
Overlapping Communications with Other
Communications and its Application to Distributed

Dense Matrix Computations

Hua Huang
College of Computing

Georgia Institute of Technology
Atlanta, GA, U.S.A.

huangh223@gatech.edu

Edmond Chow
School of Computational Science and Engineering

Georgia Institute of Technology
Atlanta, GA, U.S.A.

echow@cc.gatech.edu

Abstract—This paper presents the idea of overlapping com-
munications with communications. Communication operations
are overlapped, allowing actual data transfer in one operation
to be overlaped with synchronization or other overheads in
another operation, thus making more effective use of the available
network bandwidth. We use two techniques for overlapping com-
munication operations: a novel technique called “nonblocking
overlap” that uses MPI-3 nonblocking collective operations and
software pipelines, and a simpler technique that uses multiple
MPI processes per node to send different portions of data
simultaneously. The idea is applied to the parallel dense matrix
squaring and cubing kernel in density matrix purification, an
important kernel in electronic structure calculations. The kernel
is up to 91.2% faster when communication operations are
overlapped.

Index Terms—Message Passing Interface, nonblocking collec-
tive communication, pipelined and overlapped communications,
parallel matrix multiplication, density matrix purification

I. INTRODUCTION

In many distributed memory computations, internode com-

munication is the bottleneck, even when communication-

optimal algorithms are used. In these cases, it is important

to ensure that the network bandwidth is utilized as fully as

possible. The network bandwidth may not be fully utilized

due to (a) the overhead of process synchronization in two-sided

communication protocols, (b) the overhead of data marshalling

and possibly data copying in the message passing library, and

(c) computations that need to be performed during a communi-

cation operation, such as those in reduction operations. Indeed,

when short messages must be sent, network utilization is poor,

due to various overheads lumped under the term “latency.”

To better exploit communication resources, we explore the

idea of overlapping communications with communications.

Here, communication operations are overlapped with other

communication operations. This allows actual data transfer in

one operation to be overlaped with synchronization or other

overheads in another operation, thus making more effective

use of the available network bandwidth. The technique has

similarities to the idea of overlapping communications with

computations, allowing a program to exploit the concurrency

between communication and computation units. However, in

communication-intensive programs, the computation time is

small compared to the communication time, and thus the

benefit of overlapping communications with computations can

be very limited.

We consider two techniques for overlapping communication

operations:

1) We introduce the technique of dividing the data and

sending it via separate nonblocking MPI calls within one

thread of an MPI process. In particular, the nonblocking

collective operations [1] provided by the MPI-3 standard

allows us to overlap collectives using this technique

(although they were designed to provide overlapping of

collective operations with computations). We find that

this overlapping technique can work well if different

types of communication can be overlapped (e.g., a

nonblocking broadcast with nonblocking send-receive)

and if the communication of the divided parts of the data

can be pipelined. We call this technique “nonblocking

overlap.”

2) A simpler technique is to use multiple MPI processes

per node (PPN) where each process communicates a

portion of the data that would be sent when using a

single MPI process per node. This technique has been

used in the past in cases where a single MPI process

on a node cannot saturate that node’s available network

bandwidth. However, this technique can increase the

required communication bandwidth, so it is not obvious

that using multiple PPN can reduce overall time. Dis-

tributed memory programs usually use the same number

of PPN for all parts of the program, but we argue that

different parts of a program could use different numbers

of PPN for best performance. We call this technique

“multiple PPN overlap.”

We remark in passing that a third technique for overlapping

communication operations is to use multithreading. Here,

multiple threads within one process will call MPI functions.

Unfortunately, this technique usually has high overheads due

501

2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/19/$31.00 ©2019 IEEE
DOI 10.1109/IPDPS.2019.00060

to the need to guarantee thread safety within multithreaded

MPI, in addition to the overhead of multithreading itself.

