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FAST COULOMB MATRIX CONSTRUCTION VIA COMPRESSING
THE INTERACTIONS BETWEEN CONTINUOUS CHARGE
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Abstract. The continuous fast multipole method (CFMM) is well known for its asymptotically
linear complexity for constructing the Coulomb matrix in quantum chemistry. However, in practice,
CFMM must evaluate a large number of interactions directly, being unable to utilize multipole
expansions for interactions between overlapping continuous charge distributions. Instead of multipole
expansions, we propose a technique for compressing the interactions between charge distributions into
low-rank form, resulting in far fewer interactions that must be computed directly. The technique
is used with an \scrH 2 matrix representation of the electron repulsion integral tensor. Numerical tests
on alkane and protein molecules show that our new method requires 5 to 18 times fewer direct
interactions to be evaluated than in CFMM, leading to essentially an equal reduction in storage or
computation cost.
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1. Introduction. In quantum chemistry, one of the main steps in many methods
is constructing the Coulomb matrix, which can be defined as

(1.1) Jab =
\sum 
c,d

(\phi a\phi b| \phi c\phi d)Dcd,

where D is a density matrix and (\phi a\phi b| \phi c\phi d) denotes an entry of a four-dimensional
electron repulsion integral (ERI) tensor. Each entry of the ERI tensor is defined as

(1.2) (\phi a\phi b| \phi c\phi d) =

\int 
\BbbR 3

\int 
\BbbR 3

\phi a(r1)\phi b(r1)
1

| r1  - r2| 
\phi c(r2)\phi d(r2)dr1dr2,

where \phi a, etc., are known basis functions. In quantum chemical methods where high
accuracy is desired, the standard basis functions are Gaussian-type functions (GTFs)

(1.3) \phi a(r) = (x - xa)
l(y  - ya)

m(z  - za)
ne - \alpha | r - ra| 2 ,

where ra = (xa, ya, za) is the center of the function, \alpha is an ``exponent,"" and (l+m+n)
is the total angular momentum. (In practice, the basis functions are a known linear
combination of GTFs that have the same center and are called contracted GTFs.
This fact does not change the development of this paper, and it will be ignored until
section 5 on numerical experiments.)

In self-consistent field iterations, the Coulomb matrix is constructed repeatedly for
different density matrices while the ERI tensor is fixed. The computational challenge
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in constructing the Coulomb matrix is the fact that the ERIs are expensive to compute
and, for typical numbers of basis functions, the distinct, nonnegligible ERIs are too
numerous to store in memory. The ERI tensor is central to many quantum chemical
methods, and a variety of techniques have been developed to approximate the ERI
tensor to reduce computation and/or storage costs.

From (1.1) and (1.2), constructing the Coulomb matrix involves calculating the
Coulomb potential for a system of continuous charge distributions. Here, \phi a\phi b and
\phi c\phi d are distributions; the latter multiplied by the corresponding charge weight Dcd

is a charge distribution. The discrete case, i.e., the Coulomb potential for a system of
point charges, can be efficiently calculated by the fast multipole method (FMM) [11].
For constructing the Coulomb matrix, the continuous FMM (CFMM) and related
methods have been developed for the case of charge distributions [4, 5, 31, 36, 41,
42]. These methods use the multipole expansion technique from FMM to represent
the interactions between ``well-separated"" distributions in ``compressed"" form. The
evaluation of such interactions is thereby accelerated. The remaining interactions are
evaluated directly.

CFMM, however, is not as efficient as one would hope. For two distributions to
be well-separated, they cannot overlap (to be described precisely in the next section),
due to the use of multipole expansions. For typical problems, a large number of
distributions overlap, and thus the number of interactions that must be evaluated
directly is large [36]. These direct computations dominate the computational cost
of CFMM.

In this paper, instead of multipole expansions, we propose a different technique for
compressing the interactions between distributions. The new technique allows us to
compress far more interactions than could be compressed using multipole expansions,
resulting in far fewer interactions that must be computed directly. The technique
computes low-rank approximations in the form of an interpolative decomposition [6,
13] (to be explained in subsection 3.2.1). It is known that such algebraic techniques for
compressing interactions between point charges can be more efficient (in terms of the
rank of the approximation and the range of applicability) than analytic techniques like
multipole expansions [12]. However, our technique is not purely algebraic. We also
use the knowledge that the interactions are Coulombic to avoid needing to explicitly
form a matrix of all actual interactions before compressing them. Here, the technique
has similarity to proxy surface methods [19, 28, 29, 44] and the kernel-independent
FMM [46, 47].

We use this new compression technique to construct an \scrH 2 matrix representation
[14, 15] (to be explained in section 3) of the ERI tensor. We then use the linear-scaling
matrix-vector multiplication algorithm [15] available for \scrH 2 matrices to efficiently
construct the Coulomb matrix. It is already established that FMM is equivalent
to the fast matrix-vector multiplication for a matrix in \scrH 2 format, where the low-
rank approximations to certain off-diagonal blocks in this format are from multipole
expansions [33, 38, 48]. Similarly, CFMM can be interpreted as a matrix-vector
multiplication. The ERI tensor with elements (\phi a\phi b| \phi c\phi d) can be regarded as a matrix
by folding together its first two dimensions and folding together its last two dimensions
so that (a, b) denotes a matrix row index and (c, d) denotes a matrix column index.
We will refer to this matrix as the ERI matrix. At the same time, the density matrix
can be regarded as a vector. From this viewpoint, the tensor contraction (1.1) can be
regarded as a matrix-vector multiplication. CFMM is equivalent to multiplication by
the ERI matrix in \scrH 2 format, where multipole expansions are used to compress the
interactions between well-separated distributions. In this context, our compression
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method can also be regarded as extending the applicability of \scrH 2 matrix formats to
interactions between distributions rather than just between points.

Overview. The overall algorithm for fast Coulomb matrix construction is as fol-
lows. The first step is to construct an \scrH 2 matrix representation of the ERI matrix
(section 3). To construct the \scrH 2 matrix representation, ERI matrix blocks corre-
sponding to distant Coulomb interactions are compressed into low-rank form. The
naive approach to do this is to construct the ERI matrix blocks to be compressed
and then apply a rank-revealing algebraic decomposition such as the singular value
decomposition. However, forming these matrix blocks is prohibitively expensive and
would lead to a construction cost that is quadratic in the number of distributions.

If the Coulomb interactions were between point charges, then the low-rank ap-
proximations could be generated via a physically motivated analytic technique called
the proxy surface method [19, 28]. The proxy surface method is used to efficiently
compress the interactions between a box of point charges and all other point charges
well-separated from the box. The key feature of the method is that it only needs to
form the intermediate interactions between the box and a constant-sized set of ``proxy
points"" on a surface that encloses the box, which is much cheaper than forming all
the actual interactions. However, in our case, the Coulomb interactions are between
continuous charge distributions that potentially overlap. For this case, we propose a
variant of the proxy surface method where the proxy points are chosen in a different
manner (section 4). We provide a theoretical justification for this new compression
technique. Experimentally, the \scrH 2 matrix construction cost turns out to be nearly
linear in the number of distributions.

This completes the first step of constructing the \scrH 2 matrix representation of the
ERI matrix. The second step is to simply use the established fast matrix-vector mul-
tiplication algorithm for \scrH 2 matrices [15] (where the vector is the vectorized density
matrix) to construct the Coulomb matrix. This multiplication algorithm has linear
computation cost. This cost is still directly related to the number of direct interac-
tions in the \scrH 2 matrix representation, but we have effectively reduced this number
compared to CFMM.

The Coulomb matrix is used in many quantum chemical methods. In the Hartree--
Fock method, each self-consistent field iteration requires computing a Coulomb matrix
from a density matrix and the ERI tensor. The ERI tensor is fixed, and thus the cost
of constructing the \scrH 2 matrix representation of the ERI matrix can be amortized over
all the matrix-vector multiplications in the self-consistent field iterations.

In section 5, results of numerical tests of the above procedures are presented. In
section 2, to further motivate our approach, we show that many interactions that
cannot be compressed by CFMM do indeed have low-rank form.

