THE JOURNAL OF CHEMICAL PHYSICS 142, 104103 (2015)

® CrossMark
¢

Parallel scalability of Hartree—Fock calculations
Edmond Chow,"? Xing Liu," Mikhail Smelyanskiy,? and Jeff R. Hammond?

1School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta,

Georgia 30332-0765, USA

2parallel Computing Lab, Intel Corporation, Santa Clara, California 95054-1549, USA
(Received 28 November 2014; accepted 20 February 2015; published online 9 March 2015)

Quantum chemistry is increasingly performed using large cluster computers consisting of multiple
interconnected nodes. For a fixed molecular problem, the efficiency of a calculation usually decreases
as more nodes are used, due to the cost of communication between the nodes. This paper empirically
investigates the parallel scalability of Hartree—Fock calculations. The construction of the Fock matrix
and the density matrix calculation are analyzed separately. For the former, we use a parallelization of
Fock matrix construction based on a static partitioning of work followed by a work stealing phase. For
the latter, we use density matrix purification from the linear scaling methods literature, but without
using sparsity. When using large numbers of nodes for moderately sized problems, density matrix
computations are network-bandwidth bound, making purification methods potentially faster than
eigendecomposition methods. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4913961]

I. INTRODUCTION

Quantum chemistry codes must make efficient use of
parallel computing resources in order to reduce execution
time. This is true for simulating both large and small molecular
systems, as parallel hardware is now unavoidable. This paper
studies the scalability of Hartree-Fock (HF) self-consistent
field (SCF) iterations on distributed memory commodity
clusters, i.e., computers consisting of multiple interconnected
compute nodes. Scalability refers to the ability of an algorithm
and/or its implementation to continue to reduce execution
time on a fixed problem as the amount of parallel computing
resources is increased. In practice, codes are not perfectly
scalable due to the portion of execution time that is spent
performing communication. As the number of nodes is
increased, execution time may no longer decrease or may even
increase if communication dominates the total time.

In this paper, we focus on the HF method and moderately
sized problems, from about 100 to 1000 atoms. Larger
problems are better handled by linear scaling methods.! We
also limit the problem size because smaller problems are
more challenging to parallelize efficiently and also give us
a better idea of the impact of future computers with even
more parallelism relative to the problem size. We note that at
these problem sizes, the Fock and density matrices are treated
as dense matrices, i.e., unlike in linear scaling methods, any
sparsity is not exploited.

The HF method is a useful prototype for parallel scalabil-
ity studies. Besides playing a fundamental role in electronic
structure theory, being the starting point for most methods
that treat electron correlation (both single- and multi-reference
methods), it is very similar to hybrid density-functional theory
(DFT), by virtue of inclusion of both Coulomb and ex-

¥Electronic mail: echow @cc.gatech.edu

0021-9606/2015/142(10)/104103/11/$30.00

142, 104103-1

change contributions; therefore, algorithmic and mathematical
improvements in HF are readily extensible to some of the
most popular methods in chemistry (e.g., B3LYP, among
many other examples). Also, the computational components
of HF ground-state energies contain the same bottlenecks as
the evaluation of other molecular properties: atomic integral
evaluation, contraction of atomic integrals with (density)
matrices, and diagonalization. Further, many of the compu-
tational characteristics of the external exchange interaction
that is the bottleneck in coupled-cluster singles and doubles
(CCSD) resemble those of the Fock build that dominates
the computation of the HF ground state energy in most
cases.

Each HF-SCF iteration is composed of two major stages,
which we analyze separately. The first stage is the computation
of the Fock matrix, which involves the computation of electron
repulsion integrals (ERIs) and combining these ERIs with
elements of the density matrix. This stage is computationally
very expensive due to the extremely large number of ERIs
that must be computed. Although this stage is expected to
be very scalable due to the large amounts of work that can
be performed in parallel, recent research has shown that
communication overhead in this stage can cause a significant
decrease in speedup when large numbers of nodes are used.’
Here, speedup refers to the factor by which a code is faster
when multiple nodes (or processing units) are used, compared
to using a single node, for a fixed problem.

The second stage in a HF-SCEF iteration is the calculation
of the density matrix. In HF calculations, this stage is
traditionally performed by diagonalization, i.e., computing all
the eigenvalues and eigenvectors of the Fock matrix. For the
problem sizes we consider, the total amount of work in this
stage is very small compared to the amount of work in the
Fock matrix construction stage. However, diagonalization has
much less parallelism than Fock matrix construction. Thus,

©2015 AIP Publishing LLC

http://dx.doi.org/10.1063/1.4913961
http://dx.doi.org/10.1063/1.4913961
http://dx.doi.org/10.1063/1.4913961
http://dx.doi.org/10.1063/1.4913961
http://dx.doi.org/10.1063/1.4913961
http://dx.doi.org/10.1063/1.4913961
http://dx.doi.org/10.1063/1.4913961
http://dx.doi.org/10.1063/1.4913961
http://dx.doi.org/10.1063/1.4913961
mailto:echow@cc.gatech.edu
mailto:echow@cc.gatech.edu
mailto:echow@cc.gatech.edu
mailto:echow@cc.gatech.edu
mailto:echow@cc.gatech.edu
mailto:echow@cc.gatech.edu
mailto:echow@cc.gatech.edu
mailto:echow@cc.gatech.edu
mailto:echow@cc.gatech.edu
mailto:echow@cc.gatech.edu
mailto:echow@cc.gatech.edu
mailto:echow@cc.gatech.edu
mailto:echow@cc.gatech.edu
mailto:echow@cc.gatech.edu
mailto:echow@cc.gatech.edu
mailto:echow@cc.gatech.edu
mailto:echow@cc.gatech.edu
mailto:echow@cc.gatech.edu
mailto:echow@cc.gatech.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4913961&domain=pdf&date_stamp=2015-03-09

104103-2 Chow et al.

it is possible for the density matrix computation to limit
performance on large numbers of nodes.

The contribution of this paper is to show empirically
how Fock matrix construction and density matrix calculation
affect the overall scalability of a HF-SCF algorithm. Since the
relative scalability of these two components depends on prob-
lem size, we measure the performance of the components of
an efficient implementation of HF-SCF for different problem
sizes, and on different numbers of nodes. A significant amount
of research has been dedicated to parallelizing Fock matrix
construction (e.g., Refs. 3—11) and density matrix calculation
(e.g., Refs. 12—14) but, to the best of our knowledge, the
relative contribution of these two components to scalability
and overall execution time of HF-SCF has not been studied.

