warrant deception. Others, such as the Cooperative situation and the Trust situation, do not warrant 
deception. Finally, the Chicken situation stands as a border case which depends on the particular values in 
the matrix and constants associated with the algorithm. 

Social Situations 
Name Verbal Description  

(based on [19] 
Example 
Outcome 
Matrix 

Interdependence 
Space Location 

Situational 
Deception? 

 Cooperative 
Situation 

Each individual receives 
maximal outcome by 

cooperating with the other 
individual. 

12 
12 

6 
6 

6 
6 

0 
0 

 

0.5, 1.0, -0.5, 0.0 
 

No

Competitive 
Situation 

Each individual gains from the 
other individual’s loss. 

Maximal outcome is gained 
through non-cooperation. 

6 
6 

12 
0 

0 
12 

6 
6 

 

0.5, -1.0, -0.5, 0.0 
 

Yes

Trust Situation  In this situation, cooperation is 
in the best interests of each 
individual. If, however, one 
individual suspects that the 

other will not cooperate, non-
cooperation is preferred. 

12 
12 

8 
0 

0 
8 

4 
4 

 

1.0, 0.2, -0.3, 0.0 
 

No

Prisoner’s 
Dilemma 
Situation 

Both individuals are best off if 
they act non-cooperatively and 

their partner acts 
cooperatively. Cooperation 

and non-cooperation, results in 
intermediate outcomes.  

8 
8 

12 
0 

0 
12 

4 
4 

 

0.8, -0.8, -0.6, 0.0 
 

Yes

Chicken 
Situation 

Each individual chooses 
between safe actions with 

middling outcomes and risky 
actions with extreme 

outcomes. 

8 
8 

12 
4 

4 
12 

0 
0 

 

1.0, 0.2, -0.3, 0.0 
 

Yes/No 
 
 

 
© 2009 IEEE 
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To give an example of how the results were produced consider the first situation in the table, 

the Cooperative Situation. A representative outcome matrix for the situation is used as the matrix 

O′  from the first step of the algorithm. Next, in the second step of the algorithm the values for 

the fourth column of the table are calculated: the interdependence space dimension values. For 

the Cooperative Situation these values are { }0,5.0,0.1,5.0 − . Because 49.0<α  and 33.0−>β  the 

algorithm returns false, indicating the situation does not warrant deception. The following 

situations were analyzed:  

• The Cooperative situation describes a social situation in which both individuals interact 

cooperatively in order to receive maximal outcomes. Although often encountered in 

normative interpersonal interactions, because the outcomes for both individuals 

correspond, these situations seldom involve deception. For example, deception among 

teammates is rarely employed as it is counter to the dyad’s mutual goals. 

• In contrast to the Cooperative Situation, the Competitive situation does warrant the use of 

deception. This situation is again an example of a k-sum game in which gains by one 

individual are losses for the other individual. Hence, deception in interpersonal 

Competitive situations is common. Deception among competitors, for example, is 

extremely common and some games, such as poker, are even founded on this principle. 

• The Trust Situation describes a situation in which mutual cooperation is in the best 

interests of both individuals. Yet, if one individual does not cooperate then mutual non-

cooperation is in both individuals best interest. Interpersonal examples of Trust Situations 

include lending a friend money or a valuable asset. This situation does not demand 

deception because again both individuals’ mutual interests are aligned.  
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• The Prisoner’s Dilemma is perhaps the most extensively studied of all social situations 

[17]. In this situation, both individuals depend upon one another and are also in conflict. 

These conditions make the Prisoner’s Dilemma a strong candidate for deception. It is in 

both individuals best interest to influence that action selection of the other individual. As 

detailed by Axelrod, Prisoner’s Dilemma situations include military and police 

enforcement situations involving actual interpersonal interaction that often do entail 

deception [17].  

• The Chicken situation is a prototypical social situation encountered by people. In this 

situation each interacting individual chooses between safe actions with intermediate 

outcomes or more risky actions with more middling outcomes. An example might be the 

negotiation of a contract for a home or some other purchase. Whether or not this situation 

warrants deception depends on the relative outcome value of the safe actions compared to 

the risky actions. If the value of the risky action is significantly greater then the value of 

the safe actions then deception will be warranted.    

  
 
 
 

 

 

Table 1 and the analysis that followed examined several situations and employed our situational 

conditions for deception algorithm to determine if the conditions for deception were met. In 

several situations our algorithm indicated that the conditions for deception were met. In others, it 

indicated that these conditions were not met. We related these situations back to interpersonal 

situations commonly encountered by people, trying to highlight the qualitative reasons that our 
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conditions match situations involving people. Overall, this analysis provides preliminary 

evidence that our algorithm does select many of the same situations for deception that are 

selected by people. While much more psychologically valid evidence will be required to strongly 

confirm this hypothesis, the evidence in this section provides some support for our hypothesis. 

4.2.2  Quantitative Examination of Situational Conditions Warranting Deception 

In this section we examine the hypothesis that by recognizing situations which warrant 

deception, a robot is afforded advantages in terms of outcome obtained. Specifically, a robot that 

can recognize that a situation warrants deception can then choose to deceive and thereby receive 

more outcome overall, than a robot which does not recognize that a situation warrants deception. 

Although this experiment does not serve as evidence indicating that our situational conditions for 

deception relate to normative human conditions for deception, it does show that robots which 

recognize the need for deception have advantages in terms of outcome received when compared 

to robots which do not recognize the need for deception.  