Our tests with using multithreading to overlap communication

operations typically show poor performance (particularly for

message sizes less than 64K) compared to using the above

two techniques. We do not further consider multithreading for

overlapping communications in this paper.

The two techniques (1) and (2) above can also be combined,

i.e., using multiple MPI processes per node where each

process also overlaps its communications using nonblocking

calls. Combining the two techniques gives the programmer

flexibility in controlling how many processes to use, how much

overlap to use (number of communication operations that are

called simultaneously), and on what nodes the processes re-

side. Our results will show that combining the two techniques

appears to give the best performance results.

The nonblocking overlap technique can be introduced un-

obtrusively to existing application codes. In many cases, an

“optimal” number of PPN may already have been chosen,

for example, based on memory capacity or performance. This

value of PPN does not need to be changed when using

nonblocking overlap.

The multiple PPN overlap technique implies that the number

of PPN is chosen to optimize communication performance.

A different number of PPN may be best for different parts

of an application code. In this case, the code would need

the capability to create multiple processes per node and to

use just the right number of processes per node when needed

(processes sleep when they are not needed).

In this paper, we demonstrate these two techniques of

overlapping communication with communication using a

distributed dense matrix computation. These computations

are dominated by communication; the on-node computations

(DGEMMs) require comparatively little time, especially com-

pared to five years ago. These computations also often use

a 2D partitioning of the matrix (or 3D or 2.5D partitioning

of the work), and use collective operations along rows and

columns of a processor mesh. Such collectives can be im-

plemented in many ways, but often do not achieve the peak

bandwidth available on the interconnect. This deficiency will

be demonstrated in Section V, and we will also show that

overlapping such communication with itself or with other types

of communications can improve performance.

The dense matrix computations are applied in a kernel for

computing the square and the cube of a symmetric matrix. This

kernel arises in the density matrix purification algorithm in

density functional theory (DFT) and other electronic structure

methods. In DFT, the bottleneck is an eigendecomposition of

a Hamiltonian or Fock matrix, F , used to compute a spectral

projector called a density matrix, D. Instead of eigendecom-

position, D can be computed directly from F by using the

density matrix purification iteration [2]

Dk+1 = 3D2
k−2D3

k ,

where the initial approximation D0 is an appropriately scaled

and shifted version of F . Thus, matrix squaring and cubing

are needed at each step. This iteration has many practical

variations, but all the variations involve squaring and cubing,

or forming even higher matrix powers. We use the “canon-

ical purification” method [3] in our experiments. In linear

scaling DFT, the density matrices are large and sparse [4].

In Hartree-Fock theory, the density matrices have modest

size in comparison and are best treated as being dense. In

this case, eigendecomposition can be used to compute the

density matrices, but eigendecomposition cannot scale as well

as dense matrix multiplication in purification methods when

using thousands of processors [5].

This paper makes the following contributions:

1) We promote the idea of overlapping communication with

communication. We illustrate how overlap can be ac-

complished with the new nonblocking overlap technique.

We also discuss how multiple PPN can be used as an

overlap technique (Section III).

2) We develop a new implementation of the parallel matrix

squaring and cubing kernel optimized with the nonblock-

ing overlap technique (Section IV).

3) We analyze the effect of the two overlap techniques

using micro-benchmarks and on the new parallel matrix

squaring and cubing kernel (Section V).

II. BACKGROUND AND RELATED WORK

Parallel matrix multiplication can be categorized into 2D,

3D, and 2.5D algorithms. In 2D algorithms, a 2D partitioning

of the matrix is used and processes are organized in a 2D

mesh. The Scalable Universal Matrix Multiplication Algorithm

(SUMMA) [6] is the most widely used 2D algorithm.

To reduce the communication cost, 3D algorithms [7], [8]

use a 3D partitioning of work and organize the processes

in a 3D mesh. These algorithms use more memory than

2D algorithms; each input matrix is replicated across one

dimension of the process mesh. Compared to 2D algorithms,

the communication cost of 3D algorithms is reduced from

O(N2/P1/2) to O(N2/P2/3), where N is the matrix dimension

and P is the number of processes. As a trade-off, the memory

requirement of 3D algorithms is raised from O(N2/P) to

O(N2/P2/3).