In Sec. II, we describe the parallelization challenges of
Fock matrix construction and specify an efficient implemen-
tation that we use for parallel scalability measurements. In
Sec. III, we describe the use of purification for computing the
density matrix. Developed in the O(N) methods literature,
purification uses sparsity to obtain linear scaling. In our
work on HF for moderately sized problems, we treat the
Fock and density matrices as dense. We show that even
in this case, purification has performance advantages over
diagonalization in the case of highly parallel computations.
Results of parallel scalability studies are presented in Sec. IV.
For a small problem (122 atoms) on large numbers of nodes,
the execution time for density matrix calculation can exceed
that for Fock matrix construction. For larger problems (up to
1205 atoms), the execution time for Fock matrix construction
dominates. In a sense that will be made precise later, Fock
matrix construction and density matrix calculation impact
overall scalability approximately equally. Section V concludes
this paper.

Il. FOCK MATRIX COMPUTATION

Whether or not the Fock and density matrices should be
replicated or distributed across nodes depends on the size of the
matrices, the number of nodes, and the available memory per
node. For large matrices, distributing the data may be neces-
sary. Distribution of the data may also be more efficient than
replication for computations with large numbers of nodes, in
order to avoid needing to synchronize copies of the data across
all the nodes. In this paper, we focus on the distributed case and
assign a rectangular block of matrix elements to each node.

The Fock matrix, F, is computed as

Fy= HZ+ Y D QGjIkD - GKjD). ()
kl

where H" is the core-Hamiltonian, D is a density matrix, and
(ij|kl) denotes an element of the ERI tensor. The computation
of the ERIs is distributed among the nodes. Once they are
computed, the ERIs are combined with elements of the density
matrix to form elements of the Fock matrix. For Gaussian
atom-centered basis sets, which we assume in this paper, a
shell is defined as the set of basis functions corresponding
to orbitals for an atom with the same energy and angular
momentum. For efficiency, ERIs are computed in batches

J. Chem. Phys. 142, 104103 (2015)

called shell quartets, defined as

(MN|PQ) = {(ij|kl) s.t. i € shell M, j € shell N,
k € shell P, [€ shell Q},

where M, N, P, and Q are called shell indices. It is possible to
similarly define an atom quartet, indexed by four atom indices.

Shell quartets may be screened, i.e., its ERIs treated as
zero, if

Vo(M,N)o(P,Q) < 1, 2)
where
o(M,N) = [eﬁlﬂ’éw(ijlij)

and 7 is a screening threshold. The two-dimensional quantity
o can be precomputed and stored. This type of screening,
often called Schwarz screening,15 is essential for reducing the
computational cost of HF but also forces the computational
data access pattern to be irregular and the parallelization to be
more complicated.

We can now write the generic algorithm for distributed
Fock matrix construction, shown as Algorithm I. The algo-
rithm is based on shell quartet computations, in order to
efficiently exploit symmetries and screening of the ERI tensor.
In the algorithm, quantities such as Fyny and Dpgy denote
submatrices of the Fock matrix F and density matrix D,
respectively. Each of these submatrices reside on one of the
nodes according to the partitioning of F' and D.

There are two basic options for distributed parallelization
of this algorithm. The first option is to “statically” partition
the set of shell quartets such that the computation load across
the nodes is balanced and such that the communication of the
D and F submatrices is minimized. The second option is to
“dynamically” schedule tasks onto nodes, where a task is a
subset of all the shell quartets. The tasks are defined such that
there are many more tasks than nodes, so that when a node
completes a task, it retrieves a new task from a global queue
of tasks. This procedure is naturally load balanced as long as
the granularity of the tasks is fine enough.

A good static partition is hard to achieve and thus
many codes, including NWChem, '® use dynamic scheduling.
In NWChem, a task corresponds to the shell quartets in
some number of atom quartets, such that each node (or
process) will be assigned approximately a certain number
of tasks. Shell quartets in the same atom quartet tend to

ALGORITHM 1. Distributed Fock matrix construction. The input to the
algorithm is a set of atoms and their positions, a basis set, and a density
matrix, D. The output is the Fock matrix, F.

for unique shell quartets (M N|PQ) do
if (M N|PQ) is not screened then
Compute shell quartet (M N|PQ)
Receive submatrices D ps N, DPQ, Dnp, DMQ, DNQ,DMP
Compute contributions to submatrices Fasn, Fpo, Fnp,
FMQ» FNQa Fyp according to Eq (€))]
Send submatrices of F' to their owner nodes
end if
end for

104103-3 Chow et al.

TABLEI Effect of work stealing to balance load in Fock matrix construction
on 225 nodes, for four molecular systems. The headings “w/steal” and “w/o
steal” denote whether the static partitioning is used with or without work
stealing, respectively.

Load balance ratio Time (s)
Molecule w/steal wj/o steal w/steal wj/o steal
lhsg_28 1.049 1.489 0.533 0.727
lhsg_38 1.045 1.326 7.777 9.627
lhsg_45 1.036 1.259 22.037 26.487
lhsg_90 1.035 1.152 110.967 123.198

have the same requirements for D and F submatrices, and
thus communication requirements can be reduced. In general,
larger tasks mean that more submatrices of D and F can
potentially be shared within a task, but smaller tasks are
better for load balance. Smaller tasks, however, also introduce
higher dynamic scheduling cost, especially if the scheduler is
centralized on a single node.

Our parallelization approach is a hybrid of the first and
second options.” It uses a static partitioning so that all the
submatrices of D needed by a node can be prefetched before
the computation (which requires internode communication);
with dynamic scheduling, the same submatrices of D may
be fetched repeatedly by the same node for different tasks.
Similarly, each node only needs to send submatrices of F once
to their owner nodes. Thus communication can be reduced by
using a static partitioning. An issue, however, is that good load
balance is difficult to achieve by static partitioning. We address
this issue by combining the static partitioning with a type of
dynamic scheduling called “work stealing.”>!7~'° When a node
finishes all the work assigned to it by the static partitioning, it
“steals” tasks from other nodes. The work stealing phase acts
to polish the load balance.

Table I shows the effect of adding a work stealing stage
to the static partitioning to improve the load balance. Four test
problems are used, listed in order from small to large, and are
described in Sec. IV. In the table, “w/steal” and “w/o steal”
denote whether the static partitioning is used with or without
work stealing, respectively. The load balance ratio is the ratio
of the maximum compute time to the average compute time for
the ERI calculations and local updates of the Fock matrix over
all nodes. The timings shown in the table are the overall time
required for Fock matrix construction. The results show that,
without stealing, the load balance ratio is worse for smaller
problems, which is expected, and that work stealing greatly
improves the load balance ratio. The timings also indicate that
the relative impact of work stealing is greater for the smaller
problems.

lll. DENSITY MATRIX COMPUTATION
A. Purification
The density matrix in the HF-SCF method is
D =C,..CL.,

where C,. is the matrix formed by the lowest energy
eigenvectors of the Fock matrix corresponding to occupied

J. Chem. Phys. 142, 104103 (2015)

orbitals, or those eigenvectors corresponding to eigenvalues
smaller than the chemical potential. The density matrix is
therefore a “spectral projector” of the Fock matrix, F. Given
the eigendecomposition F = UArUT, where U is the matrix of
eigenvectors and A is the diagonal matrix of eigenvalues, the
density matrix is D = UApUT where the eigenvalues shown
in Ap are 1 for the occupied orbitals (or eigenvalues of Ap
less than the chemical potential) and O otherwise. To find
Coce» @ common method is to compute all the eigenvalues
and eigenvectors of F. Note that the Fock and density
matrices referred to in this section are in an orthogonalizing
transformation basis.