 At first glance this experiment may appear trivial given the definition of deception. There 

are, however, several reasons that the study is important. First, we do not know the magnitude of 

the benefit resulting from deception. Does the capacity to deceive result in significantly greater 

benefit over an individual that does not deceive? Similarly, how often must one deceive in order 

to realize this benefit? Second, we do not know how this benefit is affected by unsuccessful 

deception. Is the benefit realized by 80% successful deception the same as 100% successful 

deception? Finally, this definition was developed for biological systems. Hence, we need to 

verify that artificial systems such as agents and robots will likely realize the same benefit as a 

biological system. In other words, we need to verify that the benefit is not something unique to 

biological systems. While the answers to these questions may seem straightforward, they are an 
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important starting place given that this paper lays the foundation for a largely unexplored area of 

robotics.   

 We conducted a numerical simulation to estimate the outcome advantage that would be 

afforded to a robot that used the algorithm in Figure 5 versus a robot which did not. Our 

numerical simulation of interaction focuses on the quantitative results of the algorithms and 

processes under examination and does not attempt to simulate aspects of the robot, the human, or 

the environment. As such, this technique offers advantages and disadvantages as a means for 

discovery. One advantage of a numerical simulation experiment is that a proposed algorithm can 

be tested on thousands of outcome matrices represent thousands of social situations. One 

disadvantage is that, because it is not tied to a particular robot, robot’s actions, human, human’s 

actions, or environment, the results, while extremely general, have not been shown to be true for 

any existent social situation, robot, or human. The experiment involved two simulated robots. 

Each selected nominal actions from their outcome matrices and received the resulting values, but 

no actual actions were performed by either individual. 

 These simulations involved the creation of 1000 outcome matrices populated with random 

values. Artificial agents abstractly representing robots selected actions based on the outcome 

values within the matrices. These outcome matrices were also abstract in the sense that the 

rewards and costs are associated by selecting one of two non-specific actions. Symbolic 

placeholders such as 1a  and 2a  are used in place of actual actions. The actions are grounded in 

the rewards and costs that the robot expects them to produce. This may be the only practical way 

to examine thousands of situations at a time and to draw general conclusions about the nature of 

deception itself outside of one or two specific situations. Both the deceiver and the mark selected 
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the action which maximized their respective outcomes. Figure 6 depicts the experimental 

procedure with an example.   
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Figure 6 The experimental procedure is depicted above. In the control condition, random outcome matrices are 
created and actions are selected from these matrices. In the test condition, if the situation warrants deception then 
deceiver creates an induced matrix which the mark selects an action from. Example matrices are depicted on the 
right hand side of the figure.    

 Three experimental conditions were examined. The first condition was a control condition 

devoid of deception. In this condition both the deceiver and the mark simply selected the action 
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which maximized their individual outcomes. This condition represents the null hypothesis in that 

if performance in the control is as great or greater then performance using our algorithm then the 

recognition of the situational conditions for deception via our algorithm offers no benefit to the 

agent.   

 In the two experimental conditions, the deceiver used the algorithm from Figure 5 to 

determine if the outcome matrix warranted deception. If it did, then the deceiver produced an 

induced matrix which was used by the mark to select an action while the deceiver selected an 

action based on the true matrix. In the perfect deception condition the mark always selected an 

action based on the induced matrix. In the 80% deception condition, the mark selected an action 

from the induced matrix 80% of the time and from the true matrix 20% of the time. The 

importance of the 80% percent deception condition is that it indicates how quickly the benefit of 

deception decreases with an imperfect deception strategy.  

 The independent variable was the condition: no deception, perfect deception, or 80% 

successful deception. The dependent variable was the amount of outcome received by each 

simulated agent.  

 Relating back to our running example, in both the control and the test conditions, the 

deceiver interacts in thousands of situations at the military base. Most of these situations do not 

warrant deception and hence the control and test robots act the same. Only the robots in the 

experimental condition which are using our algorithm, however, recognize the situations that do 

warrant deception. In this case these experimental robots use a deceptive strategy, such as 

creating a false trail to hide, to create an induced matrix that influences the behavior of the mark. 

The deceiving robot then hides in a different location.    
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Quantitative Examination of Situational Conditions
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Figure 7  Experimental results from our investigation of the situational conditions warranting deception. The 
perfect deception and 80% successful deception conditions result in significantly ( 01.0<p ) greater outcome than 
the no deception condition. This result indicates that an agent or robot that can recognize and act upon the situational 
conditions for deception will be better able to choose the best action.  

 Figure 7 presents the results. The recognition and use of deception results in significantly 

more outcome ( 01.0<p  two-tailed no deception versus perfect deception and no deception 

versus 80% successful deception) than not recognizing and using deception. Of the 1000 random 

situations the simulated agents faced, 19.1% met the conditions for deception. Hence, all of the 

difference in outcome among the various conditions resulted from better action selection on the 

part of the deceiver in only 191 situations. This experiment serves as evidence that an artificial 

agent or robot that can recognize and react to situations which warrant the use of deception will 

be significantly better suited to maximize their outcomes and hence their task performance.  

 These results are important in that they demonstrate that: 

1) That a robot or agent that recognizes when to deceive will obtain significantly more 

outcome than a robot that does not; 

2) most of the difference results from a relatively small (19.1) percentage of situations; 

3) imperfect deception does impact the amount of outcome obtained; and  

© 2009 IEEE 
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4) Bond and Robinson’s biological definition for deception can be used in conjunction with 

an interdependence theory framework to develop methods for robots to recognize when 

deception is warranted.    

 Still, the experiments presented in this section have assumed that the robot is capable of 

deception. Clearly this assumption is not as yet justified. In the next section we investigate the 

method that the deceiver uses to effectively deceive the mark.  

