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Abstract—Psychologists note that humans regularly use 

categories to simplify and speed up the process of person 

perception [1]. The influence of categorical thinking on 

interpersonal expectations is commonly referred to as a 

stereotype. The ability to bootstrap the process of learning 

about a newly encountered, unknown person is critical for 

robots interacting in complex and dynamic social situations. 

This article contributes a novel cluster-based algorithm that 

allows a robot to create generalized models of its interactive 

partner. These generalized models, or stereotypes, act as a 

source of information for predicting the human’s behavior and 

preferences. We show, in simulation and using real robots, that 

these stereotyped models of the partner can be used to 

bootstrap the robot’s learning about the partner in spite of 

significant error. The results of this work have potential 

implications for social robotics, autonomous agents, and 

possibly psychology. 

I. INTRODUCTION 

Psychologists note that humans regularly use categories to 
simplify and speed the process of person perception [1]. 
Macrae and Bodenhausen suggest that categorical thinking 
influences a human’s evaluations, impressions, and 
recollections of the target [2]. The influence of categorical 
thinking on interpersonal expectations is commonly referred 
to as a stereotype. For better or for worse, stereotypes have a 
profound impact on interpersonal interaction [3]. Information 
processing models of human cognition suggest that the 
formation and use of stereotypes may be critical for quick 
assessment of new interactive partners [2]. From the 
perspective of a roboticist the question then becomes, can the 
use of stereotypes similarly aid the process of modeling a 
robot’s interactive partner? 

This question is potentially critical for robots operating in 
social environments, such as search and rescue. In 
environments such as these the robot must quickly determine 
what role its partner will play in the rescue. Moreover, the 
robot will not have time to learn how to best help its human 
teammate during a rescue by iteratively failing and receiving 
feedback. Rather, the robot will need to bootstrap the process 
of modeling its interactive partner with information from 
prior, similar partners.       

The overarching goal of our work is to create algorithms 
that will allow a robot to interact socially with a wide variety 
of people in a multitude of different social situations. Our 
previous research has explored methods that allow a robot to 
iteratively learn a mental model through successive 
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interaction with its human partner [4]. Our work, as well as 
the research of others [5, 6], has come to the conclusion that 
this process of creating mental models of humans is critical 
for behavior prediction [7], determining if a person or robot is 
being deceptive [8] and whether or not a person is 
trustworthy [9]. 

Towards this goal we have developed a framework for 
social action selection derived from social psychology’s 
interdependence theory [10]. The research presented here 
contributes a key capability for this framework. Specifically, 
the algorithm for cluster-based stereotyping developed here 
provides the information necessary to create the outcome 
matrix representation of interaction. Recently we have 
demonstrated that outcome matrices can be used by a robot or 
agent to reason about deception [8] and about trust [9]. It was 
assumed, but not shown, that these representations of 
interaction could be created from the perceptual information 
available to a robot. The research contributed in this article 
develops a method that enables a robot to create these 
representations of interaction. Further, we believe that the 
approach presented here is the first use of schematic 
stereotyping on a robot [11]. A schematic stereotype is a 
class of stereotype in which the perceiver categorizes the 
partner and uses information about the category to appraise 
the partner.    

The article begins with a review of related work. Next, an 
introduction to our framework for social action selection is 
presented followed by a detailed description of the algorithm 
for cluster-based stereotyping. A description of the different 
types of stereotyping error and their impact on behavior 
prediction follows. We conclude with a discussion of the 
experimental methods used, the experiments conducted, and 
the results of those experiments. 

II. RELATED WORK 

Stereotypes and stereotyping have long been a topic of 
investigation for psychologists [12]. Schneider provides a 
good review of the existing work [1]. Numerous definitions 
of the term stereotype exist. Edwards defines a stereotype as 
a perceptual stimulus which arouses standardized 
preconceptions that, in turn, influence one’s response to the 
stimulus [13]. Smith and Zarate describes three general 
classes of stereotype models: attribute-based, schematic-
based, and exemplars [11].   