2.5D algorithms [9] bridge the gap between 2D and 3D

algorithms, allowing the user to choose how much memory

to use to reduce communication. A parameter c is introduced

in 2.5D algorithms to control the number of replicated copies

of the input matrices, up to the limit corresponding to 3D

algorithms.

The algorithms described so far are designed for gen-

eral dense matrices. For general sparse matrix multiplication,

SUMMA has been extended in SpSUMMA [10], [11], using

doubly compressed sparse column (DCSC) storage format

and sparse generalized matrix multiplication (SpGEMM) for

local matrix multiplication. Matrix multiplication for block-

rank-sparse matrices in quantum chemistry have also been

developed using a task-based approach [12].

502

III. TECHNIQUES FOR OVERLAPPING COMMUNICATIONS

A. Using Nonblocking MPI Operations to Pipeline and Over-
lap Communications

In the new “nonblocking overlap” technique for overlapping

communication operations, data to be communicated is divided

into multiple parts and communicated using separate MPI

communicators, i.e., each MPI process uses multiple MPI

communicators, with each communicator performing com-

munication simultaneously with other communicators. The

communications can also be pipelined, as we will show in

our first example below and in our dense matrix computation.

The rationale for nonblocking overlap is to keep commu-

nication units busy and to try to fully utilize the available

network bandwidth by overlapping network data transfer in

one communication operation with processing stages that have

little network data transfer in other communication operations.

We explain how this new technique works with the follow-

ing example. Consider the parallel matrix-vector multiplication

y = Ax, where A is a N×N matrix and x and y are vectors.

Matrix A is partitioned and distributed onto a p× p process

mesh, vector x is partitioned into p blocks and processes

P:,i have the i-th block of x (Matlab colon notation is used

to specify mesh slices). After performing local matrix-vector

multiplication, we need to reduce the local results to form the

global result and then distribute y in the same way as x. Let

row comm denote a row communicator for processes Pi,: and

let col comm denote a column communicator for processes

P:,i. Algorithm 1 is the algorithm for the parallel matrix-vector

multiplication. Figure 1 illustrates the communications in the

algorithm for a 4×4 process mesh.

Algorithm 1 Parallel matrix-vector multiplication

Input: A, x, row comm and col comm for all i
Output: y distributed as x

1: Pi, j performs local matrix-vector multiplication: y(j)
i =

Ai jx j for all i, j
2: Pi,: reduce sum y(j)

i to yi on Pi,i with row comm for all i
3: Pi,i broadcast yi to P:,i with col comm for all i

In Algorithm 1, the communicated data in lines 2-3 can

be divided and the operations can be pipelined: Pi,i can start

broadcasting a segment of reduced yi while still waiting for the

reduction of the rest of yi to be completed. Therefore, line 2

can be split and overlapped with line 3. Given N DUP copies

of row comm and col comm, overlapping the communications

in lines 2 and 3 of Algorithm 1 with nonblocking operations

gives Algorithm 2. Figure 2 shows the communications in

Algorithm 2 for a 4×4 process mesh and N DUP = 2.

In Algorithm 2, line 4 posts nonblocking reductions for

segments of yi. Processes Pi,i wait at line 7 for the completion

of these reductions. Upon each completion, a segment of yi is

broadcast (lines 8-9) within the column communicator. Finally,

all processes wait for the completion of the broadcasts.

For the same parallel program, there may be several ways

of using the nonblocking overlap technique to optimize com-

Reduce

BroadcastLocal
Matrix-vector
Multiplication

Fig. 1. Communication operations in Algorithm 1 for a 4×4 process mesh.
Colors denote different blocks of the vector y.