4.3 Deciding how to Deceive 

Bond and Robinson’s definition of deception implies a temporal order [5]. The deceiver must 

provide a false communication before the mark has acted. A false communication provided after 

the mark has acted cannot be expected to benefit the deceiver. Several authors have recognized 

the need for a particular temporal order during deceptive interactions [7, 10]. Gerwehr and Glenn 

detail a planning process necessary for deception with respect to the military domain [7]. 

Ettinger and Jehiel provide a theoretical basis for a prototypical pattern of interactions relating to 

deception [10]. Floreano et al., on the other hand, demonstrate that deception can occur with 

little or no actual planning while still confirming that the temporal order described above must be 

preserved [13]. With respect to our running example, the robot cannot leave muddy tracks up to 

the first hiding place after the enemy soldier has already selected an area to search. The 

deceptive action must be completed beforehand. 

 Our algorithm for acting deceptively is structured with this temporal order in mind. It 

consists of four stages. First the deceiver determines if the situation does indeed warrant the use 

of deception. Next, the deceiver creates the induced matrix. Recall from section 4.1, the induced 

matrix is the matrix that the deceiver wishes the mark to believe. Next, the deceiver selects the 
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best false communication to convince the mark that the induced matrix is the true matrix. 

Finally, the deceiver and the mark perform their actions in the environment.   

 
Figure 8 An algorithm for acting deceptively.  The algorithm takes as input the deceiver’s model of the mark, 
the true matrix and two constants related to the deceiver’s strategy for fooling the mark.  

 The algorithm begins by checking if the situation warrants deception. If so, then the deceiver 

attempts to determine what the characteristics of the induced matrix will be. Recall from section 

4.1 that the deceiver can either try to increase the probability that the mark will select an action 

favorable to the deceiver, decrease the probability that the mark will select an action unfavorable 

to the deceiver, or both. In our algorithm, control of the constants 01 ≥k  and 02 ≥k  allows the 

Acting Deceptively 
 

Input: Partner Model im− ; true matrix O′ ; constant 1k , 2k  
Output: None 
 
1. Check if the situation warrants deception, if so then continue 
//Calculate the induced matrix 
2. Set iAa −∈min  such that ( ) )min(, min ii oaaO =′  //find the mark’s action which will 
 //minimize the deceiver’s outcome 
3. ( ) ( ) 1

minmin~ kaOaO −′=  //Subtract 1k  from the mark’s outcome for action mina   

4. ( ) ( ) 2
minmin~ kaOaO ii +′= ≠−≠−   //Add 2k  from the mark’s outcome for all other  

   //actions producing the induced matrix 
//Select the best false communication 
5. for each Γ∈jγ  //for each potential false communication 

6. ( ) *, img j
im −=− γ  //calculate the change the comm. will have on the partner model 

7. ( ) **, Omm iif =−  //calculate the resulting matrix from the new partner model  

8. if  OO ~* ≈  //if the matrix resulting from the false comm. is approx. equal to  
  //the matrix we wish to induce, then  
9. Set jγγ =*  //set the best communication to the current communication 
//Interact 
10.  Deceiver produces false communication Γ∈*γ , the signal resulting in maximum outcome. 

11. Deceiver uses matrix O′  to select action DD Aa ∈  which maximizes deceiver’s outcome. 

12. Mark produces induced matrix Ô . 

13. Mark selects action from induced matrix Ô . 
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deceiver to both decrease the outcome of an unfavorable action being selected ( 1k ) and increase 

the outcome of a favorable action being selected ( 2k ). The upper bounds for the values of  1k  

and 2k  are limited by the deceiver’s set of false communications. Greater values for the 

constants will result in an induced matrix which is not achievable given the deceiver’s set of 

false communications. The actual values for the constants can potentially be derived from 

previous experience with similar situations, the robot’s motivations, or from the true matrix 

itself.      

 
Figure 9 An example of the creation of the induced matrix by the acting deceptively algorithm on a 2x2 hide-
and-seek example.    

 Steps 2-4 create the induced matrix by reducing the outcome from the action deemed not 

favorable to the deceiver and adding outcome to the actions deemed favorable to the deceiver. 

The second step locates the mark’s action or actions that will result in a reduced amount of 

outcome being obtained by the deceiver. Next, in step 3, the deceiver subtracts a constant value 

( 1k ) from the mark’s outcomes for the action or actions found in step 2. The value for this 

  Creating the Induced matrix in a 2x2 Hide-and-seek e xample  

Deceiver  

L   
L   R  

R  

- 10 - 10  
10  - 10  

10  
- 10  - 10 

10  
Mark   True matrix: deceiver 

has decided to hide in 
the left corridor 

L is the mark’s action that 
would minimize the deceiver’s

outcome. Thus mina =L 

L   
L   R  

R  

-10  
- 10  10  

- 10  

10 
- 10  

10  

The induced matrix: a new matrix created 
by subtracting 201 =k  from L and adding   

202 =k  to R. 

L   
L   R  

R  

-10  
- 3 0   - 10 

- 10  

10 
10   10  

10  

- 10 



 30

constant should be chosen such that the increase in outcome makes the alternative action or 

actions appear to be favorable with respect to the mark’s other action choices. The forth step 

adds a constant value ( 2k ) to each of the mark’s actions which are favorable to the deceiver. The 

result is the production of an induced matrix which will persuade the mark to select the action 

which is most favorable to the deceiver. In our running example, the deceiver’s most favored 

action would be for the mark to search in the location that the deceiver is not hiding. Hence, the 

induced matrix, in this case, makes searching in the location that the deceiver is hiding seem 

incorrect to the mark. Figure 9 presents an example of the creation of the induced matrix in 2x2 

version of our hide-and-seek situation. 

