
  

  

Abstract—This article explores the possibility of developing 
robot control software capable of discerning when and if a 
robot should deceive. Exploration of this problem is critical for 
developing robots with deception capabilities and may lend 
valuable insight into the phenomena of deception itself. In this 
paper we explore deception from an interdependence/game 
theoretic perspective. Further, we develop and experimentally 
investigate an algorithm capable of indicating whether or not a 
particular social situation warrants deception on the part of the 
robot. Our qualitative and quantitative results provide evidence 
that, indeed, our algorithm recognizes situations which justify 
deception and that a robot capable of discerning these situations 
is better suited to act than one that does not.     

I. INTRODUCTION 

eception has a long and deep history with respect to the 
study of intelligent systems. Biologists and 
psychologists argue that deception is ubiquitous within 

the animal kingdom and represents an evolutionary 
advantage for the deceiver [1]. Primatologists note that the 
use of deception serves as an important potential indicator of 
theory of mind [2] and social intelligence [3]. Researchers in 
these fields point to numerous examples of deception by 
non-human primates. From a roboticist’s perspective, the use 
of deception and the development of strategies for resisting 
being deceived are important topics of study especially with 
respect to the military domain [4].  

But what is deception? McCleskey notes that deception is 
a deliberate action or series of actions brought about for a 
specific purpose [5]. Whaley recognizes that deception often 
includes information provided with the intent of 
manipulating some other individual. Ettinger and Jehiel offer 
a related definition tied to a game theory framework [6]. 
They define deception as, “the process by which actions are 
chosen to manipulate beliefs so as to take advantage of the 
erroneous inferences.” This definition has clear ties to game 
theory but does not relate to many of the passive, 
unintentional examples of deception found in biology. We 
adopt a definition for deception offered by Bond and 
Robinson that encompasses conscious and unconscious, 
intentional and unintentional acts of deception [1]. These 
authors describe deception simply as a false communication 
that tends to benefit the communicator.  
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This paper investigates the use of deception by 
autonomous robots. We focus on the actions, beliefs and 
communication of the deceiver, not the deceived (also 
known as the mark). Specifically, the purpose of this 
research is to develop and investigate an algorithm that 
recognizes social situations justifying the use of deception. 
Recognizing when a robot or artificial agent should deceive 
is a critical question. Robots that deceive too often may be 
judged as unreliable or maleficent. Robots incapable of 
deception, on the other hand, may lack survival skills in 
situations involving conflict.  

Consider the following running example: a valuable 
robotic asset operates at a military base. The base comes 
under attack and is in danger of being overrun. If the robot is 
found by the attackers then they will gain valuable 
information and hardware. The robot must recognize that a 
situation warranting the use of deception exists, then hide, 
and select a deceptive strategy that will reduce the chance 
that it will be found. Throughout this article we will use this 
running example to explain portions of the theoretical 
underpinnings of our approach as well as develop 
experiments based on the example. 

The remainder of this paper begins by first summarizing 
relevant research. Next, we use game theory and 
interdependence theory to reason about the theoretical 
underpinnings of deception and to develop an  algorithm for 
the recognition of situations justifying the use of deception 
by a robot. Finally, we present experiments which investigate 
our algorithm both qualitatively and quantitatively. The 
article concludes with a discussion of these results including 
directions for future research.  

II.  RELATED WORK 

Game theory has been extensively used to explore the 
phenomena of deception. As a branch of applied 
mathematics, game theory focuses on the formal 
consideration of strategic interactions, such as the existence 
of equilibriums and economic applications [7]. Signaling 
games, for example, explore deception by allowing each 
individual to send signals relating to their underlying type. 
Costly versus cost free signaling has been used to determine 
the conditions that foster honesty. Floreano et al. found that 
deceptive communication signals can evolve when 
conditions conducive to these signals are present [8]. These 
researchers used both simulation experiments and real robots 
to explore the conditions necessary for the evolution of 
communication signals. They found that cooperative 
communication readily evolves when robot colonies consist 
of genetically similar individuals. Yet when the robot 
colonies were genetically dissimilar and evolutionary 
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selection of individuals rather then colonies was performed, 
the robots evolved deceptive communication signals, which, 
for example, compelled them to signal that they were near 
food when they were not. Floreano et al.’s work is interesting 
because it demonstrates the ties between biology, evolution, 
and signal communication and does so on a robotic platform.  