Related work. Besides CFMM, there have been significant efforts in the past to
develop and use compressed representations of the ERI tensor. Density fitting (e.g.,
[8, 39, 43]) and its variants [2, 9, 22, 21, 30] represent the 4-index ERI tensor as the
contraction of two 3-index tensors. Other decompositions of the 4-index ERI tensor,
called tensor hypercontraction, have also been recently developed [20].

Block low-rank matrix representations have been used elsewhere in quantum
chemistry. Lewis, Calvin, and Valeev [25] use a 1-level matrix representation called
``clustered low-rank"" for the 2-index and 3-index tensors in density fitting. Lu and
Ying [26] use interpolative decompositions to produce approximations of the ERI
tensor in tensor hypercontraction form.
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2. Limitations of CFMM. In FMM and CFMM, space is partitioned into
boxes, and the potential at a point far from a box due to the point charges (FMM) or
charge distributions (CFMM) centered in the box is expressed in terms of a multipole
expansion. In FMM, if two boxes are not adjacent, then the multipole expansion could
be used to compactly describe the pairwise interactions between the point charges
across the two boxes. In CFMM, it is more complicated to determine whether or not
a multipole expansion could be used to approximate the interactions between charge
distributions.

To explain the issue with charge distributions, consider the distribution \phi a\phi b

which is a product of two GTFs. By the Gaussian product rule, \phi a\phi b itself is a GTF
with center along the line joining the centers of \phi a and \phi b. For a distribution \phi , in
general, define its extent \lambda with precision \tau as the radius of the smallest ball centered
at the center of the GTF such that | \phi (r)| is less than \tau outside the ball [31]. Whether
two distributions overlap depends on whether these balls overlap.

Now consider two sets of distributions, \Phi = \{ \varphi i\} being the distributions centered
in a given box and \Theta = \{ \theta j\} being the distributions centered in a nonadjacent box.
Define V\Phi to be the numerical support of \Phi , that is, the convex hull of the balls
corresponding to the distributions in \Phi , and define V\Theta similarly. In this notation,
(\Phi | \Theta ) is a block of the ERI matrix, and each of its entries is an ERI,

(\varphi i| \theta j) =
\int 
V\Phi 

\int 
V\Theta 

\varphi i(r1)
1

| r1  - r2| 
\theta j(r2)dr1dr2, \varphi i \in \Phi , \theta j \in \Theta .

If V\Phi and V\Theta do not overlap, then we can approximate 1/| r1  - r2| by a multipole
expansion,

(\varphi i| \theta j) \approx 
\int 
V\Phi 

\int 
V\Theta 

\varphi i(r1)

\Biggl( 
s\sum 

l=0

l\sum 
m= - l

| r2| lY  - m
l (r2)

Y m
l (r1)

| r1| l+1

\Biggr) 
\theta j(r2)dr1dr2,

where Y m
l (r) is the spherical harmonic function of degree l and order m. Here, the

multipole expansion is of degree s and is centered at the origin which is assumed to
be the center of V\Theta . The above expansion gives an approximation in degenerate form,

(\varphi i| \theta j) \approx 
s\sum 

l=0

l\sum 
m= - l

\biggl( \int 
V\Phi 

Y m
l (r1)

| r1| l+1
\varphi i(r1)dr1

\biggr) \biggl( \int 
V\Theta 

| r2| lY  - m
l (r2)\theta j(r2)dr2

\biggr) 
,

which is equivalent to a rank-(s+ 1)2 approximation of (\Phi | \Theta ).
If V\Phi and V\Theta do overlap, then the above approximation is not possible, since

the multipole expansion of 1/| r1  - r2| diverges when r1 and r2 are equal. In this
situation, computing the interactions between distributions in these two boxes cannot
be accelerated by CFMM, and these interactions must be computed directly. The
distinguishing feature of CFMM compared to FMM is the need to identify sets of
distributions whose numerical supports do not overlap.

An important observation is that even if V\Phi and V\Theta do overlap, the ERI matrix
block (\Phi | \Theta ) may still be numerically low-rank if \Phi and \Theta are distributions centered
in nonadjacent boxes. We simply do not have the analytical apparatus to find these
low-rank approximations. In this paper, a new technique is proposed to find such
approximations.

To illustrate the observation that (\Phi | \Theta ) may be numerically low-rank although
there is no corresponding known degenerate expansion, consider two nonadjacent
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Fig. 2.1. First 300 singular values of K(X,Y ) and (\Phi | \Theta ) for GTFs with different exponents p.
For each p, the corresponding value of the extent \lambda is also shown. Only the ERI block (\Phi | \Theta ) with
p = 10 can be compressed using multipole expansions in CFMM, although (\Phi | \Theta ) in other cases is
also numerically low-rank.

cubical boxes of edge length L = 5 centered at (0, 0, 0) and (2L, 0, 0). For each box,

select 600 GTF distributions of the form (p/\pi )3/2e - p| r - ra| 2 with the same exponent p
and different centers ra randomly distributed in the box. These GTFs represent very
simple ``spherical"" distributions.

As before, denote the two sets of GTFs as \Phi = \{ \varphi i\} and \Theta = \{ \theta j\} . Denote the
center of each distribution \varphi i as xi and the center of each distribution \theta j as yj . Each
entry of the ERI matrix block (\Phi | \Theta ) can be calculated analytically as

(2.1) (\varphi i| \theta j) =
1

| xi  - yj | 
erf

\biggl( \sqrt{} 
p

2
| xi  - yj | 

\biggr) 
, i, j = 1, 2, . . . 600.

Figure 2.1 plots the first 300 singular values of (\Phi | \Theta ) for four different cases,
corresponding to different values of the exponent p in the GTFs, and thus GTFs with

different extents. The extent \lambda =
\sqrt{} 

1
p

\bigl( 
3
2 ln

p
\pi + ln 1

\tau 

\bigr) 
for each value of p is also shown

for each subfigure, assuming the extent precision \tau = 10 - 10.
For comparison, we also plot in each subfigure the singular values of the matrix

which we denote as K(X,Y ), consisting of the entries K(xi, yj) for all pairs of centers
xi and yj , with K(x, y) = 1/| x  - y| . This is the matrix that describes the Coulomb
interactions if we had point charges (instead of distributions) at the location of each
center. Since the two boxes under consideration are nonadjacent, the singular values
of K(X,Y ) decay rapidly, and K(X,Y ) is numerically low-rank. FMM considers
these two sets of point charges to be well separated.
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When p = 10, the extent \lambda of the distributions is small, and (\Phi | \Theta ) and K(X,Y )
have very similar singular values. When p = 1 and p = 0.1, the extent is larger,
and the distributions from the two boxes can overlap. CFMM would consider the
interactions between these two boxes to be near-range in these cases, i.e., interactions
based on multipole expansions cannot be used. However, Figure 2.1 shows that the
singular value decay of (\Phi | \Theta ) and K(X,Y ) is similar for the first 8 or more decades
of singular values. Thus (\Phi | \Theta ) in these cases are also numerically low-rank.

When p = 0.01, the distributions are very diffusive, and the singular value decay
of (\Phi | \Theta ) is even faster than that of K(X,Y ). This odd result turns out to be quite
natural from the viewpoint of kernel functions. With a sufficiently small p, the formula
(2.1), regarded as a kernel function between xi and yj , can be flatter than 1/| xi - yj | for
xi and yj in the two nonadjacent boxes. Heuristically, this flatness usually indicates
that (2.1) can be well approximated by a degenerate expansion with fewer terms than
1/| xi  - yj | , leading to the faster singular value decay of (\Phi | \Theta ) than that of K(X,Y ).

Based on these observations, and unlike CFMM, we will only use the centers of
distributions, rather than both centers and extents, to decide whether an interaction
can be compressed by a low-rank approximation. A challenge is how to efficiently find
such low-rank approximations.

3. \bfscrH \bftwo matrix representation of the ERI matrix. In this section, we estab-
lish notation for representing and constructing the ERI matrix in \scrH 2 format.