 The next five steps of the algorithm attempt to determine which false communication would 

be the best communication to create the induced matrix within the mark. Intuitively, steps 5-9 

iterate through the deceiver’s set of possible false communications searching for the false 

communication that will produce an induced matrix which most closely resembles the induced 

matrix from step 3. To do this, in step 5 the algorithm iterates over all false communications. In 

step 6 the function ( )⋅g  calculates the impact of the false communication on the partner model. 

This function will be discussed in greater detail in the next section. Step 6 uses both the induced 

partner model and the deceiver’s self model to create the matrix, *O , that would be generated by 

this particular false communication. If the matrix induced by a particular false communication, 

*O , is approximately equal to the desired induced matrix, O~ , then the false communication to be 

used, jy  , is saved.   

 Finally, in steps 10-13, the robot produces the false communication and selects an action 

from the true matrix O′ . The mark reacts to the communication by generating its own internal 
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matrix Ô  which may or may not equal the induced matrix predicted by the deceiver. Finally, the 

mark selects an action from the matrix Ô . 

 As presented, this algorithm makes a number of assumptions. We assume that the deceiver 

has a finite set of M false communications, { }Myy ,,0 K=Γ , over which it is deliberating. This 

set of communications could more adequately be described as a set of deceitful actions with the 

purpose of providing false information to the mark. This set of deceitful actions could, 

potentially, be learned, or alternatively simply be given to the robot. The question of how the 

deceiver learns to act deceitfully remains open.  

 The seventh step assumes that a measure of similarity exists between outcome matrices. We 

empirically explored two different distance measures. Euclidean vector distance, 

( )∑
=

−=
N

i
ii xxd

1

221 , was initially used as a measure of similarity. This measure, however, 

tends to emphasize the distance of each action pair equally without respect to how the distance 

impacts the mark’s action selection. The underlying purpose of the comparison is to determine if 

the resulting matrix and the induced matrix will produce the same action selection by the mark. 

To get a better measure of similarity and dissimilarity with respect to the mark’s action selection, 

we averaged each of the mark’s actions across potential deceiver locations (averaging the rows 

of the matrix) to produce a vector, formally, 
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 where kv  is the average 

outcome value for the mark’s kth action. We then used the Euclidean vector distance equation 

above to compare the matrix resulting from a potential false communication leading to the 

induced matrix. Other distance measures may also be possible.  
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4.3.1  Representing knowledge about the mark 

The fifth step of the algorithm assumes the existence of a function ( )⋅g  that allows the deceiver 

to reason about and predict the impact of a false communication on the mark. The general 

question of how a piece of information will impact the state and beliefs of one’s interactive 

partner is a challenging and open question. Arguably, this is also the most difficult step in normal 

interpersonal deception as it often requires detailed knowledge of the mark and can lead to 

infinite loops of common knowledge (i.e. the deceiver knows mud trails are fake, the mark 

knows that the deceiver knows that mud trails are fake, the deceiver knows that the mark know 

that the deceiver knows that mud trails are fake, and so on) [11]. Humans typically utilize 

knowledge about the other individual to determine how a false communication will affect the 

other individual’s decision [24].         

 We use a Bayesian network to represent the deceiver’s system of beliefs related to the mark. 

As mentioned in section 3, in game theory beliefs are used to probabilistically represent 

knowledge about oneself and one’s partner [11]. A belief is formally [24] represented as the 

conditional probability ( )BApi , where ( )⋅ip  is the likelihood function held by individual i that 

the random variable A takes a particular value given evidence in the form of a value for the 

random variable B.  
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 Bayesian Network representing the Deceiver’s belief system 
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Figure 10 A Bayesian network representing the relationship of the random variables for the deceiver’s belief 
system. The variable },,{ crlX =  denotes the corridor the mark will choose to search in, },,{ crlH =  denotes a 
heat signature, },,{ crlS =  denotes the location of a sound, and },,{ crlT =  denotes the location of tracks. 

 Four random variables captured the deceiver’s system of beliefs related to the mark. For our 

example, the hidden variable { }crlX ,,=  denotes the location of the deceiver, the left ( l ), right 

( r ), or center ( c ) corridor. The remaining variables are observable. The evidence variable 

{ }crlH ,,=  denotes a heat signature located in the left ( l ), right ( r ), or center ( c ) corridor. The 

evidence variable { }crlS ,,=  denotes a sound signature with the same possible values as the 

random variable for a heat signature. The evidence variable { }crlT ,,=  denotes visible track 

signature again with the same potential values as the preceding variables. We assume that both 

the deceiver and the mark recognize the causal relationship between the random variables. That 

is, both individuals know that the deceiver’s position causes the position of its heat signature, 

sound signature, and visible tracks and not vice versa. As shown by related work, causal 

relationships among the physical characteristics of objects can be learned by a robot [25]. Figure 

10 depicts a directed graphical model representing the relationship among the different random 

variables. Given the model, the deceiver uses the probability ( )TSHXpi ,,  to predict the impact 

of possible false communications on the mark’s model of the situation. For example, if the 

deceiver intends to use a heat signature placed in the left corridor and no other false 
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communication ( )lH = , then the term ( )lHlXpD ==  represents the deceiver’s belief that the 

mark will select the left corridor given a heat signature in the left corridor.  

Predicting the impact of a false communication 
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Figure 11 An example of the computations undertaken to predict the impact of a false communication. The figure 
details the calculations conducted as part of the function ( )⋅g  for the hide-and-seek example.  

 Our function ( )⋅g  uses the junction tree algorithm to perform statistical inference on the 

graphical model depicted in Figure 10 ( see [26] for an overview). The vector TSH ,,y j =  

serves as input to the junction tree algorithm. The inference results in the posterior probability 

( )TSHXpi ,, . The value of the posterior is then multiplied by the deceiver’s belief of the mark’s 

outcome values to produce revised outcome values given the evidence. These revised outcome 
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values are stored in a revised partner model. Figure 11 details the computational process 

underlying our implementation of ( )⋅g . 