Ettinger and Jehiel have recently developed a theory for 
deception based on game theory [6]. Their theory focuses on 
belief manipulation as a means for deception. In game 

theory, an individual’s type, ii Tt ∈ , reflects specific 
characteristics of the individual and is privately known by 
that individual. Game theory then defines a belief as, 

( )ii ttp i − , reflecting individual i's uncertainty about 

individual -i's type [7]. Ettinger and Jehiel demonstrate the 
game theoretical importance of modeling the mark. Still, 
their definition of deception as “the process by which actions 
are chosen to manipulate beliefs so as to take advantage of 
the erroneous inferences” is strongly directed towards game 
theory and their own framework. The question thus remains, 
what role does modeling of the mark play for more general 
definitions of deception such as those offered by Bond and 
Robinson [1].  
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Fig. 1  An example of a dependent situation is depicted on the right and an 
example of an independent situation is depicted on the left. In the 
dependent example the actions of the second individual have a large impact 
on the outcomes received by the first individual. In the example of an 
independent situation, on the other hand, the actions of the second 
individual have no impact on the first individual.      

Deception can also be explored from a social 
psychological perspective. Interdependence theory, a type of 
social exchange theory, is a psychological theory developed 
as a means for understanding and analyzing interpersonal 
situations and interaction [9]. The term interdependence 
specifies the extent to which one individual of a dyad 
influences the other. Interdependence theory is based on the 
claim that people adjust their interactive behavior in 
response to their perception of a social situation’s pattern of 
rewards and costs. Thus, each choice of interactive behavior 
by an individual offers the possibility of specific rewards and 
costs—also known as outcomes—after the interaction. 
Interdependence theory and game theory represent social 
situations computationally as an outcome matrix (Fig. 1). An 
outcome matrix represents a social situation by expressing 

the outcomes afforded to each interacting individual with 
respect to each pair of potential behaviors chosen by the 
individuals. 

III.  REPRESENTING INTERACTIONS 

The outcome matrix is a standard computational 
representation for interaction [9]. It is composed of 
information about the individuals interacting, including their 
identity, the interactive actions they are deliberating over, 
and scalar outcome values representing the reward minus the 
cost, or the outcomes, for each individual. Thus, an outcome 
matrix explicitly represents information that is critical to 
interaction. Typically, the identity of the interacting 
individuals is listed along the dimensions of the matrix. Fig. 
1 depicts an interaction involving two individuals. In this 
paper the term individual is used to indicate a human, a 
social robot, or an agent. We will focus on interaction 
involving two individuals—dyadic interaction. An outcome 
matrix can, however, represent interaction involving more 
than two individuals. The rows and columns of the matrix 
consist of a list of actions available to each individual during 
the interaction. Finally, a scalar outcome is associated with 
each action pair for each individual. Outcomes represent 
unitless changes in the robot, agent, or human’s utility. Thus, 
for example, an outcome of zero reflects the fact that no 
change in the individual’s utility will result from the mutual 
selection of that action pair.    

Because outcome matrices are computational 
representations, it is possible to describe them formally. 
Doing so allows for powerful and general descriptions of 
interaction. The notation presented here draws heavily from 
game theory [7]. A representation of interaction consists of 
1) a finite set N of interacting individuals; 2) for each 

individual Ni ∈  a nonempty set iA  of actions; 3) the utility 
obtained by each individual for each combination of actions 

that could have been selected [10]. Let ii

j Aa ∈  be an 

arbitrary action j from individual i’s set of actions. Let 

( )N

kj aa ,,1
K  denote a combination of actions, one for each 

individual, and let iu  denote individual i’s utility function: 

( ) ℜ→N

kj

i aau ,,1
K  is the utility received by individual i if 

the individuals choose the actions ( )N

kj aa ,,1
K . The term O  

is used to denote an outcome matrix. The superscript -i is 

used to express individual i's partner. Thus, for example, iA  

denotes the action set of individual i and iA−  denotes the 
action set of individual i’s interactive partner. As mentioned 

above, an individual’s type, ii Tt ∈ , is determined prior to 
interaction, reflects specific characteristics of the individual 
and is privately known by that individual. A belief, 

( )ii ttp i − , reflects individual i's uncertainty about individual 

-i's type. 



  

A. Representing Social Situations 

The term interaction describes a discrete event in which 
two or more individuals select interactive behaviors as part 
of a social situation or social environment. Interaction has 
been defined as influence—verbal, physical, or emotional—
by one individual on another [11]. The term situation has 
several definitions. The most apropos for this work is “a 
particular set of circumstances existing in a particular place 
or at a particular time [12].” A social situation, then, 
characterizes the environmental factors, outside of the 
individuals themselves, which influence interactive behavior. 
A social situation is abstract, describing the general pattern 
of outcome values in an interaction. An interaction, on the 
other hand, is concrete with respect to the two or more 
individuals and the social actions available to each 
individual. For example, the prisoner’s dilemma describes a 
particular type of social situation. As such, it can, and has 
been, instantiated in numerous different particular social 
environments ranging from bank robberies to the trenches of 
World War I [13]. Interdependence theorists state that 
interaction is a function of the individuals interacting and of 
the social situation [14]. A dependent situation, for example, 
is a social situation in which each partner’s outcome depends 
on the other partner’s action (Fig. 1 left). An independent 
situation, on the other hand, is a social situation in which 
each partner’s outcome does not depend on the partner’s 
action (Fig. 1 right).  Although a social situation may not 
afford interaction, all interactions occur within some social 
situation. Interdependence theory represents social situations 
involving interpersonal interaction as outcome matrices (see 
Fig. 1 for a graphical depiction of the difference). 