With respect to computer science, the inclusion of 
techniques for stereotyping is not new. Human Computer 
Interaction (HCI) researchers have long used categories and 
stereotypes of users to influence aspects of user interface 
design [14, 15]. The multi-agent systems community has also 
explored the use of stereotypes. Ballim and Wilks use 
stereotypes to generate belief models of agents [16]. 
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Denzinger and Hamdan develop a system by which an agent 
is tentatively stereotyped, then, after interacting with the 
target for a period of time, stereotype switching may occur 
[17]. Their results indicate that the system performs well 
regardless of the number and quality of stereotypes. Burnett 
uses stereotypes to gauge an agent’s trustworthiness [18].  

Investigations of stereotyping with respect to robots are 
comparatively scarce. Fong et al. used predefined categories 
of users in conjunction with a human-robot collaboration task 
[19]. These categories influenced the robot’s dialogue, 
actions, the information presented to the human, and the 
types of control afforded to the user. Duffy presents a 
framework for social embodiment in mobile autonomous 
systems [20]. His framework includes methods for 
representing and reasoning about stereotypes. He notes that 
stereotypes serve the purpose of bootstrapping the evaluation 
of another agent and that the perceptual features of the agent 
being stereotyped are an important representational 
consideration.   

III. PARTNER MODELING 

The outcome matrix (fig. 1) is a standard computational 
representation for interaction [21]. The term interaction 
describes a discrete event in which two or more individuals 
select interactive behaviors as part of a social situation or 
social environment. The term individual is used to indicate a 
human, a social robot, or an agent. We focus on interaction 
involving two individuals—dyadic interaction. 

Because outcome matrices are computational 
representations, it is possible to describe them formally. A 
representation of interaction consists of 1) a finite set N of 
interacting individuals; 2) for each individual     a 

nonempty set     of actions; 3) the utility obtained by each 
individual for each combination of actions that could have 

been selected [21]. Let    
     be an arbitrary action j from 

individual i’s set of actions. Let (  
      

 ) denote a 

combination of actions, one for each individual, and let 
i

u  

denote individual i’s utility function:   (  
      

 )    is 

the utility received by individual i if the individuals choose 

the actions (  
      

 ).  

A mental model is a term used to describe a person’s 
concept of how something in the world works [22]. We use 

the term partner model (denoted    ) to describe a robot’s 
mental model of its interactive human partner. We use the 

term self model (denoted   ) to describe the robot’s mental 
model of itself. The superscript -i is used to express 
individual i's partner [21].  

To create outcome matrices a source of information must 
exist which can populate the matrix representation. The 
partner model and the self model serve this purpose. Further, 
the information needs of the outcome matrix representation 
can inform us as to how to construct the partner model. 
Thus, our partner model contains three types of information: 

1) a set of partner features (  
       

  ); 2) an action model, 

   ; and 3) a utility function    . Partner features are 
perceptual features used for partner recognition. These 
features allow the robot to recognize the person in 
subsequent interactions. The action model contains a list of 

actions available to that individual. The utility function 
includes information about the outcomes obtained by that 
individual when the robot and the human select a pair of 
actions. Information about the partner’s beliefs, knowledge, 
personality, etc. could also conceivably be included in these 
models but were not included in the research described here.  

 
Figure 1.   An example outcome matrix is depicted above. This outcome 

matrix represents a coordination game in which the robot and the human 

only receive positive outcome if they select complimentary objects. 

Like the partner model, the self model also contains an 
action model and a utility function. The action model in this 
case includes a list of actions available to the robot. 
Similarly the robot’s utility function includes information 
about the robot’s own outcomes. 

The preceding discussion raises an important question: 
how can partner models be compared to one another? For 

example, how close is the partner model,    , that the robot 
learned during several interactions with a human to the 

actual model,     , that the person was using to select 

actions? We address this problem by viewing action models 
and utility functions as sets. The action model is a set of 

actions and a utility function is a set of triplets, 〈         
 〉, containing the action of each individual and a resulting 
utility value. If the contents of a partner model are viewed as 
the elements of a set, then the use of set theoretic measures 
of distance to compare different partner models is possible. 
The Jaccard index,  

  (     )  
|     | |     |

|     |
, (1) 

is one measure of set distance [23]. Utility function 
comparisons were considered to be equal if the actions were 
the same and the outcome values were within 1 of each 
other. Because of its simplicity, this measure of distance was 
used in our implementation of the create stereotypes 
algorithm presented below.   