Although this common method works well for small
numbers of nodes, its performance is poor for large numbers
of nodes, due to limited parallelism in the eigendecomposi-
tion. In the divide-and-conquer algorithm for computing the
eigendecomposition, which is known to be preferable over
the QR algorithm for large problems when eigenvectors are
desired, complicated tree-like data structures are used in the
parallelization.?® Instead of speeding up, the code may “slow
down” when the number of nodes increases beyond a point. In
these cases, to avoid slowing down, it is advantageous to map
the eigendecomposition to a smaller subset of nodes. However,
the scalability still suffers because many nodes would be idle.

An alternative to eigendecomposition is to use any of
a large number of “diagonalization-free” techniques that
have been developed for linear scaling electronic structure
methods; for a recent review, see Ref. 1. These methods avoid
solving an eigenvalue problem and compute D directly from
F. Computation of the density matrix can be accomplished
in linear time for electronic systems with “nearsightedness”
which translates to being able to approximate F and D by
sparse matrices.

In this paper, we focus on density matrix purification
techniques (see, e.g., Ref. 21 and the references therein) for
computing the density matrix. Originally developed for linear
scaling methods and used in conjunction with matrix sparsity,
we advocate using this class of techniques also in the context
of moderately sized HF-SCF problems without sparsity, for
the high parallelism case. Although scaling with problem size
remains cubic, scaling with node count can be much better than
diagonalization techniques due to better parallel properties.

The most basic density matrix purification technique is
McWeeny purification.?? Starting with an appropriate initial
guess Dy, McWeeny purification computes the iterates

Dy+1 = 3D} - 2D;

until it is determined that the iterates have converged. As is
evident, the algorithm is based on matrix multiplication and
thus has much more parallelism and is easier to parallelize than
methods based on eigendecomposition. It is thus potentially
useful as an alternative to eigendecomposition when a large
number of nodes are used.

Assuming that the eigenvalues of Dy are between 0 and
1, McWeeny purification can be regarded as a fixed-point
iteration that maps the eigenvalues of Dy less than 0.5 toward
0, and the eigenvalues greater than 0.5 toward 1. Thus Dy
must be a suitably scaled and shifted version of F such that
its eigenvalues lie between 0 and 1, and the chemical potential

104103-4 Chow et al.

ALGORITHM II. Canonical purification.

Set Dy using Eq. (3)
for k =0,1,... until convergence do
ck = trace(Di - Di)/trace(Dk - Di)
if ¢; <1/2 then
Disr=((1=2ci)Di+(1+cr)D2 - D3) /(1= cx)
else
Dyy1= ((1 +cx)D? _Di)/ck
end if
end for

is mapped to 0.5. To produce Dy, one requires estimating the
extremal eigenvalues of F' as well as knowing the chemical
potential.

We use an extension of McWeeny purification that
computes the density matrix knowing only the number of
occupied orbitals, rather than the chemical potential. Several
such extensions exist, the first being canonical purification.??
Here, the trace of the iterates Dy, which corresponds to the
number of occupied orbitals, is preserved from step to step.
In trace-correcting purification,?* the trace converges to the
desired value, but it is allowed to change from step to step in
order to accelerate convergence, especially in cases where the
fraction of occupied orbitals is very low or very high. In trace-
resetting purification® (see also Ref. 26), the trace constraint
is only enforced on certain steps. Convergence can also be
accelerated by using nonmonotonic polynomial mappings, if
the eigenvalues around the chemical potential are known or
can be bounded.?’

In this paper, we use canonical purification as described in
Ref. 23 and shown in Algorithm II. Its main cost per iteration is
two matrix multiplications, like plain McWeeny purification.
We use the stopping criterion || Dy — Di” r < 10711 The initial
iterate, Dy, must have the same eigenvectors as F, have its
eigenvalues lie between 0 and 1, and have the required trace.
This is accomplished by shifting and scaling F' as

A
Dy = =(al - F)+ =1, 3)
n n

where 7 is the number of basis functions, 7, is the number of
occupied orbitals, and where

. { e n—ne}
A = min —, —
Fmax_,u Il_Fmin
and
tr(F)

fi=——.
n

We use Gershgorin’s theorem®® to cheaply provide outer
bounds Fii, and Fpn,x on the smallest and largest eigenvalues
of F, respectively. The Lanczos algorithm?® can alternatively
be used to estimate the extremal eigenvalues.

Results of tests comparing the distributed parallel perfor-
mance of canonical purification to that of eigendecomposition
will be shown in Sec. IV. We note that trace-correcting
purification may have lower computational cost than canonical
purification, particularly for very low or very high partial occu-
pancies.?+30

J. Chem. Phys. 142, 104103 (2015)

B. Parallel matrix multiplication

The purification algorithm spends most of its execution
time performing two matrix multiplications, computing the
square and cube of D;. Many algorithms exist for distributed
parallel matrix multiplication, and most can be categorized
as 2D algorithms*'=* or 3D algorithms,*>*7 depending on
whether the data are distributed on a 2D or 3D mesh of nodes.
In 3D algorithms, communication costs are reduced relative
to 2D algorithms by replicating the input matrices p'/3 times
over the entire machine, where p is the number of nodes.
Recently, “2.5D” matrix multiplication algorithms have been
proposed,>® to balance the costs of storage and communication.

We implemented a 2D algorithm called SUMMA (Scal-
able Universal Matrix Multiply),** which is also imple-
mented as the PDGEMM function in ScaLAPACK. We also
implemented a 3D algorithm, following Ref. 37. We refer
to these as the 2D and 3D algorithms in the remainder
of this paper. These algorithms were implemented so that
we could separately measure the time for computation and
communication. We have verified that the timings for our 2D
algorithm are very similar to the timings for PDGEMM. Note
that matrix symmetry is very difficult to exploit efficiently
in distributed dense matrix multiplication; we found that
the PDSYMM function in ScaLAPACK (which allows one
matrix in a matrix multiplication to be symmetric) generally
performed worse than PDGEMM. We have not attempted
to exploit symmetry in our implementations, however, any
efficient matrix multiplication code for symmetric matrices
could be applied and would benefit density matrix purifi-
cation.