3.1. Hierarchical partitioning and ERI matrix blocks. Constructing an
\scrH 2 matrix representation of the ERI matrix starts with a hierarchical partitioning of
the set of distributions, or basis function products \{ \phi a\phi b\} , for the molecular system
and chosen basis set. Like for FMM, the space enclosing all the distributions is par-
titioned recursively and adaptively into cubic boxes until the number of distributions
centered in each finest box is less than a prescribed small constant. This hierarchical
partitioning can be represented by an octree whose nodes correspond to the boxes.
We number the nodes level-by-level from the root to the leaves of the octree. Fig-
ure 3.1 (top part of figure) shows an example of such a partitioning and numbering
for 1-dimensional (1D) space and a perfect binary tree.

Let I denote the set of all distributions. Let Ii denote the set of distributions
with centers in box i and corresponding to node i in the tree. Using this notation,
(Ii| Ij) denotes the block in the ERI matrix corresponding to the Coulomb interactions
between distributions with centers in the ith and jth boxes. The entire ERI matrix
can be denoted as (I| I).

In \scrH 2 matrix representations, an admissibility rule defines whether or not the
interactions between two boxes will be approximated in low-rank form. Specifically
for the representation of an ERI matrix, we define the pair of boxes i and j at the same
level of the tree as an admissible pair if they are separated by at least one other box.
The pair is inadmissible otherwise. We also say that the block (Ii| Ij) is admissible or
inadmissible accordingly.

An \scrH 2 matrix representation of (I| I) consists of two parts: (1) dense inadmissible
blocks defined at the leaf level and (2) compressed admissible blocks (Ii| Ij) at any
level satisfying the condition that (Ii| Ij) is not contained in a larger admissible block,
i.e., i and j are admissible while their parents are not. Figure 3.1 illustrates several
of the above ideas.

3.2. Compression of admissible blocks. Like for FMM and CFMM, a linear
scaling algorithm for \scrH 2 matrix-vector multiplication needs more than just low-rank
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Fig. 3.1. Illustration of a 3-level \scrH 2 matrix representation for distributions centered in 1D
space. Boxes 7--14 are the finest level boxes. Inadmissible blocks are white and admissible blocks are
colored. The final \scrH 2 matrix representation is composed of inadmissible blocks at level 3 and admis-
sible blocks at levels 2 and 3. Some green admissible blocks are not used in the final representation
as they are contained in larger yellow admissible blocks.

representations of admissible blocks. We also need a ``uniform basis"" property and a
``nested basis"" property [14].

3.2.1. Uniform compression at each level. For the uniform basis property,
the low-rank approximation to an admissible block (Ii| Ij) shares the same column
space basis as other admissible blocks that have rows associated with Ii. Similarly, the
approximation shares the same row space basis as other admissible blocks that have
columns associated with Ij . For example, in Figure 3.1, the low-rank approximations
to blocks (I7| I9) and (I7| I10) share the same column space basis.

For a node i, recall Ii is the set of distributions centered in box i. Define Ji as the
set of distributions centered in all the boxes that are admissible with box i and are at
the same level as box i. Then, block (Ii| Ji) is the concatenation of all the admissible
blocks that have rows associated with Ii. For example, in Figure 3.1, block (I7| J7) is
the concatenation of the blocks (I7| I9), . . . , (I7| I14). The low-rank approximations of
these latter blocks need to share the same column space basis.

The uniform basis property can be achieved by constructing the low-rank approx-
imations to all the blocks (Ii| Ij) in (Ii| Ji) from the low-rank approximation to (Ii| Ji).
Let Ui denote the matrix of shared column space basis vectors associated with Ii. To
find Ui, a common approach is to compute a rank-k interpolative decomposition (ID)
[6, 13] of (Ii| Ji),

(3.1) (Ii| Ji) \approx Ui(I
id
i | Ji),

where Ui has k columns, I idi denotes a subset of Ii, and (I idi | Ji) contains k rows of
(Ii| Ji). A purely algebraic way to compute the ID approximation is via the strong
rank-revealing QR (SRRQR) decomposition [13], given a target rank k or the desired
accuracy of the approximation.

For each admissible block (Ii| Ij), the columns of the ID in (3.1) that correspond to
Ij \subset Ji give the approximation (Ii| Ij) \approx Ui(I

id
i | Ij). Similarly, the ID approximation

of (Ij | Jj) gives (Ij | I idi ) \approx Uj(I
id
j | I idi ) based on the fact that I idi \subset Ii \subset Jj . Combining

these two approximations leads to

(3.2) (Ii| Ij) \approx Ui(I
id
i | I idj )UT

j ,

which satisfies the uniform basis property. In other words, the low-rank approximation
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to (Ii| Ij), which is the intersection block of (Ii| Ji) and (Jj | Ij) in the ERI matrix, is
constructed based on ID approximations to (Ii| Ji) and (Ij | Jj) as in (3.1).

An interesting observation is that the approximation (3.2) has the form of a
density fitting (DF) approximation [8, 39, 43] where I idi and I idj would correspond to
the set of ``auxiliary functions"" for Ii and Ij , respectively. DF, however, is applied to
the entire ERI matrix (I| I). Thus, an \scrH 2 matrix representation of the ERI matrix
can also be interpreted as a generalization of DF. This generalization locally and
hierarchically applies DF to certain pairs of subsets of basis function products.

3.2.2. Nested compression between levels. For the nested basis property,
each nonleaf node i with children \{ i1, i2, . . . , i8\} has column space basis matrices
satisfying

(3.3) Ui =

\Biggl( Ui1

. . .
Ui8

\Biggr) 
Ri

for some matrix Ri to be computed. Thus, the basis matrices at parent nodes are
expressed in terms of the basis matrices of their children nodes. The basis matrices
for nonleaf nodes are not formed and can be recovered recursively from quantities at
lower levels of the tree.

As a consequence of the nested basis property, the ID approximation of (Ii| Ji) at
a parent node i can be constructed efficiently by combining the ID approximations
computed at its children nodes as follows. First, partition and approximate (Ii| Ji),
(3.4)

(Ii| Ji) =

\left(   (Ii1 | Ji)
...

(Ii8 | Ji)

\right)   \approx 

\left(   Ui1(I
id
i1
| Ji)

...
Ui8(I

id
i8
| Ji)

\right)   =

\left(   Ui1

. . .

Ui8

\right)   
\left(   (I idi1 | Ji)

...
(I idi8 | Ji)

\right)   .

Then we calculate an ID approximation of the last matrix above as

(3.5)

\left(   (I idi1 | Ji)
...

(I idi8 | Ji)

\right)   \approx Ri(I
id
i | Ji),

where I idi \subset \cup 8
s=1I

id
is

\subset Ii. Lastly, combining (3.4) and (3.5) gives the ID approxima-
tion of (Ii| Ji) as

(Ii| Ji) \approx 

\left(   Ui1

. . .

Ui8

\right)   Ri(I
id
i | Ji) = Ui(I

id
i | Ji),

where Ui is exactly the matrix defined as (3.3) using Ri obtained in (3.5).
The approximated matrix in (3.5) has much fewer rows than (Ii| Ji) and, in fact,

the number of rows is O(1) if ID approximations of (Ii1 | Ji), . . . , (Ii8 | Ji) all have rank
O(1). As a result, this nested approach to compressing (Ii| Ji) for a nonleaf node i is
much cheaper than directly compressing (Ii| Ji).

In fact, Ri computed by the ID approximation in (3.5) can be computed even
more efficiently. Define

\^Ii = \cup is\in \{ children of i\} I
id
is and \^Ji = \cup l\in \scrF i

\cup ls\in \{ children of l\} I
id
ls ,
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where \scrF i is the set of boxes that are admissible with box i and are at the same level
as box i. The components Ui and I idi for the ID approximation of (Ii| Ji) satisfying
the nested basis property (3.3) can be calculated from the ID approximation

(3.6) (\^Ii| \^Ji) \approx Ri(I
id
i | \^Ji),

where Ui is defined as (3.3) using Ri and I idi \subset \^Ii \subset Ii. Readers can refer to [19, 27]
for more details.