But how does a robot learn a partner model? Perhaps the 
most simplistic method for learning a model of a partner is to 
just interact with the person, observe their features and action 
selections, and store this information in the partner model. 
We have shown in previous work that a robot could 
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eventually learn a model of its interactive partner, assuming 
that the partner’s model was static [4].    

IV. STEREOTYPED PARTNER MODELS 

With respect to this framework, a stereotype is a type of 
generalized partner model used to represent a collection or 
category of individual partner models. Thus, the creation of 
stereotypes requires the computation of these generalized 
partner models. Moreover, to be useful, techniques must be 
developed that allow for matching of a new interactive 
partner’s perceptual features to an existing stereotype. 
Stereotype creation is therefore a two phase process. First, 
partner models are clustered with the centroids of the 
clusters becoming the partner model stereotype. Next, using 
the cluster centroids as data, a mapping from partner features 
to the stereotypes is learned. Our implementation utilizes 
agglomerative clustering for the first phase and C4.5 
decision trees for the second phase. The following section 
details the stereotype creation process. 

A. Creating Stereotypes 

The create stereotypes algorithm (fig. 2 top) takes as 
input a new partner model. This input is optional. The 
algorithm can also be run on the robot’s existing history of 
partner models (termed the model space). Individual partner 
models are learned by successively interacting with an 
individual and updating a model with the results from the 
interaction.  

Initially the robot has no partner models at all in its model 
space. The robot seeds its model space with a model of 
itself, its self model. Conceptually, this act of seeding with 
the self model allows the robot to equate its partner’s actions 
and preferences to its own actions and preferences. The 
software that we created to use the algorithm is capable of 
saving any partner models that the robot learned as serialized 
data. Hence, because the robot could always load its 
previously saved partner models, seeding of the model space 
was only necessary at the beginning of an experiment. 

Once a model of a new partner has been learned, the first 
step of the algorithm adds the new model to the model 
space. Next, in lines 2 and 3, each model in the space is 
assigned to a unique cluster. Lines 4 and 5 perform 
agglomerative clustering, iterating through each cluster and, 
if the clusters meet a predetermined distance threshold, 
merging them. Equation (1) from section III is used to 
determine the distance between two clusters. The cluster 
centroids that remain after step four are stereotypes, denoted 
       . This list of stereotype models is saved by the 
robot.  

In the next phase, the C4.5 algorithm is used to create a 
mapping, denoted  , from the partner’s perceptual features 
to stereotypes. Line 7 from fig. 2 (top) creates data for the 
learning algorithm by pairing each model’s perceptual 
features to its associated stereotype. In the final steps, this 
data is used to train a classifier mapping partner features to 
the stereotyped model.  

The create stereotypes algorithm makes two important 
assumptions. First, it assumes the existence of a distance 
function capable of measuring the difference between two 
partner models. Equation (1) was presented as a method for 

measuring partner model distance (see section III). If, 
however, additional information (such as the partner’s 
beliefs, motivations, goals, etc.) is added to the partner 
model, then a more elaborate distance function may be 
necessary. Second, the algorithm assumes that partner 
models can be merged to create new partner models. In order 
to merge a partner model one must merge the components of 
the partner model. For this work, that meant merging the 
action models and utility functions. Action models were 
merged by adding an individual action to the combined 
model only if the action was included in at least half of the 
data that composed the merged model. For example, if the 
merged model was created from ten individual partner 
models and an action existed in four of the models then it 
was not included in the merged model. If, however, the 
action existed in five of the models then it was included in 
the merged model. Similarly, merged utility values were 
derived from the average utility value of the composition 
utility functions. 

 

B. Matching To Stereotypes 

When perceiving a new interactive partner, the robot 
matches the new person’s perceptual features to an existing 
stereotype. This process begins by converting the partner’s 
features into an instance of data for the classifier and then 
using the classifier to select the correct model (fig. 2 
bottom). Line 1 from fig. 2 (bottom) uses the partner’s 
features to create an instance for classification. The result is 
matched to a stereotype (lines 2 and 3). 