Finally, we note that the Fock matrix, which is scaled and
shifted to form Dy, is initially partitioned in 2D fashion (see
Sec. II). Thus, there is an additional communication cost in
the 3D case over the 2D case to map D into the required 3D
data distribution. This cost, however, can be amortized over
the many matrix multiplies that are used in the purification
procedure.

Figure 1 compares the execution time for our 2D and 3D
parallel matrix multiplication algorithms. We used a square
number of nodes for the 2D algorithm and a cubic number of
nodes for the 3D algorithm. Within each node, a multithreaded
dgemm function (performing dense matrix multiplication from
optimized linear algebra libraries) was called to perform the
local matrix multiplications. We observe that the timings for
the 2D and 3D algorithms are almost identical for small num-
bers of nodes. However, for large numbers of nodes (50 or
more), the 3D algorithm is faster and appears to continue to
scale well to the maximum number of nodes tested. The portion
of the timings for the two algorithms spent in the dgemm
function is also shown. For the case of the larger problem
size in Figure 1(b), the timings for the dgemm function for
the 2D and 3D algorithms are very similar for all numbers of
nodes. The timings decrease perfectly linearly with increasing
numbers of nodes. The discrepancy from the total 2D or 3D
timings represents the communication time required by the
algorithms. As shown, the 3D algorithm requires less commu-
nication than the 2D algorithm, and the difference between the
two algorithms grows with increasing numbers of nodes.

104103-5 Chow et al.
10°
—o0—2D Mult
—A—3D Mult
-o-2D dgemm
B -A-3D dgemm
L0 R e e s
@
_2
.ﬂé 1O T B TN
= :
?:Au: o
: A e
10’3 “““““““““““““““““““““““““““““““““ >~AHHT_
* o
_4
10 L
10° 10’ 10° 10°
Number of nodes
(@)

J. Chem. Phys. 142, 104103 (2015)

10
—o0—2D Mult
——3D Mult
-o-2D dgemm
-A-3D dgemm
100 ““““““““““““““““““““ g “““
@
1
g1y ;
~ :
: RREIN
: EalN
10’2. ““““““““““““““““““““““““““ D .
10 L L
10° 10’ 10° 10°
Number of nodes
(b)

FIG. 1. Comparison of 2D and 3D matrix multiplication execution time vs. number of nodes for two molecular problem sizes. “dgemm” refers to time spent
multiplying submatrices; the difference between this and the overall multiplication time is due to communication. (a) 3555 basis functions. (b) 11 163 basis

functions.

For a fixed number of processors p and a fixed dimension
n of the matrices, the matrix blocks have dimension n/ pl/ 2in
the 2D case and n/p'/3 in the 3D case. Note that the blocks
are larger in the 3D case. This means that the local matrix
multiplications may be more efficient (up to a certain size
depending on the hardware) in the 3D case because these
multiplications involve larger submatrices. This effect can be
observed for the smaller problem in Figure 1(a). Here, the
dgemm timings are similar in both 2D and 3D algorithms for
small numbers of nodes but are lower for the 3D case for
larger numbers of nodes. This is due to lower efficiency of the
dgemm function for smaller sizes.

Note that communication requires a large majority of the
execution time on large numbers of nodes. In these cases, faster
dgemm operations would not significantly improve the overall
performance. Due to better performance of the 3D algorithm,
we use the 3D algorithm for purification in the remainder of
this paper.

IV. COMPUTATIONAL SCALING RESULTS

In this section, we first demonstrate the performance of
the optimized implementations for Fock matrix construction
and density matrix purification described in Secs. II and III.
We refer to this code as GTFock. We then use GTFock to
understand the relative importance of the scalability of these
two components to the overall scalability of HF-SCF.

Tests were performed using 1 to 1024 nodes (16 to
16 384 cores) on the Stampede supercomputer located at Texas
Advanced Computing Center. Each node is composed of two
Intel Xeon E5-2680 processors (8 cores each at 2.7 GHz).
Memory on these nodes is 32 GB DRAM. GTFock is coded in
the C programming language and uses ScaLAPACK, MPI, and
Global Arrays. We compiled GTFock using icc v14.0.1 and
linked to Intel MKL v11.1 (for ScaLAPACK) and MVAPICH2
v2.0b (for MPI). Global Arrays uses ARMCI over InfiniBand
on the Stampede machine.

Four molecular systems of different sizes were used to test
scalability. The molecular systems were derived from a model
of human immunodeficiency virus (HIV) II protease com-
plexed with a ligand (indinavir). Atomic coordinates of all non-
hydrogen atoms were obtained from the 1HSG crystal struc-
ture, neglecting H,O molecules except for one closely bound
H,O0 found in between the protein and the ligand. Hydrogen
atom coordinates were obtained via the H++ macromolecular
protonation server.’” We generated a set of test systems
(Table II) by only including residues with any atom within
a certain distance from any atom in the ligand. For a system
named lhsg_28, the distance is 2.8 A. Peptide bonds cut during
this procedure were capped by a hydrogen placed in the vector
of the N-C peptide bond with a bond distance of 1.02 A for
N-H bonds and 1.10 A for C-H bonds. All test molecular
systems used the cc-pVDZ basis set.*® A screening tolerance of
7 = 107'% was used for Schwarz screening of ERIs; see Eq. (2).

TABLE II. Test molecules, all with net charge of zero. The number of occupied orbitals is denoted by n.. The
band gap and HOMO/LUMO energies are in units of au. The eigenvalue spectrum for lhsg 28 ranges from

—20.6765 to 4.2688.

Molecule Atoms Shells Functions Ne Band gap HOMO LUMO
lhsg_28 122 549 1159 227 0.4033 -0.2986 0.1047
lhsg_38 387 1701 3555 691 0.3788 -0.298 1 0.0807
lhsg_45 554 2427 5065 981 0.3744 -0.2976 0.076 8
lhsg_90 1205 5329 11163 2185 0.3875 -0.3017 0.0858

104103-6 Chow et al.

HF calculations were performed for the spin-restricted
case (RHF). For the SCF iterations, an initial guess for the
density matrix was constructed using superposition of atomic
densities (SAD). The iterations were accelerated by using
direct inversion of the iterative subspace (DIIS).*! For the
four molecular systems, between 16 and 18 SCF iterations
were required for convergence. We note that the systems are
insulators and thus the convergence of purification, which
depends on the HOMO-LUMO gap, is rapid. For the first
density matrix calculation, canonical purification required
between 34 and 36 iterations, and for the last density matrix
calculation, purification required between 30 and 32 iterations
for convergence for the four problems. Convergence will
be much slower for small gapped systems, but the parallel
scalability of purification remains the same. For a discussion
of the convergence of purification with respect to the HOMO-
LUMO gap, see, e.g., Ref. 30.