In previous work, we presented a situation analysis 
algorithm that calculated characteristics of the social 
situation or interaction (such as interdependence) when 
presented with an outcome matrix by mapping the situation 
to a location in the interdependence space [15]. The 
interdependence space is a four dimensional space which 
maps the location of all interpersonal social situations [16]. 
A matrix’s location in interdependence space provides 
important information relating to the interaction. The 
interdependence and correspondence dimensions are of 
particular importance for recognizing if a situation warrants 
deception. The interdependence dimension measures the 
extent to which each individual’s outcomes are influenced by 
the other individual’s actions in a situation. In a low 
interdependence situation, for example, each individual’s 
outcomes are relatively independent of the other individual’s 
choice of interactive behavior (left side of Fig. 1 for 
example). A high interdependence situation, on the other 
hand, is a situation in which each individual’s outcomes 
largely depend on the action of the other individual (right 
side of Fig. 1 for example). Correspondence describes the 
extent to which the outcomes of one individual in a situation 
are consistent with the outcomes of the other individual. If 
outcomes correspond then individuals tend to select 
interactive behaviors resulting in mutually rewarding 
outcomes, such as teammates in a game. If outcomes conflict 

then individuals tend to select interactive behaviors resulting 
in mutually costly outcomes, such as opponents in a game. 
Our results showed that by analyzing the interaction, the 
robot could better select interactive actions. 

B. Partner Modeling 

Several researchers have explored how humans develop 
mental models of robots (e.g. [17]). A mental model is a 
term used to describe a person’s concept of how something 
in the world works [18]. We use the term partner model 

(denoted im − ) to describe a robot’s mental model of its 
interactive human partner. We use the term self model 

(denoted im ) to describe the robot’s mental model of itself. 
Again, the superscript -i is used to express individual i's 
partner [7].  

In prior work, Wagner presented an interact-and-update 
algorithm for populating outcome matrices and for creating 
increasingly accurate models of the robot’s interactive 
partner [19]. The interact-and-update algorithm constructed a 
model of the robot’s partner consisting of three types of 

information: 1) a set of partner features ( )i

n

i ff −− ,,1 K ; 2) an 

action model,  iA− ; and 3) a utility function iu − . We use the 

notation ii Am −− .  and ii um −− .  to denote the action model 
and utility function within a partner model. Wagner used 
partner features for partner recognition. Partner features 
allow the robot to recognize the partner in subsequent 
interactions. The partner’s action model contained a list of 
actions available to that individual. The partner’s utility 
function included information about the outcomes obtained 
by the partner when the robot and the partner select a pair of 
actions. Wagner showed that the algorithm could produce 
increasingly accurate partner models which, in turn, resulted 
in accurate outcome matrices. The results were, however, 
limited to static, not dynamic, models of the partner. 

The self model also contains an action model and a utility 
function. The action model contains a list of actions 
available to the robot. Similarly the robot’s utility function 
includes information about the robot’s outcomes. 

IV.  DECEPTIVE INTERACTION 

This paper specificially explores deceptive interaction. 
We investigate deceptive interaction with respect to two 
individuals—the mark and the deceiver. It is important to 
recognize that the deceiver and the mark face different 
problems and have different information. The mark simply 
selects the action that it believes will maximize its own 
outcome, based on all of the information that it has 
accumulated. The deceiver, on the other hand, acts in 
accordance with Bond and Robinson’s definition of 
deception, providing a false communication for its own 
benefit [1]. With respect to our running example, the military 
robot hiding from an enemy, the robot acts as the deceiver—
providing false information as to its whereabouts. The mark 
then is the enemy soldier searching for the robot. We will 
assume henceforth that the deceiver provides false 
communication through the performance of some action in 



  

the environment. The sections that follow begin by 
examining the phenomena of deception, provide a method 
for deciding how to deceive, and finally examine how to 
decide when to deceive.  