Figure 2.    Algorithms for creating stereotypes and for matching newly 

perceived individuals to existing stereotypes. The create stereotypes 

algorithm operates by clustering partner models and then constructing a 

classifier mapping a partner’s perceptual features to a stereotype. The 

match to stereotype algorithm simply uses the classifier to match the 

partner’s perceptual features to the closest stereotype 
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In previous work we found that use of the cluster-based 
algorithm for stereotyping required 5.75 fewer interactions 
to obtain an 80 percent rate of correct partner action 
prediction when compared to relearning a new model for 
each individual [10]. This previous research did not, 
however, consider the impact of stereotyping errors. 

V. STEREOTYPING ERRORS 

This section investigates the different types of error that 
can occur when a robot uses stereotypes to predict the 
behavior of a specific individual. It is important to examine 
the types and impact of stereotyping errors. Because the 
robot uses these models to predict and react to its human 
partner, errors might cause a robot to interact in a manner 
that is extremely detrimental to the human. Consider, as a 
running example, a robot tasked with learning a stereotype 
of a firefighter. In this case, the partner features might 
include perceptual information related to the person’s 
uniform, appearance, height, weight, etc. The learned partner 
model would contain information related to the person’s 
preferred actions, such as putting out fires, rescuing disaster 
victims, etc. Errors could potentially cause a robot to not 
identify a person as a firefighter, possibly leading the robot 
to not provide necessary information or to select the 
incorrect action.   

Perception is one source of error. The robot may 
misperceive the features that describe the partner’s 
appearance or, alternatively, it may misperceive the 
information contained within the partner model, such as the 
action being performed. For example, if the robot incorrectly 
perceived the firefighter’s brown uniform as blue, this would 
be a partner feature error. Partner feature errors could 
potentially cause the individual to be incorrectly categorized. 
On the other hand, if the robot incorrectly perceives the 
action of putting out a fire as the action of making an arrest, 
this is a perceptual modeling error. In this case, the robot’s 
action model for that particular firefighter would indicate 
that the firefighter makes arrests. Modeling errors could 
potentially cause the robot’s stereotype to be inaccurate with 
respect to the true stereotype.    

Stereotyping error can result from statistical anomalies. 
Ideally, the stereotype model is created from individuals that 
are representative of the category. It is possible, however, 
that the individuals from which the stereotype is created are 
actually outliers with respect to the overall category. Here 
the stereotype created is not representative of the category. 
Consider, for example, a robot that creates a stereotype 
based on models it has learned from interactions with 
firefighters. Rather than put out fires and rescue victims, 
these particular firefighters act as police officers, making 
arrests and writing tickets. Because the robot’s stereotype 
has been created from outliers of the overall category, 
predictions based on the stereotype will be incorrect when 
the robot interacts with a non-outlier member of the 
category.      

Alternatively, the robot may create a stereotype model 
from non-outlier or a mixture of outlier and non-outlier 
individuals. In this case, the stereotype will be representative 
of the overall category. Yet, when using the stereotype to 
predict the behavior of a newly encountered individual the 

robot may then encounter an outlier. These errors occur 
because although the robot’s stereotype is representative of 
the category, the newly encountered individual is an outlier. 
Hence the stereotype does not accurately reflect the new 
individual’s behavior. For example, this error would occur if 
the robot were to create a stereotyped model based on 
actions and utilities of a typical firefighter and were to then 
encounter an individual that is dressed like a firefighter but 
acts like a police officer.        

One final type of error that can occur is an error in 
generalization. The cluster-based algorithm for stereotype 
creation adds actions to the stereotype model if the action 
occurs in more than half of the individual models that 
compose the stereotype. Thus, the stereotype generalizes an 
action to all of the members of a category even if the action 
is only valid for just over half of the individuals. In the worst 
case, just under half of the individuals in the category may 
have an action falsely prescribed to them by the stereotype. 
For example, if the action, “likes to cook”, occurs in 51 
percent of the firefighters used to create the robot’s 
stereotype of a firefighter, then the action will be included in 
the centroid and, therefore, generalized to anyone that 
perceptually resembles a firefighter. Table I lists each type 
of potential stereotyping error and its characteristics.     