Algorithm 2 Parallel matrix-vector multiplication with

pipelined and overlapped communications

Input: A, x and N DUP copies of both row comm and

col comm for all i
Output: y distributed as x

1: Pi, j performs local matrix-vector multiplication: y(j)
i =

Ai jx j for all i, j
2: Divide y(j)

i into N DUP equal-size contiguous parts

3: for c = 1 to N DUP do
4: Pi,: posts the reduce sum of c-th part of yi on Pi,i with

c-th row comm using MPI Ireduce for all i
5: end for
6: for c = 1 to N DUP do
7: Pi,i waits for completing the reduction of c-th part of yi

in line 4 using MPI Wait for all i
8: Pi,i posts the broadcasts of c-th part of yi to P:,i with

k-th col comm using MPI Ibcast for all i
9: Pi, j posts the receive of c-th part of yi broadcasted by

Pj, j with c-th col comm using MPI Ibcast for all i �= j
10: end for
11: Wait for all outstanding MPI Ibcast in lines 8 and 9 to

finish

munication operations. Some principles for using this new

technique efficiently are as follows:

• A parallel program may have several communication

operations that can be put adjacent to each other without

changing the algorithm logic. One can split and overlap

a single communication operation with itself, but having

more communication operations gives us more opportu-

nities to further overlap the communications.

• Collective operations should be overlapped. Collective

operations have more execution stages and higher cost

compared to point-to-point operations, which means that

the potential performance gain can be larger if collective

503

Reduce 1st
segment

Broadcast
2nd segment

Reduce 2nd
segment

Broadcast
1st segment

Fig. 2. Overlapped and pipelined communication operations in Algorithm 2
for a 4×4 process mesh and N DUP = 2. Colors denote different blocks of
vector y.

operations are overlapped.

• The data should be contiguous and the data layout

should remain unchanged in the pipelined and overlapped

communication operations. The extra cost of repacking

data for the next operation may cancel out the benefit of

pipelining and overlapping communication operations.

Choosing a proper value for N DUP is also important.

One can use different N DUP values for different operations,

if these operations are not overlapped with each other. The

best N DUP value could be different for different operations,

and the best value should be chosen according to the size of

the communicated data. When the message size is small, the

communication time is dominated by network latency and the

effective network bandwidth is low. With a larger message

size, the time consumed by data transfer becomes a larger

portion of the communication time and the actual bandwidth is

closer to the achievable bandwidth. Let the actual bandwidth

BWe be a function of message size n: BWe = fBW (n). After

applying nonblocking overlap, the message size is reduced by

a factor of 1/N DUP and N DUP operations are issued and

pipelined. The actual inter-node bandwidth may not be as high

as N DUP times fBW (n
N DUP). To further utilize the network

bandwidth,

N DUP · fBW

(n
N DUP

)
≥ fBW (n)

is a necessary condition. An easier way to choose N DUP is

to make sure n/N DUP is larger than or equal to a threshold

value nt , where fBW (nt) is close to the achievable network

bandwidth. For different machines, nt may have different

values, and usually 16 KB ≤ nt ≤ 1 MB.

If n/N DUP≤ nt , using the nonblocking overlap technique

is still possible and likely to accelerate communications,

since some communication operations may utilize the network

bandwidth while other communication operations are synchro-

nizing or performing local processing. In this situation, using

a very large N DUP (such as 16) may give some speedup

over using a small or moderate value (such as 4), but using

a very large value of N DUP would heavily consume system

resources and have a large overhead.

B. Using Multiple PPN to Overlap Communications

The “multiple PPN overlap” technique is simply to run

an application using multiple processes per node. The com-

munication operations running on the separate processes are

naturally overlapped and the communication resources may

be better utilized. However, when increasing the number of

processes per node, the following factors may increase and

negatively affect performance, particularly for collectives:

• synchronization cost of blocking collective operations,

• number of steps in collective operations,

• inter-process communication and total communication

volume.