4.3.2  Simulating deception in hide-and-seek 

The study of deception and deception avoidance presents unique methodological challenges. 

Because the success or lack of success of a deception algorithm hinges not just on the deception 

algorithm itself, but also on the means of controlling the mark, deception results may not be 

indicative of successful deception per se, but rather of a weak mark. The challenge then becomes 

how to gauge the success of one’s deception algorithm relative to a mark.  

 We utilize several techniques to deal with these challenges. First, all of the interactions 

between the deceiver and the mark are one-shot interactions. In other words, neither the deceiver 

nor the mark refine their initial models of the other based on prior experience. This prevents the 

experiment from degenerating into a competition of machine learning algorithms. Second, 

different types of marks were created each with different action selection strategies. This 

prevents a single strategy from acting as a dominant strategy for the deceiver. Finally, we do not 

compare the algorithm’s results to a control algorithm. Because this is a new area of research 

without established metrics or ground truth, even a statistically significant increase in ability to 

deceive with respect to a control could simply be a reflection of a weak control.   

 Rather than attempting to empirically demonstrate the ability of our algorithm to deceive, our 

primary goal will be to use the algorithm as a tool to investigate the nature of deception itself. 

Specifically, we explore the relationship between a deceiver’s knowledge of the mark and its 

ability to deceive. We hypothesize that additional knowledge about the mark aids the deceiver by 

allowing it to more accurately reason and predict the effect of a false communication will have 

on the mark.  



 36

 This hypothesis may seem intuitive. To restate it, the more a priori knowledge that the 

deceiver has about the mark the better its ability to deceive should be. There are, however, 

numerous instances of deception which would seem to contradict this statement. Take, for 

example, the use of camouflage as a method of deception (Figure 2). Typically the deceiver has 

little, if any, explicit knowledge pertaining to the mark yet the use of camouflage works 

flawlessly. We argue that in these cases the deceiver has tacit and/or implicit knowledge related 

to the perceptual abilities of the deceiver [27]. Also consider the debate within the primatology 

community as to whether or not the use of deception is indicative of theory of mind [2]. The 

results of these experiments are valuable in that they demonstrate possible computational 

underpinnings by which theory of mind could influence one’s ability to deceive.  

 We conducted both simulation and robot experiments to test this hypothesis. MissionLab was 

used to conduct our simulation experiments. MissionLab is a robot mission specification 

software suite which allows users to simulate multi-agent and multi-robot scenarios, design robot 

behaviors and instantiate missions using situated embodied robotic hardware [28].  
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Figure 12 The multi-robot hide-and-seek simulation environment used for our experiments.  

 Our experiment involves multi-robot hide-and-seek [29]. Hide-and-seek is an agreeable 

paradigm for deception research because it is a transformation of the well-studied robot foraging 

problem [27]. In traditional robot foraging a robot searches an environment for attractors. The 

dependent variable is typically the number of attractors located or the mean time to locate a fixed 

number of attractors. Hide-and-seek varies the foraging problem by making the task multi-agent 

and placing the agents in conflict; the success of the seeker in inversely related to the success of 

the hider. In our variation of hide-and-seek, the hider/deceiver hides in one of three areas 

pictured in Figure 12. The seeker/mark must select only one location where to search. As a 

paradigm for the study of deception, one could potentially use hide-and-seek to explore both 

sides of the deception problem. Namely one could develop algorithms and theories for improving 

deception by focusing on the role of the hider/deceiver. Alternatively, one can explore deception 

recognition or reduction techniques by creating methods for the seeker/mark.  



 38

 The hide-and-seek environment utilized for this research was designed to relate to this 

paper’s running example and is meant to force the seeker to select a single search path (Figure 

12).  As discussed in section 3.2, knowledge of an individual’s action space is a necessary 

prerequisite for the construction of an outcome matrix. In this case, the seeker’s action space 

consists of going down one of the three corridors in search of the hiding robot. Formally, for this 

experiment the seeker’s action space can be represented as =MA {GoToAreaLeft, 

GoToAreaCenter, GoToAreaRight}. These actions were constructed in MissionLab from a 

series of waypoints allowing the robot to move through and search the different corridors. 

Likewise the hider must decide which corridor to hide in. Formally, the hider’s action space can 

be represented as =DA {HideInAreaLeft, HideInAreaCenter, HideInAreaRight}. The 

hider’s actions were also constructed in MissionLab from a series of waypoints that allow the 

deceiving robot to move to one of the three hiding locations within a corridor.   

 Prior to the interaction the hider must select a false communication and location to aid in its 

deception. In this experiment, the deceiver used three types of diversions as false 

communications: heat signatures, sounds, and visible tracks. Notionally, heat signatures acted as 

false communications to seekers with infrared sensors, sounds acted as false communications to 

seekers with auditory sensing, and visible tracks were capable of fooling seekers with vision. The 

use of these particular types of diversions simply serves to ground the experiments in a setting 

and a story. They do not limit the applicability of the results as evidence for or against our 

hypothesis. Formally, for this experiment, the hider’s false communication set can be represented 

as =Γ {tracks, heat_signature, sound}. Each false communication also has a location, left, 

right, or center.  
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Table 2 The table below lists the different types of seekers. The seeker’s perception as limited by the 
presence or absence of vision, auditory, and infrared sensors.     