TABLE I.  TYPES OF STEREOTYING ERRORS 

Type Name Error Description Experiments 

1  
Partner feature 

error  

Misrecognition of 

partner  
No 

2 Modeling error  

Misrecognition of 

information in partner 

model 

Yes 

3 
Unrepresentative 

stereotype 

Individuals used to 

create stereotype are  

outliers 

No 

4 Outlier error 
Individual encountered 

is an outlier 
Yes 

5 
Generalization 

error 

Unfounded 

generalization 
No 

In general, all of these errors can potentially result in 
faulty action prediction. We argue, however, that some of 
these errors are less likely to be a serious problem for robotic 
stereotyping applications than others. Errors related to 
partner features (type 1 from Table I) may be mitigated by 
the fact that a large amount of perceptual data can be 
collected in relation to a partner’s perceptual features over 
the course of a single interaction. In just 60 seconds, for 
example, the robot can potentially collect 1800 frames of 
visual data related to the partner’s visible features. 
Regardless of the perceptual modality, data collection 
related to partner features can be collected over the entire 
course the interaction. Hence, we argue, that missing and 
incorrect partner features are less likely to be a significant 
source of error for most stereotyping applications. Errors 
related to stereotypes created from outliers (type 3 from 
Table I), we further argue, will not be a significant source of 
error. By description these errors occur only when the 
robot’s stereotype is created from models based on 
interactions with several outliers. Yet outliers, by definition, 
should not be encountered often. Hence, it is not likely that 
the robot will encounter several outliers. Because the 
centroid is created from averaged models, occasional 



  

outliers will not impact performance. Because of space, we 
do not explore generalization errors in this paper.  

In the sections below we examine the two remaining types 
of error, modeling errors (type 2 from Table I) and outlier 
errors (type 4 from Table I), that we believe could be an 
important source of error during social robotics applications 
such as search and rescue. 

VI. EMPIRICAL EVALUATION 

Social psychologists claim that interaction is governed by 

three variables: 1) the first interacting individual; 2) the 

second interacting individuals; and 3) the environment [24]. 

Given our goal of creating a social robot that could interact 

with any person and in a variety of environments, we needed 

an evaluation method that allowed for control of both the 

robot’s interactive partner and the social environment while 

allowing us to observe the behavior produced by the robot.  

For the field of social psychology, experiments often 

involve the use of a controlled environment in which an 

experimental subject interacts with a confederate of the 

experimenter [25]. Often both characteristics of the 

environment or of the confederate serve as independent 

variables that the researcher can manipulate. The behavior of 

the experimental subject, the robot in this case, is generally 

observed and recorded as the dependent variable. These 

types of empirical evaluations tend to be high on internal 

validity, meaning that their results are indicative of a causal 

relationship. Unfortunately, they also tend to be low on 

external validity, meaning that the results from these types 

of experiments do not typically generalize well beyond the 

experimental conditions.  

For social robotics research, experiments that treat the 

robot as an experimental subject and the human that the 

robot interacts with as a confederate of the experimenter 

offer several advantages. It may allow researchers a 

controlled method for determining the causal impact of their 

algorithms on the robot’s social behavior. Hence, the 

researcher may thus be able to first verify the internal 

validity of their techniques before engaging in externally 

valid experiments involving unstructured interaction.     

Like social psychology experiments, experimental data is 

obtained from video recording of interactions with the robot. 

The video is used to record the robot’s actions and 

responses. This video is augmented with data saved from the 

robot’s memory relating to its perception of the partner 

features, objects available for selection, and action 

selections.    

A. Experimental Setup 

A coordination game was used for both the simulation and 

robot experiments. A coordination game is a game-theoretic 

social situation in which both individuals receive maximal 

reward only if they select coordinating actions [21]. Figure 1 

depicts an example of an outcome matrix representing a 

coordination game. In this example, both individuals receive 

an outcome of 10 if they select action pairs (select-goggle, 

select-axe), (select-badge, select-radio), or (select-pills, 

select-mask) and 0 outcome if any other action pair is 

selected.  

The notional scenario for the experiments is a situation in 

which a robot acts as a cooperative assistant to a human. In 

this scenario, the robot must select the best tool to assist its 

human partner. Figure 3 depicts the setup for the robot 

experiments. The robot selects from among the tools to its 

right (blue circle fig 3). The human selects from the three 

tools to the robot’s left (red circle fig. 3). The robot and 

human receive the maximal outcome if and only if they 

select a matching pair of tools. Table II lists all of the tools 

used in these experiments and the groupings of matching 

tools. In order to receive maximal outcome the robot needed 

to predict the tool that the person was going to select and to 

then select the tool that matched.  