Thus, in order to understand if and when the multiple PPN

overlap technique is effective, particularly for collectives, we

test the technique with a micro-benchmark and with our

density matrix purification application in Section V.

Choosing the number of processes per node is a standard

way to tune application performance. However, altering the

number of processes per node changes multiple quantities

simultaneously, largely (1) per-process quantities such as local

problem size, data layout, number of threads, and memory

access patterns, and (2) per-node quantities such as number

of processes accessing the network interface. What may be

optimal in one case may not be optimal for another. Thus,

in order to make effective use of the multiple PPN overlap

technique, we recommend combining it with the nonblocking

overlap technique. The nonblocking overlap technique does

not have the side-effects of changing the above quantities when

the number of PPN is altered. Results for tests that combine

the two techniques are shown in Section V.

In application codes that are composed of different kernels,

the optimal number of PPN for each kernel may be different.

This is especially true given the complex interactions men-

tioned above when changing the number of PPN. The optimal

number of PPN may also be different for computations (per-

process effects of PPN) and communications (per-node effects

of PPN) within one kernel. To gain finer control over the

number of PPN at different stages of an application code, and

for overlapping communication operations in the context of

this paper, we advocate a mechanism where many processes

are launched per node and utilizing just the right number of

these processes for each stage of the code. In this mechanism,

in order to reduce or avoid explicit intra-node, inter-process

data movement when the number PPN changes, the shared-

memory features of MPI-3 could be used.

We implemented this mechanism for the density matrix

purification kernel in our quantum chemistry code in order

to choose the number of PPN for the purification kernel

separately from the other kernels in the code. At the beginning

of the purification kernel, processes that will be inactive call

MPI Ibarrier. Then these processes use MPI Test and usleep

504

functions to check for the wake-up signal (completion of

the barrier) every 10 milliseconds. Processes that are active

perform the work of the purification kernel and then call

MPI Ibarrier when they are finished, in order to release the

inactive processes and move collectively to the next kernel.

Whether a process is active or inactive in a kernel depends on

the number of PPN, which in turn is chosen to optimize the

performance of that kernel.

IV. OPTIMIZING MATRIX SQUARING AND CUBING

We use the name “SymmSquareCube” to denote the kernel

for computing the square and cube of a symmetric matrix.

Below, we describe a version of SymmSquareCube based on

3D matrix multiplication. In Section V-E, we test Symm-

SquareCube based on 2.5D matrix multiplication.

Four MPI communicators are used in SymmSquareCube:

global comm contains all p3 MPI processes that participate

in SymmSquareCube, row comm contains processes P:, j,k,

col comm contains processes Pi,:,k, and grd comm contains

processes Pi, j,:. The input matrix D is partitioned into p× p
blocks and initially process Pi, j,1 has block Di, j. The resulting

D2 and D3 need to be partitioned and stored in the same way as

D. Algorithm 3 is the original algorithm for SymmSquareCube

released in the GTFock code [5], [13], [14]. Algorithm 3 is

slightly different from performing the standard 3D algorithm

twice, in order to avoid unnecessary communication when D2

and D3 are both desired. In the first matrix multiplication,

D acts as both matrix A and B in C := A× B, and the

broadcast direction of B is different from that of the standard

3D algorithm. In the second matrix multiplication, D again acts

as A and D2 acts as B, and only D2 needs to be broadcast. The

three broadcasts (lines 1, 2 and 7) and the two reductions (lines

4 and 9) are the most time consuming parts of Algorithm 3.

The symmetry of D is only used in line 2.

A. Using the Nonblocking Overlap Technique

Algorithm 3 has three communication phases: lines 1-2,

lines 4-7, and lines 9-10. Communications in each of these

phases can be pipelined and overlapped. However, lines 5 and

6 are irregular point-to-point communications; the potential

speedup of overlapping them with other operations is smaller

than overlapping collective operations. Further, the transpose

of the blocks of D2 in line 6 can be eliminated by using a

new distribution scheme for these blocks. Therefore we first

eliminate line 6 in Algorithm 3 and move line 5 to the second

to last line, which gives us Algorithm 4, the baseline algorithm.