As an example, consider (I3| J3) = (I3| I5 \cup I6) in Figure 3.1. At level 3, (I3| J3) is
made up by 8 green blocks, i.e., (I7 \cup I8| I11 \cup I12 \cup I13 \cup I14). With the components
Ui and I idi for nodes at level 3, these green blocks are approximated as

(I3| J3) = (I7 \cup I8| I11 \cup I12 \cup I13 \cup I14)

\approx 
\biggl( 
U7

U8

\biggr) \bigl( 
I id7 \cup I id8 | I id11 \cup I id12 \cup I id13 \cup I id14

\bigr) \left(    
UT
11

UT
12

UT
13

UT
14

\right)    .

To compute the ID approximation of (I3| J3), the block (\^I3| \^J3) to be actually approx-
imated in (3.6) is exactly

\bigl( 
I id7 \cup I id8 | I id11 \cup I id12 \cup I id13 \cup I id14

\bigr) 
in the above equation.

3.3. Fast matrix-vector multiplication. The\scrH 2 matrix representation of the
ERI matrix is constructed from its leaves to the root via the ID approximations in (3.1)
for leaf nodes and in (3.6) for nonleaf nodes. In the representation, all the admissible
blocks (Ii| Ij) are compressed as (3.2) with the basis matrices Ui represented as (3.3),
satisfying the uniform basis property and the nested basis property. Details of the
construction process are to be discussed in subsection 4.5.

Assuming that the rank of the ID approximation in (3.1) or (3.6) for each node is
bounded by a constant r, the fast matrix-vector multiplication algorithm [15] for the
\scrH 2 matrix representation can be used to construct the Coulomb matrix with O(rn)
complexity, where n is the number of distributions.

3.4. Comparison with CFMM. As already mentioned, CFMM is equivalent
to the fast matrix-vector multiplication by the ERI matrix in an \scrH 2 format. The
main difference between this equivalent \scrH 2 format and the one we have described
in this section is that CFMM has a more strict admissibility rule. In CFMM, an
ERI matrix block is admissible (also known as far-field) if the corresponding two sets
of distributions have nonoverlapping numerical supports. The block is inadmissible
(also known as near-field) otherwise. Additionally, CFMM has the same hierarchical
partitioning of I but further splits each Ii into ``branches"" [41] according to the ex-
tents of distributions in Ii. Thus, a leaf-level block (Ii| Ij) that corresponds to two
sets of distributions with overlapping numerical supports is further subdivided into
smaller blocks, some of which can be defined as admissible blocks. Also, CFMM uses
the multipole expansion technique to compress the admissible blocks instead of ID
approximations.

4. Accelerated compression via proxy points. For an ERI matrix, the con-
struction of an \scrH 2 matrix representation is dominated by the cost of the ID approxi-
mation of (Ii| Ji) for leaf nodes i and of (\^Ii| \^Ji) for nonleaf nodes i. These ERI matrix
blocks share the same form (I\ast | J\ast ) where, for some node i, I\ast is a set of distributions
(Ii or \^Ii) centered in box i, and J\ast is a set of distributions (Ji or \^Ji) centered in boxes
that are admissible with box i. In general, the set J\ast is much larger than the set I\ast .
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Fig. 4.1. 2D illustration of I\ast , J\ast , \scrB , and \scrB adj. Each circle around a red point denotes one
distribution in J\ast . The radius of a circle is the extent of a distribution. Distributions in I\ast are not
plotted, but the balls associated with these distributions generally can spread outside \scrB adj.

Fig. 4.2. 2D illustration of the splitting of J\ast (corresponding to Figure 4.1) into Jnear and Jfar,

where Jnear contains all the distributions that overlap with \scrB adj and Jfar = J\ast \setminus Jnear.

Using purely algebraic methods such as SRRQR to compress (I\ast | J\ast ) leads to quadratic
\scrH 2 construction cost, due to needing at least to form and examine every element in
(I\ast | J\ast ). At the same time, the multipole expansion technique used in CFMM cannot
generally be applied here, since I\ast and J\ast can have overlapping numerical supports.

This section introduces a new hybrid analytic-algebraic method to efficiently cal-
culate an ID approximation of (I\ast | J\ast ) while avoiding the evaluation of all the elements
in (I\ast | J\ast ).

4.1. Splitting of \bfitJ \ast . Consider two sets of distributions, I\ast and J\ast , as described
above. Let \scrB denote the box that encloses the centers of distributions in I\ast , and
let \scrB adj denote the union of \scrB and its 26 adjacent boxes of the same size. By the
definition of admissible blocks, all the distributions in J\ast have their centers outside
\scrB adj. A 2-dimensional (2D) example of I\ast , J\ast , \scrB , and \scrB adj is illustrated in Figure 4.1.

We split J\ast into two subsets, Jnear and Jfar, where Jnear contains all the dis-
tributions in J\ast that overlap with \scrB adj and Jfar = J\ast \setminus Jnear. Figure 4.2 illustrates
an example of this splitting. We note that this splitting of J\ast is not related to the
numerical support of I\ast , and distributions in both Jnear and Jfar may overlap with
distributions in I\ast . Since all the distributions in J\ast have bounded extents, Jnear gen-
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erally has O(1) number of distributions, and Jfar can be of size on the order of the
total number of distributions, i.e., O(| I| ). To efficiently compute an ID approxima-
tion of (I\ast | J\ast ), we will consider two parts: (I\ast | Jnear) and (I\ast | Jfar). The former has a
relatively small size; the latter is the critical part that we discuss now.

For the case of point charges rather than charge distributions, methods already
exist for computing low-rank approximations to (I\ast | Jfar) without needing to evaluate
the entire matrix itself (note that Jfar = J\ast for the case of point charges). In the
proxy surface and related methods [19, 28, 44, 47], the points in Jfar are replaced by
a smaller set of proxy points on the surface \partial \scrB adj between the points in I\ast and Jfar.
This does not work for charge distributions because the distributions in I\ast and Jfar
may overlap. One could redefine Jfar as the set of distributions that do not overlap
with those of I\ast , but this would result in a very large set of distributions Jnear which
we are trying to avoid in the first place.

The proxy surface method also may not work when interactions between point
charges are defined by general kernel functions. In this case, a remedy that has been
proposed [29, 46] is to replace the points in Jfar by a set of proxy points on multiple
layers of surfaces between the points in I\ast and Jfar instead of just one layer. However,
the selection of these surfaces and proxy points is completely heuristic, and there is
no guarantee for the effectiveness of this remedy.

For the case of charge distributions, our approach to the low-rank approximation
of (I\ast | Jfar) resembles the above remedy to the proxy surface method using multiple
layers of proxy points but has a solid theoretical foundation. We begin below with a
theoretical motivation for this approach.

4.2. Theoretical motivation. If we imagine each distribution \varphi i in I\ast is a unit
charge distribution, then its induced potential pi(y) in \BbbR 3\setminus \scrB adj is

(4.1) pi(y) =

\int 
\BbbR 3

\varphi i(r)
1

| r  - y| 
dr, y \in \BbbR 3\setminus \scrB adj.

For any \varphi i \in I\ast and \theta j \in Jfar, the entry (\varphi i| \theta j) of (I\ast | Jfar) can be written as

(4.2) (\varphi i| \theta j) =
\int 
\BbbR 3

\int 
\BbbR 3

\varphi i(r1)
1

| r1  - r2| 
\theta j(r2)dr1dr2 =

\int 
\BbbR 3\setminus \scrB adj

pi(r2)\theta j(r2)dr2,

where the numerical support of \theta j is entirely within \BbbR 3\setminus \scrB adj by the definition of Jfar.
For analysis purposes, let U(I id\ast | Jfar) be an ID approximation of (I\ast | Jfar). Each

entry of (I\ast | Jfar) is then approximated as

(\varphi i| \theta j) \approx uT
i (I

id
\ast | \theta j), \varphi i \in I\ast , \theta j \in Jfar,

where uT
i denotes the ith row of U . Substituting (4.2) into the above equation gives

(4.3)

\int 
\BbbR 3\setminus \scrB adj

pi(r2)\theta j(r2)dr2 \approx 
\int 
\BbbR 3\setminus \scrB adj

\bigl( 
uT
i P

id(r2)
\bigr) 
\theta j(r2)dr2,

where P id(y) denotes the vector of potentials pj(y) for all \varphi j \in I id\ast . This rewriting
shows that the ID approximation actually approximates each potential pi(y) in the
domain \BbbR 3\setminus \scrB adj by uT

i P
id(y) which is a linear combination of the potentials due to

the distributions in I id\ast . Define the error of each approximation as

(4.4) ei(y) = pi(y) - uT
i P

id(y), y \in \BbbR 3\setminus \scrB adj, \varphi i \in I\ast .
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Using H\"older's inequality, the elementwise error of the ID approximation in (4.3) can
be bounded as

(4.5)
\bigm| \bigm| (\varphi i| \theta j) - uT

i (I
id
\ast | \theta j)

\bigm| \bigm| \leqslant max
y\in \BbbR 3\setminus \scrB adj

| ei(y)| 
\int 
\BbbR 3\setminus \scrB adj

| \theta j(r2)| dr2.