 

Figure 3  The experimental setup is depicted above. The objects in the 

blue circle are tools available to the robot in this interaction. The objects in 

red circle are objects that are available to the human in this interaction. The 

green square depicts the area where the human places tools that he or she 

has chosen. No tools have been chosen yet during the depicted interaction. 

TABLE II.  GROUPINGS OF TOOL TYPES  

Type Tools 

1 Extinguisher Axe Flashlight Helmet Goggles 

2 Antiseptic Mask Neckbrace Pills Bandage 

3 Binoculars Radio Handcuffs Badge Batton 

B. Human Confederates 

Laboratory experiments involving controlled human 

behavior are standard in many psychology experiments [8]. 

These experiments typically require that the experimenter’s 

confederate act in a specific manner.   

The robot’s interactive partner dressed and, within the 

limits of the experiment, acted like a firefighter. In both the 

simulation experiments and the robot experiments, the robot 

or agent was capable of perceiving a predefined list of 

features and feature values (Table III). In the simulation 

experiments the values for the features were given to the 

simulated robot. In the robotics experiment, some of the 

values for the features were determined by having the robot 

ask the confederate questions such as “Are you male or 

female?” Others were captured visually. Table III lists those 



  

that were spoken and those that were visual. To generate the 

visual features for the real robotics experiment, the 

confederate had to dress in a Halloween costume (fig. 3). 

Rather than seek the assistance of 30 confederates we used 

false beards, wigs, and differences in attire to create the 

appearance, based on the visual limitations of the robot, of 

30 different individuals. Only one person acted as a 

confederate for the robot experiment. Improvements in 

perception may necessitate the use of different people 

playing the role of a confederate in the near future. The 

person acted like a firefighter by selecting the tools denoted 

as type 1 in Table II. 

TABLE III.  PARTNER FEATURES AND POSSIBLE VALUES 

Feature Name Values 
Verbal or 

Visual? 

Robot 

Exp 

Badge yes, no visual Yes 

Uniform color brown, green, blue visual Yes 

Head Gear yes, no visual Yes 

Head Gear Color black, green, blue visual Yes 

Hair Color black, blonde, red visual Yes 

Beard yes, no visual Yes 

Facial Symmetry 
highly, symmetric, 

asymmetric 
visual No 

Facial Length 
very wide, square, 

long, very long 
visual No 

Skin Color light, dark verbal Yes 

Glasses yes, no verbal Yes 

Age young, old, medium verbal Yes 

Body Type thin, heavy, medium verbal Yes 

Height tall, small, medium verbal Yes 

Gender male, female verbal Yes 

VII. EXPERIMENTS 

A. Simulation Experiment 

 We conducted a numerical simulation to evaluate the 
impact of modeling error (error type 2 from Table I) and 
outlier error (error type 4 from Table I). A numerical 
simulation of interaction focuses on the quantitative results 
of the algorithms and processes under examination and does 
not attempt to simulate aspects of the robot, the human, or 
the environment. As such, this technique offers advantages 
and disadvantages as a means for discovery. One advantage 
of a numerical simulation experiment is that a proposed 
algorithm can potentially be tested on thousands of outcome 
matrices representing thousands of social situations. This 
allows one to evaluate the statistical significance of the 
results. One disadvantage is that, because it is not tied to a 
particular robot, robot’s actions, human, human’s actions, or 
environment, the results, while extremely general, have not 
been shown to be true for any existent social situation, robot, 
or human.  

This experiment simulated the tool selection game 
described in section VI. Confederates of the experimenter 
were simulated by providing the robot with a list of 

perceptual features from Table III representing a nominal 
person. The robot used this information in conjunction with 
the algorithms for creating and matching stereotypes (fig 2.) 
to obtain a stereotyped partner model of the person. This 
partner model was then used to predict the tool that would be 
selected by the simulated person. Based on this prediction 
the robot made its own tool selection. Finally, the simulated 
human selected their tool in accordance with the 
experimental condition and a numerical outcome value was 
awarded.  