To give an idea of the total time required for the SCF
procedure, 1hsg_ 28 required 204.7 s on 9 nodes of Stampede
and lhsg_ 90 required 956.9 s on 529 nodes of Stampede.
These timings include the one-time cost of computing the
canonical orthogonalization*? transformation (2.3 and 12.2 s,
respectively). We computed this transformation via an eigen-
decomposition. Alternatively, techniques from the linear scal-
ing literature may be applied to compute an orthogonalizing
transformation for very large molecular systems.'

A. Comparison to NWChem

We first compare the performance of GTFock to the
performance of NWChem.'® Figure 2 shows timings for Fock
matrix construction and density matrix calculation for the two
codes for the test system 1hsg_38. For GTFock, density matrix
calculation used purification with the 3D matrix multiplication
algorithm. For NWChem, density matrix calculation used the
QR algorithm for eigendecomposition as implemented in the
pdsyev function in ScaLAPACK.

For NWChem, the results show that Fock matrix construc-
tion scales up to about 144 nodes, but execution time increases
with more nodes. Eigendecomposition, which requires only a

10 T T
: - 0-NWChem Fock|
-o-NWChem Eig
39 —e— GTFock Fock
107 F —=— GTFock Purif
10°
@
(]
£
=10
10°
1071 R R R R S
10° 10' 10° 10°

Number of nodes

FIG. 2. Comparison of GTFock to NWChem for 1hsg_38 with 3555 basis
functions.

J. Chem. Phys. 142, 104103 (2015)

small fraction of the execution time, scales poorly, and its
execution time increases after 36 nodes. These results show
that eigendecomposition never dominates the total time in
NWChem for any number of nodes for this problem. Overall,
the maximum speedup is 36 at 144 nodes. In general, better
scalability would be observed for larger problems.

In comparison, GTFock has better scalability than
NWChem. Fock matrix construction scales up to 1024 nodes,
which was the largest machine configuration we could test.
Purification timings also decrease monotonically. (We note
that in GTFock, Fock matrix construction used a square
number of nodes, but purification was performed using a
number of nodes that is the largest cube not exceeding that
square.)

Fock matrix construction in NWChem is always at least
a fixed factor slower than that in GTFock. This is because
GTFock uses a slightly faster code for computing ERIs; this
will be described in a future paper.

B. Different problem sizes

The overall scalability of HF-SCF is complex because
it depends on two components, each with its own scalability
characteristics, and the proportion of the computation spent on
each component also changes in general with problem size.
Understanding these issues helps code developers understand
what are the bottlenecks for scalability. The results in Sec.
IV B were for a single problem size, but we now analyze the
timings for GTFock for different problem sizes.

The traditional analysis comparing the problem size
scalability of Fock matrix construction and density matrix
calculation argues that the latter dominates for large problems,
rather than for small problems. This is because density
matrix calculation (assuming dense matrices) scales as O(n°)
arithmetic operations, while Fock matrix construction scales
as O(n>7%), e.g., see Ref. 43. However, in the case of very large
numbers of nodes where calculations are network bandwidth
bound (communication time dominates the computation time),
problem size scaling does not depend on the cost of arithmetic
operations, but rather on the cost of communication. For
the same number of nodes, communication cost is relatively
higher for smaller problems. Thus, in the case of large numbers
of nodes leading to communication-bound performance, the
execution time for density matrix calculation can dominate
that for Fock matrix construction for small problems rather
than for large problems.

The O(n?) scaling of density matrix calculation assumes
compute-bound computation. Although the scaling of commu-
nication is typically less than O(n?), the absolute cost of
communication is higher than the absolute cost of computation
when the method is network bandwidth bound. For arbitrarily
large problems, however, density matrix calculations will not
be network bandwidth bound (given finite computer resources)
and the calculations will scale as O(n%).

Figure 3 shows the scaling of execution time with the
number of nodes for four problem sizes. The timings are
separated into (1) Fock matrix construction, (2) density
matrix calculation with eigendecomposition using the pdsyevd
function?® which implements the divide and conquer method

104103-7 Chow et al.
10*
—o—Fock
: : —o—Eig
H H —— i
108 b R R Purif

Number of nodes

(a)

Number of nodes

(©

J. Chem. Phys. 142, 104103 (2015)

—0—Fock
—o— Eig

0T
10 10 10 10
Number of nodes
(b)
10
—o—Fock
10°
10°
z
[0}
E 4
= 10
107 Fro e s R
07TR L
10° 10’ 10° 10°
Number of nodes
d

FIG. 3. Execution time vs. number of nodes for Fock matrix construction and density matrix computation for four molecular problem sizes. The largest problem
could not be run on a single node due to memory limitations. (a) 1159 basis functions. (b) 3555 basis functions. (c) 5065 basis functions. (d) 11163 basis

functions.

in ScaLAPACK, and (3) density matrix calculation with
canonical purification using Algorithm II.

As before, Fock matrix construction in GTFock shows
good scaling for all problem sizes. Eigendecomposition and
purification show poor scaling, with eigendecomposition
scaling worse than purification. The eigendecomposition curve
crosses the Fock matrix construction curve at 225 nodes
for 1159 basis functions, and at 1024 nodes at 3555 basis
functions. For larger problems, the intersection appears to be at
a larger number of nodes. Thus we have the conclusion that the
scalability of the eigendecomposition is more of a concern for
small problems than for large problems. A similar conclusion
can be drawn for purification, where it can be observed that
the gap between Fock matrix time and purification time grows
when going from 1159 to 5065 basis functions.

To analyze this further, note that the proportion of the
time spent in eigendecomposition relative to Fock matrix
construction is about 2 percent, with almost no growth for
larger problem sizes, as measured by single node timings.
For purification, this proportion is also almost constant, at 1
percent. For more nodes, these proportions are larger because
of poorer scaling of density matrix calculations relative to

Fock matrix construction. However, these calculations also
scale better for larger matrices, which explains why density
matrix calculation is more of a bottleneck for smaller problems
rather than larger problems. The proportion of the time spent
on density matrix calculation does not increase fast enough
as problem sizes are increased for the bottleneck to appear
at larger problem sizes. In general, for the same number of
nodes greater than I, as problem sizes are increased, the
density matrix calculation time is smaller relative to Fock
matrix construction time.