From this analysis, a good ID approximation U(I id\ast | Jfar) to (I\ast | Jfar) can be found
by seeking U and I id\ast such that every ei(y) defined above is small in the domain
\BbbR 3\setminus \scrB adj. In other words, we seek a subset of the potentials \{ pj(y)\} \varphi j\in I\ast whose linear
combination can well approximate each pi(y) in the domain \BbbR 3\setminus \scrB adj.

To make the problem tractable, instead of considering the approximation to pi(y)
at every y \in \BbbR 3\setminus \scrB adj, we consider it at a finite set of proxy points Yp that lie in
\BbbR 3\setminus \scrB adj. An approximation to pi(y) can be accurate in \BbbR 3\setminus \scrB adj as long as it is
accurate at a small set of properly selected points Yp. Such a choice of Yp will be
discussed in the next subsection.

Let P (y) denote the vector of potentials pi(y) for all \varphi i \in I\ast . Assuming we have
a set of proxy points Yp, then the approximation to P (y) can be computed by using
SRRQR to compute the ID approximation,

(4.6) P (Yp) =

\left(     
p1(Yp)

T

p2(Yp)
T

...
p| I\ast | (Yp)

T

\right)     \approx U

\left(     
pi1(Yp)

T

pi2(Yp)
T

...
pik(Yp)

T

\right)     = UP id(Yp).

The error in the ith row of this approximation is pi(Yp)
T  - uT

i P
id(Yp) and has its norm

bounded by the error threshold specified for SRRQR [13]. Thus, the ID approximation
(4.6) defines an approximation uT

i P
id(y) to each pi(y) with error ei(y) bounded at

Yp. Based on the previous analysis, the resulting U and I id\ast from (4.6) can then be
used for the ID approximation of (I\ast | Jfar). The remaining problem becomes how to
select an effective but small set of proxy points Yp.

4.3. Proxy point selection. We define \scrX to be the smallest cubical domain
that encloses the numerical support of I\ast . In particular, \scrX encloses \scrB and shares the
same center, as illustrated in Figure 4.3. Each potential pi(y) defined in (4.1) can be
further written as

pi(y) =

\int 
\scrX 
\varphi i(r)

1

| r  - y| 
dr, y \in \BbbR 3\setminus \scrB adj.

From this formula, it can be noted that pi(y) is a harmonic function outside \scrX .
As a linear combination of potentials pj(y) for all \varphi j(y) \in I\ast , ei(y) defined in (4.4)
with any uT

i and I id\ast is harmonic outside \scrX . By the maximum principle of harmonic
functions, ei(y) satisfies maxy\in \BbbR 3\setminus \scrX | ei(y)| = maxy\in \partial \scrX | ei(y)| , and thus

(4.7) max
y\in \BbbR 3\setminus \scrB adj

| ei(y)| =

\Biggl\{ 
maxy\in \scrX \setminus \scrB adj | ei(y)| if \scrX \supset \scrB adj

maxy\in \partial \scrB adj | ei(y)| if \scrX \subset \scrB adj
.

As a result, it is sufficient to make ei(y) small in \scrX \setminus \scrB adj (or on \partial \scrB adj) in order to
make ei(y) small in \BbbR 3\setminus \scrB adj. This indicates that we only need to select the proxy
points Yp in \scrX \setminus \scrB adj (or on \partial \scrB adj) for the ID approximation (4.6).

For the case of point charges, \scrX is within \scrB adj, and the proxy points are selected
on \partial \scrB adj. The calculation of U and I id\ast for the ID approximation of (I\ast | Jfar) via (4.6)
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Fig. 4.3. 2D illustration of the selection of proxy points Yp in \scrX \setminus \scrB adj.

is exactly the proxy surface method [19, 28]. In this case, [45] shows that the number
of proxy points needed only depends on the ratio of the radius of \scrB to that of \scrB adj

and is not related to the absolute size of \partial \scrB adj.
For GTF distributions in I\ast (which have exponentially decaying tails), we continue

to expect that only a constant number of proxy points is needed on \partial \scrX (or on \partial \scrB adj

when \scrX \subset \scrB adj). With this idea, the proxy points are chosen heuristically as follows.
If \scrX \subset \scrB adj, we select a fixed number of points uniformly distributed on \partial \scrB adj.
Otherwise, we select multiple layers of evenly spaced cubic surfaces between and
including \partial \scrB adj and \partial \scrX , with a fixed number of proxy points distributed uniformly
on each cubic surface. The number of surfaces is proportional to the ratio of the
distance between \partial \scrX and \partial \scrB adj to the edge length of \scrB . Figure 4.3 gives a 2D
example of the selected proxy points. Such a selection gives O(1) number of proxy
points, and thus the approximated matrix P (Yp) in (4.6) is also of O(1) size.

To be consistent with ERI notation (\cdot | \cdot ), denote P (Yp) from (4.6) as (I\ast | Yp) where
yj \in Yp stands for a point charge at yj , and thus

(\varphi i| yj) = (\varphi i| \delta yj ) =

\int 
\BbbR 3

\varphi i(r)
1

| r  - yj | 
dr = pi(yj), \varphi i \in I\ast , yj \in Yp.

It is important to note that each entry of (I\ast | Yp) above is not an ERI---it is a nuclear
attraction integral and is much cheaper to evaluate than an ERI [18].

4.4. Algorithm for computing the ID of (\bfitI \ast | \bfitJ \ast ). From the above discus-
sion, to construct the ID approximation

(4.8) (I\ast | J\ast ) \approx U(I id\ast | J\ast ),

it is sufficient to compute the components U and I id\ast such that

(I\ast | Jnear) \approx U(I id\ast | Jnear) and (I\ast | Yp) \approx U(I id\ast | Yp).

Using the idea of the randomized ID approximation method [16], the components
U and I id\ast are computed as follows. First, generate two random matrices \Omega 1 and \Omega 2 of
dimension | Jnear| \times | I\ast | and | Yp| \times | I\ast | , respectively, whose entries follow the standard
normal distribution. Multiply (I\ast | Jnear) with \Omega 1 and (I\ast | Yp) with \Omega 2:

A1 = (I\ast | Jnear)\Omega 1 and A1 = (I\ast | Yp)\Omega 2.



FAST COULOMB MATRIX CONSTRUCTION A175

Algorithm 4.1 Efficient ID approximation of (I\ast | J\ast )
Input: I\ast , J\ast , \scrB adj, \scrX .
Output: U and I id\ast for an ID approximation U(I id\ast | J\ast ) to (I\ast | J\ast ).
\bullet Split J\ast into Jnear and Jfar.
\bullet Select proxy points Yp in \scrX \setminus \scrB adj (or on \partial \scrB adj when \scrX \subset \scrB adj).
\bullet Generate random matrices \Omega 1 \in \BbbR | Jnear| \times | I\ast | and \Omega 1 \in \BbbR | Yp| \times | I\ast | .
\bullet Calculate A1 = (I\ast | Jnear)\Omega 1 and A2 = (I\ast | Yp)\Omega 2.