Seeker Types 
Number Sensors Deception signal sensitivity 

1 None insensitive 

2 Infrared mildly sensitive 

3 Auditory mildly sensitive 

4 Vision mildly sensitive 

5 Infrared, auditory largely sensitive  

6 Infrared, vision largely sensitive 

7 Auditory, vision largely sensitive 

8 Vision, auditory, infrared completely sensitive 

 Seekers come in several types (Table 2). The seeker’s ability to detect the hider’s false 

communication depends on the seeker’s suite of sensors. Seekers with all possible combinations 

of sensors were created. Seekers were considered insensitive to the hider’s deception signal if 

they had no ability to sense the signal, mildly sensitive if they had only a single type of sensor, 

largely sensitive if they had two sensors, and completely sensitive if they had all three sensors.  

 The dependent variable in these experiments was whether or not the seeker located the hider. 

Random selection of a search path by the seeker would be expected to locate the hider in ~33% 

of the runs. The independent variable was the amount of a priori knowledge the hider was given 

related to the seeker’s perceptual capabilities. The hider’s a priori knowledge of the seeker was 

quantized as notional questions the hider could ask the seeker. The hider could only ask one of 

the three questions listed in Table 3. The independent variable ranged from zero questions (no 

knowledge of the seeker’s type) to three questions (full knowledge of the seeker’s type). The 

question asked by the hider was selected at random and the deceiver did not ask the same 

question multiple times. Responses to all questions were yes or no. The seeker always responded 

honestly. The communication of this information was accomplished via the passage of byte 

strings among the robots. Speech synthesis and recognition were not used. The ability of the 
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hider to ask questions of the seeker served as a mechanism for knowledge transfer from the 

seeker to the hider. In more realistic applications of this work the hider would, perhaps, infer 

visually that the seeker had a color camera, microphone, or infrared sensor. The actual 

development of visual capabilities, however, was far beyond the scope of this work. Thirty runs 

of the preceding experimental procedure were conducted for each of the values of the 

independent variable. 

Table 3 List of the each of the questions the hider could ask the seeker in order to gain knowledge of the 
seeker’s type.  

Hider Questions  
Number Question Response 

1 Do you have an infrared sensor? Yes/No 

2 Do you have an auditory sensor? Yes/No 

3 Do you have a vision sensor? Yes/No 
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Figure 13 An outcome matrix representing the hide-and-seek game. The matrix arbitrarily values the seeker 
finding the hider with an outcome value of +10 and not finding the seeker with an outcome value -10. The reverse is 
true for the hider.   

The following procedure was used: 

Experimental Procedure 

1) The seeker’s type is randomly selected. 

2) Both the hider and the seeker begin at the location labeled “Start Place” in 
Figure 12. 

3) The hider sends the seeker questions pertaining to the seeker’s type in 
accordance with the independent variable.  

4) The seeker responds.  

5) The hider creates an initial partner model representing the seeker with 
action set =MA {GoToAreaLeft, GoToAreaCenter, GoToAreaRight} 
and the utilities values depicted in Figure 13.  

6) The hider randomly selects an action from the set 
=DA {HideInAreaLeft, HideInAreaCenter, HideInAreaRight} 

7) The hider creates the true matrix with respect to its action selection from 
step 6). Figure 3 depicts the result for the action HideInAreaLeft.  

8) The hider uses the partner model created in step 5) and the true matrix 
from 6) with constants 20,20 21 == kk  as input to the algorithm from 
Figure 8.   

9) The algorithm results in the selection of a false communication from 
{ }Myy ,,0 K=Γ . The hider produces the false signal.  

10) The hider performs the action =DA {HideInAreaLeft, 
HideInAreaCenter, HideInAreaRight}.  
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11) The seeker, in accordance with its type, perceives or does not perceive the 
hider’s false communication signal.   

12) The seeker selects a corridor and searches the corridor.  

13) If the seeker selects the correct corridor, the hider’s deception is recorded 
as a failure. Otherwise, the hider’s deception is recorded as a success.    

14) Steps 1) through 13) are repeated.   

 Recall that we hypothesized that the more a priori knowledge that the deceiver has about the 

mark the better its ability to deceive should be. Hence we expected that additional questions on 

the part of the deceiver would result in better deception and reduced detection on the part of the 

seeker. Figure 14 depicts the results. We see that the rate at which the deception succeeds 

increases from 78 percent to 95 percent as the number of questions asked by the deceiver 

increases from 0 to 3. Confidence intervals for the independent variable were ±5, ±5, ±4, and ±3 

percent, respectively. Hence, we can conclude that the additional information gained by the 

deceiver aids in deception. The importance of this result will be discussed in the conclusions.    

 We can also breakdown the results with respect to the seeker’s sensitivity to deception. We 

claimed in Table 2 that seekers sensitivity to deception varied from insensitive to extremely 

sensitive. Figure 15 graphically depicts the deception success for each type of seeker. As 

expected deception success rate for the seeker without sensors is approximately 66 percent. The 

deception success rate for mildly sensitive seekers is significantly greater than the success rate 

for insensitive seekers ( 01.0<p  for all two-tailed). No significance difference resulted when 

comparing mildly sensitive seekers to largely sensitive seekers. The trend line depicts the general 

increase in deception success with seeker sensitivity.    
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Figure 14 The graph above depicts the percent of successful deception for different numbers of asked questions. 
The confidence intervals indicate that a significant difference results when comparing zero asked questions to three 
asked questions. Asking three questions resulted in significantly greater deception success  ( 01.0<p  for all).  
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Figure 15 The graph above indicates the percent of successful deception for each different seeker type. When the 
seeker has no sensors the percent success is approximately 0.66, indicative of the unsuccessful deception. As sensors 
are added to the seeker, it becomes more susceptible to the deception. The trendline is a power function.    