A. The Phenomena of Deception 

We can use outcome matrices to reason about deceptive 
practices. Fig. 2 depicts a social situation involving 
deception. The figure depicts the actions that the mark and 
deceiver reason over both abstractly in terms of generic 

actions MMDD aaaa 2121 ,, ,  and concretely in terms of four 

defined actions. The outcome matrix on the left hand side is 
called the true matrix. The true matrix represents the actual 
outcome obtained by both the mark and the deceiver for a 
given action pair. With respect to our running example, the 
true matrix represents the different outcome patterns 
resulting when the robot and enemy select hide and search 
actions. A key facet of deception is the fact that the deceiver 
recognizes the true matrix but the mark does not. In the true 
matrix shown in Fig. 2, the deceiver can reason that only the 

selection of Ma2  by the mark and Da1  by the deceiver or of 
Ma1  by the mark and Da2  by the deceiver will result in the 

desired outcome. Let’s assume that the deceiver has decided 

to select Da1 , to hide in area 1. The deceiver’s task then is to 

provide information or to act in a way that will influence the 

mark to select Ma2  rather than Ma1 . To do this, the deceiver 

must convince the mark that 1) the selection of Ma1  is less 

beneficial then it actually is; 2) the selection of Ma2  is more 

beneficial then is actually is; or 3) both.  
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Fig. 2 The outcome matrices above depict examples related to the 
exploration of deception. The true matrix represents the actual outcomes 
realizable in a situation. The true matrix is recognized by the deceiver, 
which in turn, provides a false communication in the hope of inducing the 
mark to believe that the matrix on the right will result with the 
corresponding action selection. For example, the deceiver recognizes that if 
it hides in area 1 and the mark searches area 1 the result will be low 
outcomes for the deceiver and high outcomes for the mark. It therefore 
attempts to communicate false information that will convince the mark that 
outcome matrix present on the right hand side will actually occur in the 
environment.   

The deceiver accomplishes this task by providing a false 
communication. The communication is false because it 
conveys information related to the outcome obtained by the 
selection of a pair of actions which is not true. The false 

communication results in another matrix which we term the 
induced matrix. It is called the induced matrix because 
deception leads or induces the mark to believe that it is the 
true matrix. Hence, the false communication leads to the 
creation of a false outcome matrix on the part of the mark. In 
our running example, the hiding robot might create muddy 
tracks leading up to the second hiding place while in fact the 
robot is actually in the first hiding place. The right hand side 
of Fig. 2 depicts the matrix induced by the deception.    

The preceding discussion has detailed the basic interactive 
situations underlying deception. Numerous challenges still 
confront the deceiver. The deceiver must be able to decide if  
a situation justifies deception. The deceiver must also be 
capable of developing or selecting a strategy that will 
communicate the right  information to induce the desired 
matrix upon the mark. For instance, a robot capable of 
deceiving the enemy as to its whereabouts must first be 
capable of recognizing that the situation demands deception. 
Otherwise its deception strategies are useless. In the section 
that follows we develop a method that allows the robot to 
determine if deception is necessary.  

B. Deciding when to Deceive 

Recognizing if a situation warrants deception is clearly of 
importance. Although some application domains (such as 
covert operations) might demand a robot which simply 
deceives constantly and many other domains will demand a 
robot which will never deceive, this article focuses on robots 
which will occasionally need to deceive. The problem then 
for the robot, and the purpose of this section, is to determine 
on which occasions the robot should deceive.       

Section III detailed the use of outcome matrices as a 
representation for interaction and social situations. As 
described in that section, social situations represent a generic 
class of interactions. We can then ask what type of social 
situations justifies the use of deception? Our answer to this 
question will be with respect to the dimensions of the 
interdependence space. Recall from Section III that the 
interdependence space is a four dimensional space 
describing all possible social situations. Posed with respect 
to the interdependence space, our task then becomes to 
determine which areas of the space describe situations that 
warrant the use of deception and to develop and test an 
algorithm that tests whether or not a particular interaction 
warrants deception. 

Bond and Robinson’s definition of deception, providing a 
false communication for one’s own benefit, will serve as our 
stating place [1]. With respect to the task of deciding when 
to deceive there are two key conditions in the definition of 
deception. First, the deceiver provides a false 
communication and second that the deceiver receives a 
benefit from this action. The fact that the communication is 
false implies conflict between the deceiver and the mark. If 
the deceiver and the mark had corresponding outcomes a 
true communication could be expected to benefit both 
individuals. The fact that the communication is false 
demonstrates that the deceiver cannot be expected to benefit 
from communications which will aid the mark. In our 



  

running example, a robot that leaves tracks leading to its 
actual hiding position is not deceiving because it is providing 
a true communication. On the other hand, all signals leading 
the mark away from the robot’s hiding place will benefit the 
robot and not benefit the mark. 
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Fig. 3 A two dimensional representation of the interdependence space 
showing the correspondence dimension (X) and the interdependence 
dimension (Y) is presented above. Areas of low interdependence 
(independent outcomes at bottom half of graph) tend not to warrant 
deception because the actions of the mark will have little impact on the 
deceiver. Similarly, areas of correspondence (right portion of the graph) do 
not require false communication as actions beneficial for the mark are also 
beneficial for the deceiver. It is only the top left of the graph, representing 
areas in which the deceiver depends on the actions of the mark and is also 

in conflict with the mark, in which deception is warranted.  