Algorithm 4 is a better candidate for pipelining and over-

lapping communication: lines 1-2 are collective operations

that can be pipelined and overlapped, lines 4-5 are collective

operations that can be pipelined and overlapped, and the

collective operation in line 7 can be pipelined and overlapped

with two point-to-point operations in lines 8-9. Pipelining

and overlapping these operations gives us Algorithm 5, the

optimized SymmSquareCube algorithm. When N DUP = 1,

the optimized algorithm is the same as the baseline algorithm.

Algorithm 3 Original SymmSquareCube algorithm

Input: D, row comm, col comm and grd comm
Output: D2, D3 distributed as D

1: Pi, j,1 broadcasts Di, j as Ai, j to Pi, j,: using MPI Bcast with

grd comm
2: Pi, j,i broadcasts Di, j as BT

j,i to P:, j,i using MPI Bcast with

row comm
3: Local matrix multiplication: Ci, j,k := Ai, j×B j,k
4: Reduce sum Ci,:,k to D2

i,k on Pi,k,k using MPI Reduce in

col comm
5: Pi,k,k sends D2

i,k to Pi,k,1 using MPI Send and MPI Recv
in grd comm

6: Transpose D2 blocks s.t. Pk, j,k has D2
j,k using MPI Send

and MPI Recv in global comm
7: Pk, j,k broadcast D2

j,k as B j,k to P:, j,k using MPI Bcast with

row comm
8: Local matrix multiplication: Ci, j,k := Ai, j×B j,k
9: Reduce sum Ci,:,k to D3

i,k on Pi,k,k using MPI Reduce in

col comm
10: Pi,k,k sends D3

i,k to Pi,k,1 using MPI Send and MPI Recv
in grd comm

Algorithm 4 Baseline SymmSquareCube algorithm

Input: D, row comm, col comm and grd comm
Output: D2, D3 distributed as D

1: Pi, j,1 broadcasts Di, j as Ai, j to Pi, j,: using MPI Bcast with

grd comm
2: Pi, j,i broadcasts Di, j as BT

j,i to P:, j,i using MPI Bcast with

row comm
3: Local matrix multiplication: Ci, j,k := Ai, j×B j,k
4: Reduce sum Ci,:,k to D2

i,k on Pi,i,k using MPI Reduce in

col comm
5: Pj, j,k broadcast D2

j,k as B j,k to P:, j,k using MPI Bcast with

row comm
6: Local matrix multiplication: Ci, j,k := Ai, j×B j,k
7: Reduce sum Ci,:,k to D3

i,k on Pi,k,k using MPI Reduce in

col comm
8: Pi,i,k sends D2

i,k to Pi,k,1 using MPI Send and MPI Recv
in global comm

9: Pi,k,k sends D3
i,k to Pi,k,1 using MPI Send and MPI Recv

in grd comm

B. Using the Multiple PPN Overlap Technique

In the GTFock code mentioned earlier, the Hartree-Fock

calculation has two major kernels: Fock matrix construction

and density matrix purification. The SymmSquareCube kernel

is the major part of density matrix purification. To use multiple

PPN overlap, we modified GTFock to allow the user to

separately choose the number of MPI processes for Fock

matrix construction and for density matrix purification, as

described at the end of Section III-B.