\bullet Normalize the columns of A1 and A2 to obtain \~A1 and \~A2.
\bullet Compute U and I id\ast from an ID approximation of [ \~A1, \~A2] using SRRQR.

Then, normalize each column of A1 and A2 to have unit norm, and denote the normal-
ized matrices as \~A1 and \~A2. Lastly, compute U and I id\ast from the ID approximation,

(4.9) [ \~A1, \~A2] \approx U [ \~A1, \~A2]Iid
\ast ,:,

using SRRQR, where [ \~A1, \~A2]Iid
\ast ,: denotes the subset of rows in [ \~A1, \~A2] computed

by this ID and I id\ast \subset I\ast is associated with the indices of this subset.
The reason for the normalization step is that (I\ast | Jnear) and (I\ast | Yp) can have

different number of columns and also their entries can be of different magnitudes.
As a result, A1 and A2 can have their entries of different magnitudes. If directly
computing an ID approximation of [A1, A2], the obtained U and I id\ast could be biased
and define a better ID approximation to the one of A1 and A2 that has larger entries.

This accelerated ID approximation of (I\ast | J\ast ) is summarized in Algorithm 4.1.
Noting that (I\ast | Jnear) and (I\ast | Yp) only have O(1) number of columns, Algorithm 4.1
can be much faster than the purely algebraic ID approximation using SRRQR alone.
More importantly, applying this compression method in \scrH 2 matrix construction can
reduce the construction cost to nearly linear in the number of distributions.

We numerically demonstrate Algorithm 4.1 as follows. Consider a cube \scrB =
[ - 1

2L,
1
2L]

3 of edge length L = 5 and \scrB adj = [ - 3
2L,

3
2L]

3. Select 600 and 20000 GTF

distributions of the form \{ (p/\pi )3/2e - p| r - ra| 2\} with the same exponent p and different
centers ra randomly distributed in \scrB and [ - 11

2 L, 11
2 L]3\setminus \scrB adj, respectively. Denote the

two sets of GTFs as I\ast and J\ast . To define \scrX , let the extent precision be \tau = 10 - 10.
Two exponents p = 1 and p = 0.1 are tested. Figure 4.4 shows the relative error
of the low-rank approximation of (I\ast | J\ast ) calculated by Algorithm 4.1 for different
choices of the rank. For both values of p, Algorithm 4.1 gives relative errors close
to those of SVD and ID using SRRQR. Meanwhile, the intermediate approximation
of [ \~A1, \~A2] in Algorithm 4.1 has slightly larger relative errors than the obtained ID
approximation of (I\ast | J\ast ). The accuracy of the final approximation can be controlled
by controlling the accuracy of the ID approximation (4.9) computed by SRRQR.

4.5. Summary of the \bfscrH \bftwo method. We refer to the proposed Coulomb ma-
trix construction method (Algorithm 4.2) as the \scrH 2 method. The method consists
of two phases: (1) use the new compression technique to construct an \scrH 2 matrix
representation of the ERI matrix (I| I), and then (2) use the fast \scrH 2 matrix-vector
multiplication algorithm to construct the Coulomb matrix.

Assuming that the ranks of the ID approximations at lines 4 and 10 of Algo-
rithm 4.2 are bounded by a constant r (to be experimentally justified in section 5),
the first phase has O(| I| r2) computation cost, and the second phase has O(| I| r) com-
putation cost. As mentioned in the Introduction, in self-consistent field iterations, a
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Fig. 4.4. Relative error of the low-rank approximations of (I\ast | J\ast ) in the Frobenius norm. Three
methods are used: SVD, ID using SRRQR, and Algorithm 4.1. In addition, the dashed lines show
the relative error of the intermediate approximation (4.9) for [ \~A1, \~A2]. The test problem parameters
are (a) p = 1, \lambda = 4.6, | Jnear| = 1354, | Jfar| = 18646, and 1 layer of proxy points in Yp with 384
points; (b) p = 0.1, \lambda = 13.4, | Jnear| = 8409, | Jfar| = 11591, and 3 layers of proxy points in Yp with
1152 points.

Coulomb matrix is constructed with different density matrices in each iteration while
the ERI matrix is fixed. The relatively expensive cost for constructing the \scrH 2 matrix
representation can be amortized over many matrix-vector multiplications.

The constructed\scrH 2 matrix representation has O(| I| r) storage cost. The represen-
tation stores the following ``necessary"" components for each node i with a nonempty
Ji: (1) I idi , (2) Ui if i is a leaf node, and (3) Ri if i is a nonleaf node. Further, the
representation can either store the following components if line 13 of Algorithm 4.2 is
applied, or compute them when they are needed in the second phase of Algorithm 4.2:
(4) inadmissible blocks (Ii| Ij) for each inadmissible pair of nodes i and j at the leaf
level and (5) skeleton blocks (I idi | I idj ) for each admissible pair of nodes i and j at the
same level whose parent nodes are inadmissible. These latter blocks are associated
with the low-rank approximations (3.2) to the admissible blocks used in the final \scrH 2

matrix representation as exemplified in Figure 3.1.
As will be shown in the numerical tests, the storage cost for the inadmissible

blocks and the skeleton blocks is much larger than the storage required for the other
components in the \scrH 2 matrix representation. If these blocks are to be stored, they
are best stored in dense matrix format, since they do not have enough sparsity to
warrant storage in a sparse matrix format. In addition, storage of these blocks should
be nonredundant, utilizing the 8-way symmetry present in the ERI tensor.

5. Numerical experiments. We test the \scrH 2 method and compare it to CFMM
using two sets of molecular systems. The first is a set of linear alkanes of different
sizes. The second is a set of truncated protein-ligand systems derived from the 1hsg
system in the protein data bank. In this second set, each system consists of a ligand
with its protein environment within a certain radius. Different radii give different sized
systems. Such truncated systems are used in order to make protein-ligand simulations
tractable. See [7] for more information on these systems.

These two sets of systems span an important determinant of CFMM and \scrH 2

method performance. The alkane systems are long and narrow while the 1hsg protein-
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Algorithm 4.2 Construct the Coulomb matrix by the \scrH 2 method

Input: distribution set I, density matrix D.
Output: J = (I| I)D.

Phase 1: Construct an \scrH 2 matrix representation of (I| I)

1: \bullet Hierarchically partition I into subsets \{ Ii\} with L levels.
2: for node i at level L (the leaf level) do
3: \bullet Compute Ui and I idi from the ID approximation of (Ii| Ji) in (3.1) using
4: Algorithm 4.1.
5: end for
6: for k = L - 1, L - 2, . . . , 3 do
7: for node i at level k do
8: \bullet Construct \^Ii and \^Ji according to subsection 3.2.2.
9: \bullet Compute Ri and I idi from the ID approximation of (\^Ii| \^Ji) in (3.6) using

10: Algorithm 4.1.
11: end for
12: end for
13: \bullet (optional, see line 15) Construct inadmissible blocks (Ii| Ij) for each inadmissible

pair of nodes i and j at level L, and skeleton blocks (I idi | I idj ) for each admissible
pair of nodes i and j at the same level whose parent nodes are inadmissible.

Phase 2: Construct the Coulomb matrix

14: \bullet Unfold the density matrix D as a vector.
15: \bullet Apply the\scrH 2 matrix-vector multiplication algorithm to construct J = (I| I)D. If

line 13 is not applied, the inadmissible blocks and skeleton blocks are constructed
when needed in the matrix-vector multiplication.

16: \bullet Fold the vector J as the computed Coulomb matrix.

ligand systems are globular. One may say that they have 1D and 3-dimensional (3D)
``shapes,"" respectively. We thus expect a larger proportion of interactions that can be
compressed in CFMM and the \scrH 2 method for the alkanes than for the 1hsg systems.