The second condition requires that the deceiver receive a 
benefit from the deception. This condition implies that the 
deceiver’s outcomes are contingent on the actions of the 
mark. With respect to the interdependence space this 
condition states that the deceiver is dependent upon the 
actions of the mark. In other words, this is a situation of high 
interdependence for the deceiver. If this condition were not 
the case, then the deceiver would receive little or no benefit 
from the deception. Again, relating back to our running 
example, if the robot does not gain anything by hiding from 
the soldiers then there is no reason for deception. Fig. 3 
depicts a subspace of the interdependence space with respect 
to the two dimensions critical for deception. 

Given the description above, we can begin to construct an 
algorithm for deciding when to deceive. The aim of the 
algorithm is to determine if a situation warrants the use of 
deception. Fig. 4 presents the algorithm. The algorithm 
draws heavily from our previous work in the area of human-
robot interaction [15,19]. The input to the algorithm is the 
robot’s model of itself and of its interactive partner. These 
models are used in conjunction with Wagner’s interact-and-
update algorithm to produce an outcome matrix O′ , the true 
matrix from Fig. 2 [19]. In the second step, our 
interdependence space mapping algorithm is used to 
calculate the situation’s location in the interdependence 
space [15]. If the situation’s location in the interdependence 

space indicates sufficient interdependence ( 1k>α ) and 

conflict ( 2k<β ) then the situation can be said to warrant 

deception.  

For robots, these conditions warrant necessary but not 
sufficient conditions for deception. Sufficiency also demands 
that the robot is capable of producing a false communication 
which will influence the mark in a manner beneficial to the 
deceiver. In order for this to be the case, the deceiver must 
have the ability to deceive. The presence or absence of the 
ability to deceive rests upon the deceiver’s action set. This 
challenge is discussed further in the conclusion section of 
this paper.  

 
Fig. 4  An algorithm for determining whether or not a situation warrants 
deception. The algorithm takes as input the robot’s self model and partner 
model. It uses the interact-and-update algorithm from [19] to produce an 

expected outcome matrix for the situation, O′ . Next the interdependence 
space algorithm from [15] is used to generate the interdependence space 

dimension values δγβα ,,,  for the situation. Finally, if the value for 

interdependence is greater then some application specific constant 1k  and 

the value for correspondence less than some application specific constant 

2k , the situation warrants deception.   

We hypothesize the algorithm in Fig. 4 will allow a robot 
to recognize when deception is justified. In the following 
section we test this hypothesis, first qualitatively and then 
quantitatively. 

V. EXPERIMENTS 

A. Qualitative Comparison of Situational Conditions for 
Deception 

In this section we qualitatively compare examples of those 
situations which meet the conditions for deception 
expounded in the previous section from those which do not. 
Our goal is to demonstrate that the algorithm in Fig. 4 does 
meet the same situational conditions which intuitively reflect 
those situations that humans use deception. Additionally, we 
strive to show that situations in which humans rarely, if ever, 
use deception are also deemed not to warrant deception by 
our algorithm. The purpose of this analysis is to provide 

Situational Conditions for Deception 
Input : Self Model 

D
m ; Partner Model 

M
m  

Output :  Boolean indicating whether or not the situation 
warrants deception. 
 
1.  Use the interact-and-update algorithm from [19] to 

create O′  from self model 
D

m  and partner model 
M

m  
2.  Use the interdependence space algorithm from [15] to 

calculate the interdependence space dimension values 

δγβα ,,,  from the outcome matrix. 

3.  If 1k>α  and 2k<β  

4.   return  true  
5.  Else 
6. return  false 
7. End if 



  

support for the hypothesis that the algorithm in Fig. 4 does 
relate to the conditions underlying normative interpersonal 
deception. It is challenging, if not impossible, to show 
conclusively outside of a psychological setting that indeed 
our algorithm equates to normal human deception processes. 

 Table I lists 5 different game/interdependence theoretic 
social situations. Each situation was used as the matrix O′  
from the first step of our algorithm for the situational 
conditions for deception. The values for constants were 

66.01 =k  and 33.02 −=k . The rightmost column states 

whether or not the algorithm indicates that the situation 
warrants deception. 