C. Strong scalability results

We now compare achieved performance to ideal perfor-
mance. Figure 4 shows the speedup of Fock matrix construc-
tion and purification combined, as a function of the num-
ber of nodes. The actual speedup (Actual) improves for
larger problem sizes, which is typical behavior, attaining
approximately 80 percent efficiency for the largest problem
size on 1024 nodes. What accounts more for this loss in
parallel efficiency—Fock matrix construction or purification?
Although the scalability of purification is poorer than for

104103-8 Chow et al. J. Chem. Phys. 142, 104103 (2015)

1000

1000, Ideal 1 1000 Ideal
900l —0— Fock + perfect 900l ~0— Fock + perfect
—A— Purif + perfect —A— Purif + perfect
800H - @ - Actual 800} - & - Actual S
700 700
o 600 ' o 600
=} S5
el el
& 500 ® 500
Q. Q.
(%) (%)
400 400
300 300
200 200
100 100
200 400 600 800 1000 200 400 600 800 1000
Number of nodes Number of nodes
(@) (b)
1000)7°° Ideal 1000, Ideal
900 —°— Fock + perfect 900 —°— Fock + perfect
—2&— Purif + perfect —&— Purif + perfect
800~ @ - Actual 800~ @ - Actual
700 700
a 600 a 600
=} =}
el el
& 500 & 500
joR Q.
() ()
400 400
300 300
200 200
100 100
200 400 600 800 1000 200 400 600 800 1000
Number of nodes Number of nodes
© (d)

FIG. 4. Scalability of Fock matrix construction and purification combined, for four molecular problem sizes. Actual speedup is shown, along with projected
speedup if purification is perfectly parallel (Fock + perfect) or if Fock matrix construction is perfectly parallel (Purif + perfect). In (d), scalability is relative to
9 nodes since this large problem could not be run on a single node. (a) 1159 basis functions. (b) 3555 basis functions. (c) 5065 basis functions. (d) 11 163 basis
functions.

Fock matrix construction, the total time spent in purification perfectly parallel (Fock + perfect), and total speedup using
is much less (see Figure 3). To answer the above question, actual purification timings assuming Fock matrix construction
Figure 4 also plots the total speedup using the actual Fock is perfectly parallel (Purif + perfect). These two plots help
matrix construction timings but assuming purification is identify the impact of each of the components on total

10" 10°
—o—Fock —o—Fock
—o—Eig —o— Eig
5 |[—2—Purif : : 1 [| =2 Purit
10" - A - Purif dgemm| = 7 T 10° f-A-Purif dgemm| i 3
_10°}
)
(]
£
=,
10 F
10°
107! ; ; ; ; 1072 ; ; ; ;
1000 2000 3000 5000 10000 1000 2000 3000 5000 10000
Number of basis functions Number of basis functions
(@) (b)

FIG. 5. Time vs. number of basis functions for computations using 1 and 529 nodes. (a) 1 node. (b) 529 nodes.

104103-9 Chow et al.

TABLE III. Scaling exponents with number of basis functions, computed
using 1159 and 3555 basis functions.

1 node 529 nodes
Fock 2.45 2.24
Eig 2.60 1.13
Purif 2.75 1.56
Purif dgemm 291 2.10

scalability. As can be seen, especially for the largest problem
size, the impact on total scalability by the two components
is about the same. Thus, one cannot say that scalability is
impacted more by Fock matrix construction or by purification;
both impact the overall scalability by about the same amount,
due to the smaller amount of time spent in the less scalable
density matrix calculation.

D. Scaling with number of basis functions

For n basis functions, the number of non-screened
ERIs that must be computed is O(n*>~3), which is expected
to be similar to the scaling of Fock matrix construction.
Eigendecomposition using the divide and conquer algorithm
nominally scales as O(n®) but may scale slightly better due
to “deflation” in the algorithm. In purification, the matrix
multiplication with dense matrices scales as O(n?).

These values assume no cost for communication when
multiple nodes are used. The communication cost will reduce
the apparent scaling exponent because communication adds a
large sub-O(n?) component to the overall computation cost.
We illustrate this in several ways. Figure 5 plots the timings
for various components of the computation as a function of
number of basis functions for 1 node and 529 nodes. Included
in this figure are the timings for the dgemm portion of the
purification execution time, labelled “Purif dgemm.” Table III
shows the scaling exponents (slopes) for the curves shown
in Figure 5, computed using 1159 and 3555 basis functions.
For 1 node, eigendecomposition has a higher scaling exponent
than Fock matrix construction. However, the reverse is true at

10° ;

© ~
o 10 g
E ;
c :
k] :
5 :
(%] H
(>1<) N
SRy :
210 :
w :

07T e

1000 2000 3000 5000 10000

Number of basis functions
(@)

J. Chem. Phys. 142, 104103 (2015)

529 nodes. Both eigendecomposition and purification scaling
exponents decrease significantly for 529 nodes, due to high
communication cost relative to computation cost. We note
also that the dgemm scaling exponent also degrades at 529
nodes; this is because of poorer efficiency of dgemm due to
the use of small submatrices at this level of parallelism.

Figure 6 shows the scaling of eigendecomposition and
purification with the number of basis functions. Each curve
represents a different number of nodes. The slopes of the
curves decrease with increasing numbers of nodes, corre-
sponding to the degradation in scaling exponent due to
communication. In particular, the slopes decrease faster in the
eigendecomposition case compared to the purification case
because execution time fails to decrease when increasing the
number of nodes for the 1159 basis function case. We also
observe an apparent increase in the scaling exponent (slope
increases) for larger numbers of basis functions; this is because
communication time is a smaller factor of the overall time for
large problems.

E. Projected performance given faster ERI
calculations

ERI calculations are the substantial portion of Fock matrix
construction. This portion of the calculation can be accelerated
in many ways, for example, by partially caching the expensive-
to-compute integrals and by using hardware accelerators such
as graphics processing units and Intel Xeon Phi. A change in
the cost of ERI calculations changes the scalability of Fock
matrix construction and the overall scalability of HF-SCF
iterations. In Figure 7, we show the projected performance of
Fock matrix construction if ERI calculations are accelerated
by a factor of 10 for the 1hsg_38 test system. The projected
timings were computed as follows. We assume that the
Fock matrix construction timings Ty for node count N are
composed of a perfectly scalable portion equal to 77/N and a
communication overhead Ay,

TN:Tl/N-i-/’lN, h1=0,

10°
@
[0)) 1
£ 10
c
el
3 ;
(9] B
3,0 :
+«= 10 :
5 :
o N

107

1000 2000 3000 5000 10000
Number of basis functions
(b)

FIG. 6. Comparison of eigendecomposition and purification execution time vs. number of basis functions for various numbers of compute nodes. For the
eigendecomposition (a), the dark to light lines from top to bottom are for, respectively, 1, 9, 36, 64, 144, 225, 529, 1024 nodes. For purification (b), the dark to
light lines from top to bottom are for, respectively, 1, 8, 27, 64, 125, 216, 512, 1000 nodes.