Prescreening. In practice, many rows and columns of the ERI matrix are nu-
merically zero. Specifically, the row and column associated with a product \phi a\phi b can
be neglected if | (\phi a\phi b| \phi c\phi d)| \leqslant \delta for any \phi c\phi d. A threshold of \delta = 10 - 10 is used
in our tests. Such numerically zero rows and columns can be identified efficiently as
follows. From the Schwarz inequality | (\phi a\phi b| \phi c\phi d)| \leqslant 

\sqrt{} 
(\phi a\phi b| \phi a\phi b)(\phi c\phi d| \phi c\phi d), a

product \phi a\phi b and its corresponding row and column can be neglected if

(5.1)
\sqrt{} 
(\phi a\phi b| \phi a\phi b) \leqslant 

\delta 

maxc,d
\sqrt{} 

(\phi c\phi d| \phi c\phi d)
,

which only requires evaluating (\phi a\phi b| \phi a\phi b) for each pair of basis functions. This
process is called prescreening of basis function products [17]. Prescreening effectively
reduces the dimension of the ERI matrix. We refer to this reduced dimension as the
``effective dimension.""

Basis set and contracted basis functions. The cc-pVDZ basis set is used
for both sets of molecular systems. Like almost all Gaussian basis sets, the basis
functions in this basis set are contracted GTFs (known linear combinations of GTFs),
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Fig. 5.1. Ratio of the effective ERI matrix dimension to the number of contracted basis func-
tions for two types of molecules of different sizes. This ratio is plotted against the size of the mo-
lecular systems in terms of the number of contracted basis functions. Results for both uncontracted
and contracted ERI matrices are shown.

as mentioned in the Introduction. The product of two contracted GTF basis functions
can be written as (neglecting contraction coefficients)

\phi a\phi b =
\sum 

\chi e\in [\phi a]

\sum 
\chi f\in [\phi b]

\chi e\chi f ,

where [\phi a] denotes the set of ``primitive"" GTFs that make up \phi a. Each ERI matrix
entry (\phi a\phi b| \phi c\phi d) can thus be written as the sum of ERIs with primitive GTFs as

(5.2) (\phi a\phi b| \phi c\phi d) =
\sum 

\chi e\in [\phi a]

\sum 
\chi f\in [\phi b]

\sum 
\chi g\in [\phi c]

\sum 
\chi h\in [\phi d]

(\chi e\chi f | \chi g\chi h).

CFMM and the \scrH 2 method can be applied to either the original contracted ERI
matrix (\phi a\phi b| \phi c\phi d) or the uncontracted ERI matrix (\chi e\chi f | \chi g\chi h). Compared to the
contracted ERI matrix, the uncontracted ERI matrix has larger dimensions, i.e., more
products in \{ \chi e\chi f\} . However, there are also more products in \{ \chi e\chi f\} that can be
prescreened. A more important advantage of using the uncontracted ERI matrix
is that each \chi e\chi f is a primitive GTF, and thus its numerical support can be more
precisely described by a ball than contracted GTFs, which improves the identification
of well-separated interactions in CFMM and the identification of Jnear, Jfar, and \scrX 
for Algorithm 4.1 in \scrH 2 matrix construction.

Figure 5.1 plots the ratio of the effective ERI matrix dimension to the number of
basis functions for molecular systems of different sizes. The x-axis in this and other
figures is the size of the molecular system in terms of the number of contracted basis
functions \{ \phi a\} (roughly 10 basis functions per atom). The figure shows that for our
choice of \delta = 10 - 10, the uncontracted ERI matrix is only about twice the dimension of
the corresponding contracted ERI matrix. For increasing molecular system size, the
effective ERI matrix dimension is expected to be asymptotically linear in the number
of basis functions [18, 37]. This can be observed for the tested alkane molecules and
is expected to be observed for larger 1hsg molecules.

In the following numerical tests, we apply CFMM and the \scrH 2 method to uncon-
tracted and prescreened ERI matrices, i.e., the set of distributions I in Algorithm 4.2
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contains the primitive basis function products obtained by prescreening and uncon-
traction. In practice, especially for basis sets with highly contracted basis functions, it
may be advantageous to work with contracted rather than uncontracted ERI matrices,
which we intend to investigate in future work.

Method settings. In both the \scrH 2 method and CFMM, the extent precision is
set to \tau = 10 - 10. The hierarchical partitioning of the set of distributions is stopped
when each finest box has less than 300 distributions or has edge length less than
1 Bohr.

For the selection of proxy points Yp described in subsection 4.3, when \scrX is within
\scrB adj, only one cubical surface \partial \scrB adj is selected. Otherwise, we select cubical surfaces
evenly spaced between and including \partial \scrB adj and \partial \scrX . The total number of these cubical
surfaces is 3, 5, 7,. . . when the ratio of the distance between \partial \scrX and \partial \scrB adj to the
edge length of \scrB (when rounded up) equals 1, 2, 3,. . ., respectively. Figure 4.3 gives
an example of three selected cubical surfaces when the ratio equals 1. The number of
proxy points selected on each cubical surface is 384, i.e., 8\times 8 uniform grid points on
each face of the cubical surface.

5.1. Total number of direct interactions and rank of the low-rank ap-
proximations. In CFMM, the computation of the interactions that cannot be ac-
celerated by multipole expansions dominates the total computation time. Similarly,
in the \scrH 2 method, the computation of the interactions associated with inadmissible
blocks dominates the computation time. In both cases, these interactions are eval-
uated directly. In this section, we compare the two methods in terms of the total
number of these interactions. For convenience, we also refer to the interactions be-
tween two sets of distributions that are directly evaluated in CFMM as entries of an
inadmissible block, and the interactions between two sets of distributions accelerated
using multipole expansions in CFMM as entries of an admissible block. We follow
[41] in defining admissible and inadmissible blocks in CFMM.

Figure 5.2 plots the total number of entries in the inadmissible and admissible
blocks in the two methods. The main experimental result of this paper is that CFMM
has approximately 5 times more inadmissible block entries (direct interactions) than
the \scrH 2 method for the alkane molecules, and approximately 18 times more for the
1hsg molecules. Thus, the evaluation, multiplication, and storage of inadmissible
blocks in CFMM are expected to be 5 and 18 times more expensive than in the \scrH 2

method for the two types of molecules, respectively. The result shows that the \scrH 2

method has even more advantage over CFMM on globular molecules like 1hsg. The
number of admissible block entries is large, but these interactions are computed very
efficiently (they are not computed explicitly in either method).

The maximum ranks of the low-rank approximations of all the admissible blocks
in each constructed \scrH 2 matrix representation are shown in Figure 5.3. Here, the
results are shown for two values of the relative error threshold, \varepsilon = 10 - 5 and \varepsilon =
10 - 7, which is required for SRRQR in Algorithm 4.1. This threshold affects the
approximation rank and storage required for the admissible blocks in the \scrH 2 matrix
representation. The figure shows that the maximum rank is bounded for problems of
different sizes. This justifies the observation in section 2 that we can simply use the
centers of distributions to decide whether an interaction can be compressed by a low-
rank approximation. With bounded maximum rank, the \scrH 2 method (both phases in
Algorithm 4.2) has computation cost and storage cost that are linear in the effective
dimension of the ERI matrix, as explained in subsection 4.5. The numerical results
below in subsections 5.2 and 5.3 also confirm this linear scaling property.
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Fig. 5.2. Total number of entries in the admissible and inadmissible blocks defined in CFMM
and in the \scrH 2 method for two types of molecules of different sizes. Redundant interactions due to
8-way symmetry in the ERI tensor are not counted.
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Fig. 5.3. Maximum rank of the low-rank approximations of all the admissible blocks in the
constructed \scrH 2 matrix representation for two types of molecules of different sizes.

5.2. \bfscrH \bftwo matrix construction. The first phase of Algorithm 4.2 is the con-
struction of the \scrH 2 matrix representation of an ERI matrix. In this subsection, the
aim is to demonstrate this construction and show how the \scrH 2 matrix storage and
construction execution time vary with increasing problem size. Again, we use two
values of the relative error threshold \varepsilon for the ID approximations.