To give an example of how the results were produced 
consider the first situation in the table, the Cooperative 
Situation. The outcome matrix for the situation is used as the 
matrix O′  from the first step of the algorithm. Next, in the 
second step of the algorithm the values for the third column 
of the table are calculated—the interdependence space 
dimension values.  For the Cooperative Situation these 

values are { }0,5.0,0.1,5.0 − . Because 66.0<α  and 

33.0−>β  the algorithm returns false. The following 

additional situations were analyzed:  
• The Cooperative situation describes a social situation in 

which both individuals interact cooperatively in order to 
receive maximal outcomes. Although often encountered in 
normative interpersonal interactions, because the outcomes 
for both individuals correspond these situations seldom 
involve deception. For example, deception among teammates 
is rarely employed as it is counter to the dyad’s mutual goals.  

• In contrast to the Cooperative Situation, the 
Competitive situation does warrant the use of deception. This 
situation is again an example of a k-sum game in which gains 
by one individual are losses for the other individual. Hence, 
deception in interpersonal Competitive situations is common. 
Deception among competitors, for example, is extremely 
common and some games, such as poker, are even founded 
on this principle.  

• The Trust Situation describes a situation in which 
mutual cooperation is in the best interests of both 
individuals. Yet, if one individual does not cooperate then 
mutual non-cooperation is in both individuals best interest. 
Interpersonal examples of Trust Situations could include 
lending a friend money or a valuable asset. This situation 
does not demand deception because again both individuals’ 
mutual interests are aligned.  

• The Prisoner’s Dilemma is perhaps the most extensively 
studied of all social situations [13]. In this situation, both 
individual’s depend upon one another and are also in 
conflict. These conditions make the Prisoner’s Dilemma a 
strong candidate for deception. It is in both individuals best 
interest to influence that action selection of the other 
individual. As detailed by Axelrod, Prisoner’s Dilemma 
situations including military and police enforcement 
situations involving actual interpersonal interaction that often 
do entail deception [13].  

• The Chicken situation is a prototypical social situation 
encountered by people. In this situation each interacting 
individual chooses between safe actions with intermediate 
outcomes or more risky actions with more middling 
outcomes. An example might be the negotiation of a contract 
for a home or some other purchase. Whether or not this 
situation warrants deception depends on the relative outcome 
value of the safe actions compared to the risky actions. If the 
value of the risky action is significantly greater then the 
value of the safe actions then deception will be warranted.    

TABLE I 
SOCIAL SITUATIONS FOR QUALITATIVE COMPARISON 

Social Situations 

Situation Example 
Outcome 
Matrix 

Inter. 
Space 
Loc. 

Situational 
Deception? 

 Cooperative Situation—
Each individual receives 

maximal outcome by 
cooperating with the other 

individual. 

12 
12 

6 
6 

6 
6 

0 
0  

0.5, 1.0,  
-0.5, 0.0 

False 

Competitive Situation—
Each individual gains from 
the other individual’s loss. 

Maximal outcome is 
gained through non-

cooperation. 

6 
6 

12 
0 

0 
12 

6 
6  

0.5, -1.0,  
-0.5, 0.0 

 

True 

Trust Situation—In this 
situation, cooperation is in 
the best interests of each 
individual. If, however, 
one individual suspects 
that the other will not 

cooperate, non-cooperation 
is preferred. 

12 
12 

8 
0 

0 
8 

4 
4  

1.0, 0.2,  
-0.3, 0.0 

False 

Prisoner’s Dilemma 
Situation—Both 

individuals are best off if 
they act non-cooperatively 

and their partner acts 
cooperatively. Cooperation 

and non-cooperation, 
results in intermediate 

outcomes.  

8 
8 

12 
0 

0 
12 

4 
4  

0.8,  
-0.8,  

-0.6, 0.0 

True 

Chicken Situation—Each 
individual chooses 

between safe actions with 
middling outcomes and 

risky actions with extreme 
outcomes. 

8 
8 

12 
4 

4 
12 

0 
0  

1.0, 0.2,  
-0.3, 0.0 

True/False 

Table I and the analysis that followed examined several 
situations and employed our situational conditions for 
deception algorithm to determine if the conditions for 
deception were met. In several situations our algorithm 
indicated that the conditions for deception were met. In 
others, it indicated that these conditions were not met. We 
related these situations back to interpersonal situations 
commonly encountered by people, trying to highlight the 
qualitative reasons that our conditions match situations 
involving people. Overall, this analysis provides preliminary 
evidence that our algorithm does select many of the same 
situations for deception that are selected by people. While 
much more psychologically valid evidence will be required 



  

to strongly confirm this hypothesis, the evidence in this 
section provides some support for our hypothesis. 

B. Quantitative Examination of Situational Conditions 
Warranting Deception 

We now examine the hypothesis that by recognizing 
situations which warrant deception, a robot is afforded 
advantages in terms of the outcome obtained. Specifically, a 
robot that can recognize that a situation warrants deception 
can then choose to deceive and thereby receive more 
outcome overall, than a robot which does not recognize that 
a situation warrants deception. Although this experiment 
does not serve as evidence indicating that our situational 
conditions for deception relate to normative human 
conditions for deception, this experiment does show that 
robots which recognize the need for deception have 
advantages in terms of outcome received when compared to 
robots which do not recognize the need for deception.  