The dependent variable in this experiment was the mean 
number of correct coordinations performed by the simulated 
human and the robot. For this scenario, correct 
coordination’s represent a measure of task success. The 
independent variable was the type of error introduced. Four 
different conditions were examined. In the first, baseline 
condition, no error was introduced. In the second condition 
modeling error (type 2 from Table I) was added at a rate of 
50 percent. Modeling error was introduced by giving the 
robot a 50 percent chance of incorrectly perceiving the 
human’s action selection. In the third condition, outlier error 
(type 4 from Table I) was added at a rate of 20 percent. 
Outliers, although perceptually similar to a firefighter, 
consistently selected tools not associated with firefighting 
(types 2 and 3 from Table II). In the final condition, both 
types of errors were introduced at their respective rates. 
Thirty trials of the experiment were run in order to obtain 
statistical significance. A single trial consisted of 4 
interactions in the game with 15 different individuals. These 
experiments were conducted on a standard Dell laptop 
computer. 

 
Figure 4 The results from the simulation experiment are depicted above. 

The blue line (top) depicts the no error condition, the green line (second) 

depicts the outlier condition, the red line (third) the modeling error 

condition, and the purple bottom line the modeling error and outlier error 

condition. 

The results show that the introduction of error in all three 
of the error conditions significantly (      ) impacts the 
robot’s performance when compared to the no error 
condition for all partners after the second partner. We 
hypothesized that modeling error would result in 
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significantly greater error than would outliers. The results, 
however, do not indicate a significant difference in 
performance between the modeling error condition and the 
outlier condition. This may be, in part, due to the fact that 
when the robot encounters an outlier it consistently fails to 
select the correct tool. Over the course of all 30 trials, 
because outliers were randomly selected, the net impact on 
performance is similar to the modeling error condition. Still, 
as will be seen in the next experiment, the impact of an 
outlier on performance manifests itself as a onetime error 
event, whereas modeling error resembles a constant level of 
noise. We further hypothesized that the error related to the 
modeling error condition would generally decrease with 
each new partner. We reasoned that, in spite of an error rate 
of 50 percent, additional interaction with new partners would 
direct the robot’s stereotype centroid towards convergence 
on the true type. The results support this hypothesis. Finally, 
if we define reasonable performance as an average of 3 
correct coordinations out of 4, then results indicate that both 
the modeling error only and outlier conditions obtained a 
reasonable level of performance over the course of the 
experiment.    

B. Robot Experiment 

Robot experiments were conducted on an embodied, 
situated NAO robot to confirm and further investigate the 
results from the simulation experiment. The NAO robot is a 
Humanoid platform with 25 degrees of freedom, integrate 
speech synthesis and recognition capabilities, and a camera.  

The robot experiments utilized the same notational 
scenario already described, namely the tool selection 
coordination task with the robot acting as an assistant to a 
nominal human firefighter. For these experiments the 
experimenter dressed in a firefighter costume which included 
wigs and false beards in order to simulate different 
individuals. The specific features for each individual, such as 
whether or not the person had a beard, were determined at 
random before the experiment was conducted. Moreover, the 
tools available for selection by the robot and the person were 
chosen and placed at random.       

At the beginning of the experiment, the robot searches for 

a face. Once it finds a face it collects the visual partner 

features from Table III. If there are any features that cannot 

be determined, then the robot records these features as 

undetermined. Next, the robot queries the firefighter for the 

verbal partner features. The robot then turns its head to 

determine which tools are available to it and to the 

firefighter. Next, it uses a stereotyped partner model, if one 

exists, to predict which tool the person will select. It uses 

this information to select a tool for itself and verbally states 

its preference. The firefighter then indicates which tool he or 

she has chosen by placing the tool in the central box (fig 3). 

Finally, after noting which tool the firefighter has selected, 

the robot waits for the person to either setup the tools for the 

next interaction or for a new individual to appear.   