The storage cost for the \scrH 2 matrix representations is shown in Figure 5.4. Results
are shown for both the case when line 13 in Algorithm 4.2 is applied and the inadmis-
sible blocks and skeleton blocks are stored (full \scrH 2), and the case when line 13 is not
applied and these blocks are not stored (minimal \scrH 2). The high cost of storing the
inadmissible and skeleton blocks is evident (although storage for the skeleton blocks
is much less than the storage for the inadmissible blocks). The results show that the
storage cost is almost linear in the number of basis functions for alkane molecules in
either storage mode. The slightly superlinear cost for the 1hsg molecules is due to



FAST COULOMB MATRIX CONSTRUCTION A181

(a) 1D alkane molecules (b) 3D 1hsg molecules

.

Fig. 5.4. Storage cost for \scrH 2 matrix representations of ERI matrices for two types of molecules
of different sizes. ``Full \scrH 2"" refers to storing both the necessary components and the inadmissible
and skeleton blocks according to subsection 4.5. ``Minimal \scrH 2"" refers to storing only the necessary
components. Reference lines for linear and quadratic scaling with the number of basis functions Nbf

are also shown.

(a) 1D alkane molecules (b) 3D 1hsg molecules

Fig. 5.5. Timings for constructing \scrH 2 matrix representations of ERI matrices for two types
of molecules of different sizes. ``\scrH 2 constr."" refers to the timings for constructing the \scrH 2 matrix
without evaluating the inadmissible and skeleton blocks, i.e., the first phase of Algorithm 4.2 without
line 13. ``Dense blocks in \scrH 2"" refers to the timings for evaluating the inadmissible and skeleton
blocks, i.e., line 13 of Algorithm 4.2. ``Inadm. blocks in CFMM"" refers to the timings for evaluating
the inadmissible blocks in CFMM.

the slightly superlinear growth of the effective dimension of the ERI matrix with the
number of basis functions, as shown earlier in Figure 5.1.

The timings for constructing the \scrH 2 matrix representations are shown in
Figure 5.5. These timings should only be regarded as an indication of relative trends,
as our codes are implemented in MATLAB. (ERIs and nuclear attraction integrals
were computed analytically using recurrence relations implemented in the Simint
package [32] using the C programming language.) For alkane molecules, the con-
struction time is linear in the number of basis functions. For 1hsg molecules, the con-
struction time is slightly superlinear, again because of the slightly superlinear growth
of the effective dimension of the ERI matrix with the number of basis functions.
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The timings for evaluating the inadmissible blocks in CFMM are also shown. As
expected, these timings are much larger than for the \scrH 2 method, since there are far
more entries in these blocks for CFMM as shown earlier in Figure 5.2. Meanwhile,
\scrH 2 matrix construction has similar execution time as evaluating the inadmissible
blocks in CFMM. Since the cost for constructing the \scrH 2 matrix representations can
be amortized by many matrix-vector multiplications (whose cost is to be shown next),
the \scrH 2 method has better overall performance compared to CFMM.

5.3. Coulomb matrix construction. In the second phase of Algorithm 4.2,
the Coulomb matrix for a given density matrix is constructed based on the \scrH 2 matrix
representation of the ERI matrix constructed in the first phase. This second phase
simply involves the fast \scrH 2 matrix-vector multiplication algorithm. The aim of this
subsection is to demonstrate how the execution time of this \scrH 2 matrix-vector multi-
plication algorithm in different settings (storing the inadmissible and skeleton blocks
or computing them dynamically) varies with increasing problem size. In comparison
to CFMM, the improvement in execution time is directly related to the number of
entries in the inadmissible blocks, as shown earlier in Figure 5.2. In this subsection,
we also show the accuracy of the computed Coulomb matrix and demonstrate that
this accuracy can be controlled by the SRRQR threshold, \varepsilon . For each molecule, we
test Coulomb matrix construction with two types of density matrices: (a) randomly
generated symmetric matrices whose entries follow the standard normal distribution
and (b) a density matrix obtained after 10 self-consistent field (SCF) iterations of the
Hartree--Fock method.

Figure 5.6 plots the relative errors in the constructed Coulomb matrices, where
the ``exact"" Coulomb matrices are calculated directly. As before, we test two values of
the relative error threshold \varepsilon used for the ID approximations. The results show that
the relative error in the Coulomb matrices is consistent across the different types of
molecules and molecule sizes. More specifically, the relative error is close to the value
of the threshold \varepsilon for random density matrices and is one order of magnitude smaller
than the value of the threshold \varepsilon for density matrices generated by SCF iterations.

Figure 5.7 plots the timings for the \scrH 2 matrix-vector multiplication used to con-
struct the Coulomb matrix for the two types of molecules of different sizes. Here,
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Fig. 5.6. Relative error (in the Frobenius norm) of the Coulomb matrix constructed by the \scrH 2

method for two types of molecules of different sizes. For random density matrices, the results are
the average of 5 independent tests.
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(a) 1D alkane molecules (b) 3D 1hsg molecules

Fig. 5.7. Timings for constructing Coulomb matrices by the \scrH 2 method where inadmissible and
skeleton blocks are dynamically calculated when needed (the second phase of Algorithm 4.2 with line
13 not applied). The timing is also broken down into the portion for multiplying by admissible blocks
and by inadmissible blocks. For comparison, the timings for the multiplications with inadmissible
blocks in CFMM are also shown. The timings are the average of 5 independent tests.

Fig. 5.8. Timings for constructing Coulomb matrices for alkane molecules by the \scrH 2 method
where inadmissible and skeleton blocks have been precomputed and stored (the second phase of Algo-
rithm 4.2 with line 13 applied). The timings are also broken down into the portion for multiplying
by admissible blocks and by inadmissible blocks. The timings are the average of 5 independent tests.

the ERIs in the inadmissible and skeleton blocks are dynamically calculated when
needed during the matrix-vector multiplication. Just like for \scrH 2 matrix construction,
the matrix-vector multiplication for a matrix in \scrH 2 format is almost linear in the
effective dimension of the ERI matrix (which is slightly superlinear in the number of
basis function in the case of 1hsg).

The figure also shows the timings broken down into the portion for multiplying
by admissible blocks and by inadmissible blocks. It is evident that forming and
multiplying by the inadmissible blocks, i.e., computing the direct interactions, is the
bottleneck, even after the reduction in the total size of these blocks due to the \scrH 2

method compared to CFMM.
Figure 5.8 again plots the timings for Coulomb matrix construction for molecules

of different sizes, but this time we assume that the inadmissible and skeleton blocks
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have been precomputed and stored. Due to memory limitations, only the alkane mol-
ecules are tested. In this case, the multiplication of admissible blocks and that of
inadmissible blocks require a similar amount of time. With the \scrH 2 method, multiply-
ing by the inadmissible blocks when these blocks have been precomputed is no longer
a clear bottleneck.

6. Conclusion. In this paper, a new technique is proposed to efficiently com-
press the interactions between continuous charge distributions. Using this technique,
an \scrH 2 matrix representation of the ERI matrix is constructed, which is then used to
construct the Coulomb matrix. The new technique can also be viewed as extending
the capability of \scrH 2 matrices to represent the interactions between continuous charge
distributions, at least for charge distributions from Gaussian basis sets.

Our approach to constructing the Coulomb matrix has cost that appears to be
nearly linear in the effective ERI matrix dimension. The effective ERI matrix dimen-
sion has been argued to be asymptotically linear (rather than quadratic) with the
number of basis functions [18].

More importantly, compared to CFMM, far fewer interactions need to be directly
computed. The promise of this approach is demonstrated using a common Gaussian
basis set on alkane and globular molecules of different sizes. In general, basis sets
using compactly supported or fast-decaying basis functions could be used.

The new compression technique and the \scrH 2 matrix approach can be extended
to accelerate the tensor contractions in DF [8, 35, 39, 43] and, in general, quantum
chemical methods that already use CFMM. In particular, the approach could be
extended to calculate Coulomb energy gradients [3, 34, 40] and potentials for periodic
systems [23, 24].

To further improve the proposed compression technique and reduce the \scrH 2 matrix
construction cost, it is possible to apply heuristic algebraic compression methods, such
as sampling-based methods [1, 10], to accelerate the intermediate ID approximation
in Algorithm 4.1. Finally, it is also possible to use an even weaker admissibility rule
than that used in this paper for \scrH 2 matrix representations to try to compress even
more interactions in the ERI matrix.
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