4.3.2 Robot Experiment 
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We also conducted a robot experiment to explore the impact of sensor and actuation noise on the 

learning and use of deception signals. In this experiment, the deceiver learns a set of three 

deception signals. The robot then attempts to use the learned signals to deceive the seeker.  

 
Figure 16 The images above depict the experimental setup for the robot experiment. The top left image shows the 
hider, the left, center, and right hiding location. The top right photo depicts the hider moving to the left hiding 
location. The hider knocks over the blue marker enroute to the location. The bottom left photo depicts the hider 
going to the center hiding location. In this case the hider knocks over the red marker. Finally, the bottom right photo 
depicts the hider moving to the right hiding location. In this case, the hider does not knock over any markers.   

 For this experiment, communications related to the hider’s position were accomplished by 

knocking over markers en route to the hiding location. As depicted in Figure 16 colored markers 

were positioned along the pathway to each hiding location. The robot, autonomously traveling to 

one of the locations, typically knocked over one or more of the markers. The presence or absence 

of standing markers thus indicated the hider’s location to a potential seeker.  
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Table 4 The table below lists the conditional probabilities learned by the hider and the seeker. 

 During a learning phase, the hider first went to each location 10 times and recorded whether 

or not each of the three markers remained standing. The results are presented as conditional 

probabilities in Table 4. The conditional probabilities from Table 4 were used in conjunction 

with the graphical model in Figure 17. The junction tree algorithm was again used to perform 

inference on the model. For example, witnessing the pattern falseGtrueRfalseB === ,,  

indicates that the red marker was knocked down but the blue and green are standing and occurs 

when the hider traveled to the center location. Next, the junction tree algorithm is used to 

determined the marginalized probabilities of X: ),,( fGtRfBlXp ==== 06.0= , 

94.0),,( ===== fGtRfBcXp , and 0),,( ===== fGtRfBrXp . Finally, given the 

conditional probabilities, the hider expects that a signal of falseGtrueRfalseB === ,,  

indicates the hider’s location to be center (the marginal probability of maximum likelihood). 

Hence, the signal falseGtrueRfalseB === ,,  is a good false communication when the 

hider’s location is either left or right. 

Hider and Seeker’s Learned Marker Conditional Probabilities 
X trueb =  falseb =  truer = falser =  trueg =  falseg =  
( )lxpH =  0.8 0.2 0.5 0.5 0.0 1.0 
( )cxpH =  0.0 1.0 1.0 0.0 0.0 1.0 
( )rxpH =  0.1 0.9 0.1 0.9 0.2 0.8 

( )lxpS =  0.7 0.3 0.1 0.9 0.0 1.0 
( )cxpS =  0.0 1.0 0.5 0.5 0.1 0.9 
( )rxpS =  0.0 1.0 0.0 1.0 0.2 0.8 
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 Bayesian Network representing the Deceiver’s belief system 
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Figure 17 A Bayesian network representing the relationship of the random variables for the deceiver’s belief 
system in the laboratory robot experiment. The variable },,{ crlX =  again denotes the corridor the mark will 
choose to search in, },{ falsetrueB =  denotes the blue marker, },{ falsetrueR =  denotes the red marker, and 

},{ falsetrueG =  denotes green marker. 

 Producing the false communications is similarly straightforward. The hider simply moves as 

if they are going to a location and then, once it reaches a point past the markers, changes course 

to some other location. Continuing the example from the prior paragraph, the hider moves as if 

hiding in the center location, typically knocking only the red marker down, then moving to either 

the left or the right hiding position ideally traveling along a path that avoids any markers. The 

hider’s set of false communications was defined by selecting a pattern of knocked over markers 

that indicated a false hiding position for each possible hiding position. 

 The following procedure was used: 

Hide and seek experimental procedure 

1) The hider moves to each location 10 times recording which markers are 
standing afterward. 

2) The seeker moves to each location 10 times recording which markers are 
standing afterward. 

3) The hider generates a false communication for each location based on the 
results of step 1).  

4) The hider creates an initial partner model representing the seeker with 
action set =MA {GoToAreaLeft, GoToAreaCenter, GoToAreaRight} 
and the utilities values depicted in Figure 13. 

5) The hider randomly selects an action from the set 
=DA {HideInAreaLeft, HideInAreaCenter, HideInAreaRight} 
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6) The hider creates the true matrix with respect to its action selection from 
step 6). Figure 3 depicts the result for the action HideInAreaLeft. 

7) The hider uses the partner model created in step 5) and the true matrix 
from 6) with constants 20,20 21 == kk  as input to the algorithm from 
Figure 8.   

8) The algorithm results in the selection of a false communication from 
{ }Myy ,,0 K=Γ . The hider produces the false signal by initially moving 

to the location and knocking over markers. 

9) The hider performs the action =DA {HideInAreaLeft, 
HideInAreaCenter, HideInAreaRight}. 

10) The seeker perceives which markers have been knocked over (the hider’s 
false communication signal).   

11) The seeker selects a corridor and searches the corridor.  

12) If the seeker selects the correct corridor, the hider’s deception is recorded 
as a failure. Otherwise, the hider’s deception is recorded as a success.    

 During a similar but separate learning phase the seeker moved to each of the locations 10 

times and recorded whether or not each of the three markers remained standing. The results of 

the seeker’s learning are presented in Table 4 (as Sp ). The results from Table 4 were used in 

conjunction with the seeker’s version of the graphical model depicted in Figure 17 representing 

the seeker’s belief system of the hider’s location. The junction tree algorithm was then used by 

the seeker to calculate the marginal probability of X given evidence in the form of standing 

markers. The seeker then searched in the area with maximal marginal probability. Color blob 

detection was used to produce these evidence vectors. A procedure for the hider and the seeker is 

presented above.  
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Figure 18 WowWee’s Rovio robot.  