At first glance this experiment may appear trivial given the 
definition of deception. There are, however, several reasons 
that the study is important. First, we do not know the 
magnitude of the benefit resulting from deception. Does the 
capacity to deceive result in significantly greater benefit over 
an individual that does not deceive? Similarly, how often 
must one deceive in order to realize this benefit? Second, we 
do not know how this benefit is affected by unsuccessful 
deception. Is the benefit realized by 80% successful 
deception the same as 100% successful deception? Finally, 
this definition was developed for biological systems. Hence, 
we need to verify that artificial systems such as agents and 
robots will likely realize the same benefit as a biological 
system. In other words, we need to verify that the benefit is 
not something unique to biological systems. While the 
answers to these questions may seem straightforward, they 
are an important starting place given that this paper lays the 
foundation for a largely unexplored area of robotics.   

We conducted a numerical simulation to estimate the 
outcome advantage that would be afforded to a robot that 
used the algorithm in Fig. 4 versus a robot which did not. 
Our numerical simulation of interaction focuses on the 
quantitative results of the algorithms and processes under 
examination and does attempt to simulate aspects of the 
robot, the human, or the environment. As such, this 
technique offers advantages and disadvantages as a means 
for discovery. One advantage of a numerical simulation 
experiment is that a proposed algorithm can be tested on 
thousands of outcome matrices represent thousands of social 
situations. One disadvantage of a numerical simulation 
experiment is that, because it is not tied to a particular robot, 
robot’s actions, human, human’s actions, or environment, the 
results, while extremely general, have not been shown to be 
true for any existent social situation, robot, or human. The 
experiment involved two simulated robots. Both selected 
nominal actions from outcome matrices and received the 
outcomes that resulted, but no actions were performed by 
either individual. 

The numerical simulations involved the creation of 1000 
outcome matrices populated with random values. Artificial 

agents abstractly representing robots select actions based on 
the outcome values within the matrices. These outcome 
matrices were also abstract in the sense that the rewards and 
costs are associated within selecting one of two non-

specified actions. Symbolic placeholders such as 1a  and 2a  

are used in place of actual actions. The actions are grounded 
in the rewards and costs that the robot expects them to 
produce. This is may be the only practical way to examine 
thousands of situations at a time and to draw general 
conclusions about the nature of deception itself outside of 
one or two specified situations. Both the deceiver and the 
mark selected the action which maximized their respective 
outcomes. Once both individuals had selected an action, each 
individual receives the outcome resulting from the action 
pair selected. Fig. 5 depicts the experimental procedure with 
an example.   
 Experimental Procedure  

Create outcome 
matrix populated 

with random values 

Deceiver 
selects 

action which 
maximizes 
outcome  

Control condition procedure 
Deceiver 

A 

A B 

B 

2 17 
18 3 

1 
19 4 

16 M
ar

k 

Deceiver 

A 

A B 

B 

2 17 
18 3 

1 
19 4 

16 M
ar

k 

Mark selects 
action which 
maximizes 
outcome  

Create outcome 
matrix populated 

with random values 

Deceiver selects 
action which 
maximizes 

outcome from 
true matrix 

Test condition procedure 
Deceiver 

A 

A B 

B 

2 17 
18 3 

1 
19 4 

16 M
ar

k 

Deceiver 

A 

A B 

B 

2 1 
18 19 

17 
3 4 

16 M
ar

k 

Mark selects 
action which 
maximizes 

outcome from 
true matrix 

Deceiver 
creates 
induced 
matrix  

Deceiver selects 
action which 
maximizes 

outcome from 
true matrix 

Mark selects 
action which 
maximizes 

outcome from 
induced matrix  

If situation 
warrants 
deception  

If situation does not 
warrant deception  

Deceiver 

A 

A B 

B 

2 17 
18 3 

1 
19 4 

16 M
ar

k 

Example Matrices 

Induced 
Matrix 

Fig. 5  The experimental procedure used is depicted above. In the control 
conditions the random outcome matrices are created and actions are 
selected from these matrices. In the test conditions, if the situation warrants 
deception then deceiver creates an induced matrix which the mark selects 
an action from. Example matrices are depicted on the right hand side of the 
figure.    

Three experimental conditions were examined. The first 
condition was a control condition devoid of deception. In 
this condition both the deceiver and the mark simply selected 
the action which maximized their individual outcomes. This 
condition represents the null hypothesis in that if 
performance in the control is as great or greater then 
performance using our algorithm then the recognition of the 
situational conditions for deception via our algorithm offer 
no benefit to the agent.   