104103-10 Chow et al.

: —o—Fock
L S o - o - Projected Fock|

Time (s)

Number of nodes

FIG. 7. Projected Fock matrix construction time (“Projected Fock”) if ERI
calculations are 10 times faster. The test system is lhsg_28 with 1159 basis
functions. Data for the solid blue and black curves are the same as that in
Figure 3(a).

which gives a formula for computing hy. The projected
timings are then computed as

T = Ty/(sN) + hy,

where s is the acceleration factor, which is 10 in our case.

Figure 7 shows that the projected Fock matrix construc-
tion time (“Projected Fock™) is smaller by a factor of 10
for small numbers of nodes, but at around 225 nodes, the
communication overhead starts to dominate so that the time
stops scaling. The projected Fock matrix construction time
is small enough that the purification time starts to dominate
at around 100 nodes, but Fock matrix construction time may
start to dominate again for large node counts due to its lack
of scalability. For larger matrices, the point at which the
projected Fock timings flatten out would occur at a larger
number of nodes. Similarly, loss of scalability would begin
at a smaller number of nodes if the acceleration factor s is
larger. The graph gives an interesting perspective of a potential
future scenario where ERI calculations can be accelerated, but
communication, whose costs are more difficult to reduce, stays
the same.

V. CONCLUSIONS

Should code developers focus on optimizing Fock matrix
construction because it requires the largest portion of the
compute time, or should developers focus on the density
matrix calculation because it scales poorly and may dominate
the total time for large numbers of nodes? In this paper, we
have addressed the parallel efficiency of both Fock matrix
construction and density matrix calculations. The results show
that there is not just one impediment to better scalability—
both components of HF-SCF are important and almost equally
impact overall scalability.

The more difficult challenge, however, lies in the effi-
cient parallelization of density matrix calculations for small
problems. (For large problems, a higher ratio of computation
to communication improves scalability.) We have suggested
using density matrix purification techniques as a potentially

J. Chem. Phys. 142, 104103 (2015)

more scalable approach than eigendecomposition approaches
for HF-SCF. Purification is already well established for linear
scaling methods, but its applicability to highly parallel HF
computations does not seem to be appreciated. Purification
with dense matrices will require more arithmetic operations
than eigendecomposition, but on modern computer architec-
tures, data movement and parallelism are more important.

Although we expect the general trends shown in this paper
to hold, specific conclusions will differ for different computers
and as algorithm and implementation improvements are made
to codes such as parallel eigendecomposition. In particular,
recent eigensolvers such as ELPA'# are demonstrating better
performance than the pdsyevd ScaLAPACK routine we used
for comparisons. ELPA also uses the divide and conquer
algorithm like pdsyevd but can use a two-step procedure for
tridiagonalization. Results from ELPA-2'4 (compare Figure
3(a) of the reference to Figure 3(c) of this paper) show
comparable performance to purification for 1000 cores but
fail to scale beyond that. ELPA is much faster, however, at low
levels of parallelism, which can be expected.

Software based on the ideas of this paper has been released
in open-source form as the GTFock framework for distributed
Fock matrix computation. We are currently integrating this
software into the Psi4 quantum chemistry package.**

Because of the similarity between Hartree-Fock theory
and Kohn-Sham DFT, the work presented here can be readily
extended to DFT. Moreover, additional quantum mechanical
methods may be formulated in terms of (generalized) Coulomb
and exchange matrices, meaning that GTFock may form
the core of future massively parallel codes for methods
including MP2 and various forms of coupled cluster theory,
symmetry-adapted perturbation theory (SAPT), configuration
interaction singles (CIS) and RPA for excited electronic states,
coupled-perturbed Hartree-Fock or DFT for analytical energy
gradients, and others.

ACKNOWLEDGMENTS

The authors thank David Sherrill, Trent Parker, Rob
Parrish, and Aftab Patel for assistance on this research. The
authors also thank the referees for a very thorough review
of this paper, which led to a substantial improvement to its
presentation. This research was supported by the National
Science Foundation under Grant No. ACI-1147843 and by
Intel Corporation under an Intel Parallel Computing Center
grant. Computer time for development on Stampede was
provided under NSF XSEDE Grant No. TG-CCR140016.

'D.R. Bowler and T. Miyazaki, Rep. Prog. Phys. 75, 036503 (2012).

2X. Liu, A. Patel, and E. Chow, in 2014 IEEE International Parallel
and Distributed Processing Symposium, Phoenix, AZ, 2014 (IEEE, 2014),
pp. 902-914.

3T. R. Furlani and H. F. King, J. Comput. Chem. 16, 91 (1995).

AT Foster, J. L. Tilson, A. F. Wagner, R. L. Shepard, R. J. Harrison, R. A.
Kendall, and R. J. Littlefield, J. Comput. Chem. 17, 109 (1996).

SR. I Harrison, M. F. Guest, R. A. Kendall, D. E. Bernholdt, A. T. Wong, M.
Stave, J. L. Anchell, A. C. Hess, R. J. Littlefield, G. I. Fann, J. Neiplocha,
G. Thomas, D. Elwood, J. Tilson, R. Shepard, A. Wagner, I. Foster, E. Lusk,
and R. Stevens, J. Comput. Chem. 17, 124 (1996).

oT. R. Furlani, J. Kong, and P. M. W. Gill, Comput. Phys. Commun. 128, 170
(2000).

http://dx.doi.org/10.1088/0034-4885/75/3/036503
http://dx.doi.org/10.1109/IPDPS.2014.97
http://dx.doi.org/10.1109/IPDPS.2014.97
http://dx.doi.org/10.1002/jcc.540160108
http://dx.doi.org/10.1002/(SICI)1096-987X(19960115)17:1%3C109::AID-JCC9%3E3.0.CO;2-V
http://dx.doi.org/10.1002/(SICI)1096-987X(19960115)17:1%3C124::AID-JCC10%3E3.0.CO;2-N
http://dx.doi.org/10.1016/S0010-4655(00)00059-X

104103-11 Chow et al.

7Y. Alexeev, R. A. Kendall, and M. S. Gordon, Comput. Phys. Commun. 143,
69 (2002).
8H. Takashima, S. Yamada, S. Obara, K. Kitamura, S. Inabata, N. Miyakawa,
K. Tanabe, and U. Nagashima, J. Comput. Chem. 23, 1337 (2002).
°C. L. Janssen and I. M. Nielsen, Parallel Computing in Quantum Chemistry
(CRC Press, 2008).

10K . Ishimura, K. Kuramoto, Y. Ikuta, and S. Hyodo, J. Chem. Theor. Comput.
6, 1075 (2010).