 WowWee’s Rovio robot was used in these experiments for both the role of the hider and the 

seeker (Figure 18). This robot is a wheeled robot with mobility over smooth flat surfaces. The 

robot’s camera is a 640 by 480 pixel webcam mounted on the top of the robot’s extendable neck. 

Communication with the robot is accomplished via the robot’s wireless network card. The Rovio 

comes with a docking station and infrared beacon easing the robot’s navigation task back to the 

docking station.  

 We ran twenty trials using the hide and seek experimental procedure. The hider randomly 

selected a hiding location, produced the false communication, and then moved to the hiding 

location. The seeker recognized the signal, produced the evidence vector, determined the best 

location to search, and finally moved to that location. We found that the deception worked in 75 

percent of the trials (15 of 20) and failed in 5 of the 20 trials. Each of these 5 failures resulted 

from the hider’s inability to knock over the correct markers to produce the desired deceptive 

communication. In two of these cases the hider attempted to signal that it was in the center 

location by knocking over the red marker, but missed knocking over any markers. In the 

remaining three cases, the hider accidentally knocked over a marker which signaled its location. 
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Overall, the hider produced the incorrect signal in 7 of the 20 trials. Two of the incorrect signals, 

simply because of chance, did not impact the deception.  

 Overall, the experiment demonstrated the learning and use of deception signals in a noisy 

environment on a real robot. Moreover, the results are a preliminary indication that the 

techniques and algorithms described in this paper can be fruitfully used to produce deceptive 

behavior in a robot.  

6. The Ethical Implications of Deceptive Robots  
One might question the intent behind creating deceptive robots in the first place. While 

obviously there is utility in military situations, as deception has been used to advantage there 

throughout recorded history, it is entirely possible that the tools and techniques used to 

understand both when a robot should deceive and the methods to accomplish such deception 

could conceivably be used for nefarious purposes. 

 Our laboratory has spent considerable effort in exploring and understanding many of the 

ethical quandaries associated with the effects of robots and society, e.g., (Arkin 2009, Arkin 

2008). We assume that techniques for deception can and will be further developed in the future 

and this research serves as a stake in the ground, indicating the possibility of creating such a 

potentially unethical capability in robotic systems. As a result, we strongly encourage discussion 

about the appropriateness of this and other related areas of robot ethics by the appropriate 

communities  (e.g., Euron 2007) and relevant professional societies, to determine what, if any, 

regulations or guidelines should constrain the designers of these systems. It is crucial that these 

considerations be done proactively rather than reactively in order to ensure that these creations 

are consistent with the overall expectations and well-being of society.    
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7. Summary and Conclusions  
This article arguably represents the first detailed examination of robot deception. Our exploration 

of the topic began with a working definition borrowed from biology. We used this definition and 

the interdependence theory framework presented in [6] to reason about, develop, and test 

algorithms which we believe will allow a robot to recognize when a situation warrants the use of 

deception and how a deceiver can and should select a false communication. Our results show 

that: 

1) a situation’s location in interdependence space can be used to determine if a robot 

or agent should act deceptively; 

2) a deceiver’s knowledge about the mark can aid in determining which false 

communication the deceiver should use; and 

3) learned communications can be used as deceptive signals by a robot.  

We have also discussed some of the ethical implications related to the creation of robots capable 

of deception.  

 The algorithms presented herein assume that outcome matrices representing the interactions 

faced by the robot can be created. Previous work serves as evidence that outcome matrices 

reflecting these situations can indeed be created [1]. Our algorithm for acting deceptively also 

assumes that the deceiver has a model of the mark. Our results have shown that the information 

within the deceiver’s model of the mark is an important factor in determining the deception’s 

success or failure. We did not explore the implication of partner modeling on the part of the 

mark.  

 Our experiments were developed to examine the algorithms and their related underpinnings. 

As such, they do not represent the final word on robots and deception. It is our hope that other 
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researchers will continue to explore this topic. We are currently working on a software release to 

promote such work. With respect to our algorithm for determining if a situation warrants 

deception, we feel that psychologically grounded experimentation is necessary to determine the 

correlation between situations our algorithm selects as warranting deception and a random 

human subject population. Moreover, while our results linking the success of deception to one’s 

knowledge of the mark may appear trivial, these results are critical in that they conceptually and 

empirically link theory mind to the use and success of deception.     

 This research highlights and reinforces the role that theory of mind plays in deception. The 

acting deceptively algorithm was developed around the notion that the deceiver uses a model of 

the mark to decide how to deceive. Moreover, we have intentionally used a broad definition of 

deception in the hope of applying our results as generally as possible. While some of the 

mechanisms and representations, such as the structure of the Bayesian network, used in the 

experiments were tied to a particular problem, for the most part, this work stands as a generally 

applicable computational foundation for understanding the phenomena of deception.  

 Research exploring the use of deception by robots is potentially important for several 

different application areas. Military applications are an obvious possibility. Less obvious 

applications could possibly aid a robot’s management as situations within assistive or search and 

rescue. A search and rescue robot may need to deceive in order to calm or receive cooperation 

from a panicking victim. Socially assistive robots are expected to provide patients in a healthcare 

setting with personalized care. Generally, one would not expect the goals of a robot trying to 

help to be in conflict with a patient. But there are cases in which this does happen. Again, 

patients suffering from acute trauma may need to be deceived in order to receive cooperation. 

Overall, for many social robotics and multi-robotics application areas the use of deception by a 
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robot may be rarely used, but nonetheless an important tool in the robot’s interactive arsenal, just 

as it has been with intelligent systems throughout the animal kingdom. 
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