In the two experimental conditions, the deceiver used the 
algorithm from Fig. 4 to determine if the outcome matrix 
warranted deception. If it did, then the deceiver produced an 



  

induced matrix which was used by the mark to select an 
action while the deceiver selected an action based on the true 
matrix. In the perfect deception condition the mark always 
selected an action based on the induced matrix. In the 80% 
deception condition, the mark selected an action from the 
induced matrix 80% of the time and from the true matrix 
20% of the time. The value of the 80% percent deception is 
condition is that it indicates how quickly the benefit of 
deception decreases with an imperfect deception strategy.  

The independent variable was whether or not the simulated 
agent used our algorithm for determining if a situation 
warrants deception and the effectiveness of deception. The 
dependent variable was the amount of outcome received by 
each simulated agent.  

Relating back to our running example, in both the control 
and the test conditions, the deceiver interacts in thousands of 
situations at the military base. Most of these situations do not 
warrant deception and hence the control and test robots act 
the same. Only the robots in the experimental condition 
which are using our algorithm, however, recognize the 
situations that do warrant deception. In this case these 
experimental robots use a deceptive strategy, such as 
creating a false trail to hide, to create an induced matrix that 
influences the behavior of the mark. The deceiving robot 
then selects the best action for itself.    

Fig. 6 presents the results. The recognition and use of 
deception results in significantly more outcome ( 01.0<p  

two-tailed no deception versus perfect deception and no 
deception versus 80% successful deception) then not 
recognizing and using deception. Of the 1000 random 
situations the simulated agents faced, 19.1% met the 
conditions for deception. Hence, all of the difference in 
outcome among the various conditions resulted from better 
action selection on the part of the deceiver in only 191 
situations. This experiment serves as evidence that an 
artificial agent or robot that can recognize and react to 
situations which warrant the use of deception will be much 
better suited to maximize their outcomes and hence their task 
performance.  

Quantitative Examination of Situational Conditions
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Fig. 6  Experimental results from our investigation of the situational 
conditions warranting deception. The perfect deception and 80% successful 
deception conditions result in significantly ( 01.0<p ) more outcome 

than the no deception condition. This result indicates that an agent or robot 
that can recognize and act upon the situational conditions for deception will 
be better able to choose the best action.  

These results are significant in that the demonstrate that 1) 
that a robot or agent that recognizes when to deceive will 
obtain significantly more outcome than a robot that does not 
2) most of the difference results from a small (19.1) 
percentage of situations 3) imperfect deception does impact 
the amount of outcome obtained and 4) Bond and 
Robinson’s biological definition for deception can be used in 
conjunction with an interdependence theory framework to 
develop methods for robot’s to recognize when deception is 
warranted.         

VI.  SUMMARY AND CONCLUSIONS 

This article has presented a novel approach to the 
exploration of deception with respect to artificial systems. 
We have used outcome matrices to describe the phenomena 
of deception and interdependence theory to develop a series 
of conditions which, we argue, afford an artificial system the 
ability to determine if a social situation warrants the use of 
deception. Further, we have presented a qualitative analysis 
of our algorithm to serve as evidence that the algorithm 
selects the similar situations for deception as would be 
selected by a person. In a separate experiment, we showed 
that recognition of situations justifying deception and the use 
of deception resulted in significantly better action selection 
as judged by outcome received.  

Overall, the results of these experiments provide initial 
evidence that interdependence theory might profitably allow 
researchers to determine when a robot should deceive. The 
algorithm assumes that outcome matrices representing the 
situation can be created. Previous work by Wagner support 
this assumption [19]. The algorithm and the quantitative 
results also assume that the robot or agent has the ability to 
act deceptively.  

Developing robots with the ability to deceive is an 
important area of future work. We are currently exploring 
the impact of partner modeling on a robot’s ability to 
deceive. We believe that having an accurate model of the 
robot’s interactive partner will result in significantly better 
ability to deceive. This future work presents algorithms, 
results, and analysis that will expand our understanding of 
both deception for robots and deception in general.      

Potential application areas for robotics research on 
deception vary from military domains, to police, and security 
application areas. Applications may advise human operations 
in which deception is critical for success. This work may 
also lend insight into human uses of deception. For example, 
the algorithm presented in this paper may reflect normative 
human psychological reasoning related to the situational 
conditions for deception. Humans may be attune to situations 
in which they are dependent on the actions of the mark and 
in conflict with the mark. Once these situational conditions 
are recognized, a person likely goes on to consider their 
ability to deceive before enacting a deception.    

The development of a robot capable of deception raises 
numerous ethical concerns. We are aware of these concerns 



  

and are currently in the process of addressing them in a 
longer journal article which presents these results as well as 
others in greater perspective.    
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