ITH. Umeda, Y. Inadomi, T. Watanabe, T. Yagi, T. Ishimoto, T. Ikegami,
H. Tadano, T. Sakurai, and U. Nagashima, J. Comput. Chem. 31, 2381
(2010).

12R. 1. Littlefield and K. J. Maschhoff, Theor. Chim. Acta 84, 457 (1993).

13A. T. Wong and R. J. Harrison, J. Comput. Chem. 16, 1291 (1995).

147 Marek, V. Blum, R. Johanni, V. Havu, B. Lang, T. Auckenthaler, A.
Heinecke, H.-J. Bungartz, and H. Lederer, J. Phys.: Condens. Matter 26,
213201 (2014).

I5M. Hiser and R. Ahlrichs, J. Comput. Chem. 10, 104 (1989).

16M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. J.
Van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus, and W. A. de Jong,
Comput. Phys. Commun. 181, 1477 (2010).

17R. D. Blumofe and C. E. Leiserson,]. ACM 46, 720 (1999).

18] Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and J. Nieplocha,
in Proceedings of the Conference on High Performance Computing Net-
working, Storage and Analysis, SC’09 (ACM, New York, NY, USA, 2009),
pp- 53:1-53:11.

19A. Nikodem, A. V. Matveev, T. M. Soini, and N. Résch, Int. J. Quantum
Chem. 114, 813 (2014).

20F, Tisseur and J. Dongarra, SIAM J. Sci. Comput. 20, 2223 (1999).

21A. Niklasson, Linear-Scaling Techniques in Computational Chemistry and
Physics, Challenges and Advances in Computational Chemistry and Physics,
Vol. 13, edited by R. Zalesny, M. G. Papadopoulos, P. G. Mezey, and J.
Leszczynski (Springer, Netherlands, 2011), pp. 439-473.

22R. McWeeny, Rev. Mod. Phys. 32, 335 (1960).

23A. H. R. Palser and D. E. Manolopoulos, Phys. Rev. B 58, 12704 (1998).

24A. M. N. Niklasson, Phys. Rev. B 66, 155115 (2002).

J. Chem. Phys. 142, 104103 (2015)

Z5A. M. N. Niklasson, C. J. Tymczak, and M. Challacombe, J. Chem. Phys.
118, 8611 (2003).

25D, K. Jordan and D. A. Mazziotti, J. Chem. Phys. 122, 084114 (2005).

27E. H. Rubensson, J. Chem. Theor. Comput. 7, 1233 (2011).

28R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. (Cambridge Uni-
versity Press, New York, 2013).

29G. H. Golub and C. E. V. Loan, Marrix Computations, 4th ed. (Johns Hopkins,
2013).

30g, Rudberg and E. H. Rubensson, J. Phys.: Condens. Matter 23, 075502
(2011).

3IL. E. Cannon, “A cellular computer to implement the Kalman filter algo-
rithm,” Ph.D. thesis (Montana State University, 1969).

32E. Dekel, D. Nassimi, and S. Sahni, SIAM J. Comput. 10, 657 (1981).

3G. C. Fox, S. Otto, and A. J. G. Hey, Parallel Comput. 4, 17 (1987).

34R. A. van de Geijn and J. Watts, Concurrency: Pract. Exper. 9, 255 (1997).

351, Berntsen, Parallel Comput. 12, 335 (1989).

3A. Aggarwal, A. K. Chandra, and M. Snir, Theor. Comput. Sci. 71, 3 (1990).

3R, C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar, IBM
J. Res. Dev. 39, 575 (1995).

38E. Solomonik and J. Demmel, Euro-Par 2011 Parallel Processing, Lecture
Notes in Computer Science Vol. 6853, edited by E. Jeannot, R. Namyst, and
J. Roman (Springer, Berlin, Heidelberg, 2011), pp. 90-109.

39R. Anadakrishnan, B. Aguilar, and A. V. Onufriev, Nucleic Acids Res. 40,
W537 (2012).

40T, H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).

41p Pulay, Chem. Phys. Lett. 73, 393 (1980).

4ZA. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to
Advanced Electronic Structure Theory (Dover, 1989).

43T, Auckenthaler, V. Blum, H.-J. Bungartz, T. Huckle, R. Johanni, L. Krémer,
B. Lang, H. Lederer, and P. Willems, Parallel Comput. 37, 783 (2011).

4“1 M. Turney, A. C. Simmonett, R. M. Parrish, E. G. Hohenstein, F. A.
Evangelista, J. T. Fermann, B. J. Mintz, L. A. Burns, J. J. Wilke, M. L.
Abrams, N. J. Russ, M. L. Leininger, C. L. Janssen, E. T. Seidl, W. D. Allen,
H. F. Schaefer, R. A. King, E. F. Valeev, C. D. Sherrill, and T. D. Crawford,
WIREs Comput. Mol. Sci. 2, 556 (2012).

http://dx.doi.org/10.1016/S0010-4655(01)00439-8
http://dx.doi.org/10.1002/jcc.10133
http://dx.doi.org/10.1021/ct100083w
http://dx.doi.org/10.1002/jcc.21531
http://dx.doi.org/10.1007/BF01113282
http://dx.doi.org/10.1002/jcc.540161010
http://dx.doi.org/10.1088/0953-8984/26/21/213201
http://dx.doi.org/10.1002/jcc.540100111
http://dx.doi.org/10.1016/j.cpc.2010.04.018
http://dx.doi.org/10.1145/324133.324234
http://dx.doi.org/10.1002/qua.24677
http://dx.doi.org/10.1002/qua.24677
http://dx.doi.org/10.1137/S1064827598336951
http://dx.doi.org/10.1103/RevModPhys.32.335
http://dx.doi.org/10.1103/PhysRevB.58.12704
http://dx.doi.org/10.1103/PhysRevB.66.155115
http://dx.doi.org/10.1063/1.1559913
http://dx.doi.org/10.1063/1.1853378
http://dx.doi.org/10.1021/ct2001705
http://dx.doi.org/10.1088/0953-8984/23/7/075502
http://dx.doi.org/10.1137/0210049
http://dx.doi.org/10.1016/0167-8191(87)90060-3
http://dx.doi.org/10.1002/(SICI)1096-9128(199704)9:4%3C255::AID-CPE250%3E3.0.CO;2-2
http://dx.doi.org/10.1016/0167-8191(89)90091-4
http://dx.doi.org/10.1016/0304-3975(90)90188-N
http://dx.doi.org/10.1147/rd.395.0575
http://dx.doi.org/10.1147/rd.395.0575
http://dx.doi.org/10.1093/nar/gks375
http://dx.doi.org/10.1063/1.456153
http://dx.doi.org/10.1016/0009-2614(80)80396-4
http://dx.doi.org/10.1016/j.parco.2011.05.002
http://dx.doi.org/10.1002/wcms.93