 Over the course of the experiment the robot interacted 

with 15 different notional firefighters in four different 

coordination games each. The dependent variable in this 

experiment was the number of correct coordinations. The 

independent variable consisted of two conditions. The first 

condition was a no-error condition in which the firefighter 

always selected the tool matching the firefighter type. The 

second condition, like the simulation, included error in the 

form of outliers. Prior to the experiment outliers were 

selected at random with each partner having a 20 percent 

chance of being labeled an outlier. The result was that 

partners 6, 11, and 14 were selected as outliers.          
 Fig 5 depicts the results from the real robot experiment. In 

contrast to the graph in fig 4, the x-axis in fig 5. indicates the 
interaction number. Hence every 4 interactions represent a 
new partner. There were 60 interactions (15 individuals times 
4 interactions per individual) total. The y-axis indicates the 
cumulative outcome received assuming +1 outcome for a 
correct coordination and -1 outcome for an incorrect 
coordination. A single trial again consisted of 4 interactions 
in the game with 15 different individuals. Only one trial was 
run. Thus, it was not possible to determine the statistical 
significance of the results. Analysis of the data collected 
indicated that 19.4% of the partner features were not 
recognized and another 8.5% were incorrectly recognized.  

 
Figure 5  The results from the robot experiment are depicted above. The 

blue line (top) depicts the no error condition, the green line (bottom) depicts 

the outlier error condition. 

As with the simulation experiment, the robot experiment 

indicates that the robot performs poorly (zero cumulative 

outcome during the first 6-9 interactions) in both conditions 

initially as it learns the stereotypes. In the no error condition, 

once the robot has created the stereotype it consistently picks 

the correct tool. In the outlier condition, the robot’s 

performance matches the no error condition whenever it is 

not interacting with an outlier. The robot encounters its first 

outlier at interaction 24. In this case, for each of the 4 

interactions, the robot incorrectly predicts the human’s 

action selection, resulting in a cumulative outcome for this 

individual of -4. When the robot encounters the second 

outlier (at interaction number 44) it receives an outcome of -

3. The final outlier (interaction 56) results in an overall 

outcome of -2.  
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VIII. CONCLUSION 

This article contributes an algorithm for stereotype 
creation which utilizes cluster centroids as a stereotype 
representation. The create stereotypes algorithm clusters 
individual partner model information to create a stereotyped 
model that the robot can then use during its initial 
interactions with a new, unknown individual. Even though 
our algorithm for cluster-based stereotyping is created from 
well known techniques from machine learning, we believe 
that the overall algorithm, its use to create generalized 
models of people, and its relation to similar methods from 
psychology represent a novel and important area of research. 
In previous work we have shown that use of these 
stereotyped models results in improved model accuracy 
during early interaction with a new partner [10]. The 
research presented here examined the types of errors that can 
impact stereotype creation and usage. The results indicate 
that although the errors examined did impact the robot’s 
performance, only the condition which included both types 
of errors simultaneously resulted in unacceptable 
performance (50 percent incorrect). Moreover, for the 
modeling error condition, performance continued to improve 
throughout the experiment.     

The create stereotypes algorithm assumes that a 
learnable pattern of partner characteristics exists. The 
psychological literature indicates that this is the case and that 
humans regularly use this information to categorize and 
make predictions about their own interactions [1] [2].  

The development of suitable distance measures may be an 
issue moving forward with this research. Ideally the robot’s 
mental model of its human partner will be a rich source of 
information that would allow the robot to make accurate 
predictions about the person’s future behavior. Information 
such as the person’s beliefs, habits, or attitudes could 
conceivably be included in a partner model. It is not readily 
apparent, however, how a distance measure could be 
constructed to include this information.  

Scalability is another challenge. The problems we 
examined consisted of 14 partner features and 15 potential 
actions. It has yet to be determined whether or not the 
techniques presented here will work when hundreds of 
partner features are available and the partner models contain 
hundreds of actions and utilities.  

The research presented here is a small portion of a larger 
effort. To date we have filmed 270 minutes worth of 
experiments associated with different aspects of human-
robot interaction and stereotyping. In addition to firefighters, 
we have created stereotyped models of police officers and 
EMTs. Some of our ongoing experiments examine the use of 
stereotype models as a source of inference about a new 
person and the inclusion of situation specific characteristics 
determining the appropriateness of a stereotype. Future work 
may also explore potential applications of this research in 
the areas of home healthcare and security. 
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