505

Algorithm 5 Optimized SymmSquareCube algorithm

Input: D and N DUP copies of: row comm, col comm and

grd comm
Output: D2, D3 distributed as D

1: for c = 1 to N DUP do
2: Pi, j,1 posts the broadcast of c-th part of Di, j as Ai, j to

Pi, j,: using MPI Ibcast with c-th grd comm
3: end for
4: for c = 1 to N DUP do
5: Pi, j,i receives c-th part of Di, j using MPI Ibcast in c-th

grd comm
6: Pi, j,i posts the broadcast of c-th part of Di, j as BT

j,i to

P:, j,i using MPI Ibcast with c-th row comm
7: end for
8: Wait for all outstanding MPI Ibcast in lines 2 and 6 to

finish

9: Local matrix multiplication: Ci, j,k := Ai, j×B j,k
10: for c = 1 to N DUP do
11: All processes post the reduction sum of c-th part of

Ci,:,k to c-th part of D2
i,k on Pi,i,k using MPI Ireduce in

c-th col comm
12: end for
13: for c = 1 to N DUP do
14: Pj, j,k obtains c-th part of D2

j,k using MPI Ireduce in c-th

col comm
15: Pj, j,k posts the broadcast of c-th part of D2

j,k as B j,k to

P:, j,k using MPI Ibcast with c-th row comm
16: end for
17: Wait for all outstanding MPI Ibcast in line 15 to finish

18: Local matrix multiplication: Ci, j,k := Ai, j×B j,k
19: for c = 1 to N DUP do
20: All processes post the reduction sum of c-th part of

Ci,:,k to c-th part of D3
i,k on Pi,k,k using MPI Ireduce in

c-th col comm
21: end for
22: for c = 1 to N DUP do
23: Pi,i,k posts the send of c-th part of D2

i,k to Pi,k,1 using

MPI Isend and MPI Irecv in c-th global comm
24: Pi,k,k waits for the c-th part of D3

i,k to be reduced

25: Pi,k,k posts the send of c-th part of D3
i,k to Pi,k,1 using

MPI Isend and MPI Irecv in c-th grd comm
26: end for
27: Wait for all outstanding MPI Irecv in lines 23 and 25

V. PERFORMANCE RESULTS

Tests were performed with the original, baseline, and opti-

mized SymmSquareCube algorithms (Algorithms 3, 4, and 5,

respectively) for computing D2 and D3 required by canonical

purification. For all tests, we report the average number of

floating-point operations per second of SymmSquareCube.

These values are averaged over all the self-consistent field

(SCF) iterations needed for a Hartree-Fock calculation imple-

mented in GTFock [5], [13], [14].

Tests were performed using the Intel Xeon Skylake nodes on

1 B 16 B 256 B 2 KB 16 KB 128 KB 1 MB 4MB 16 MB

2000

4000

6000

8000

10000

12000

Message size

In
te

r−
no

de
 b

an
dw

id
th

 (
M

B
/s

)

PPN=1
PPN=2
PPN=4
PPN=8

Fig. 3. Unidirectional point-to-point bandwidth versus message size with
different numbers of PPN on two Stampede2 Skylake nodes.

the Stampede2 supercomputer at Texas Advanced Computing

Center. Each of these nodes has two sockets and 192 GB

DDR4 memory, and each socket has an Intel Xeon Platinum

8160 processor with 24 cores and 2 hyperthreads per core.

The interconnect system of Stampede2 is a 100 Gbps Intel

Omni-Path network with a fat tree topology employing six core

switches. Codes were compiled with Intel C/C++ compiler

version 17.0.4 and Intel MPI version 17.0.3 with optimization

flags “-xHost -O3”. Intel MKL version 17.0.4 was used to

perform local dense matrix multiplication.

A. Analysis of Actual Bandwidth

We first determine the achievable unidirectional bandwidth

across two Stampede2 Skylake nodes using point-to-point

communication with different numbers of processes per node.

We put all source processes on one node and all destination

processes on a second node. Figure 3 shows the measured

unidirectional inter-node bandwidth versus message size for

different PPN. We observe that the peak unidirectional band-

width is about 12000 MB/s. Except for very large message

sizes, the peak available bandwidth cannot be attained by a

single process per node without overlapping communications.

This is the root motivation for overlapping communication

operations.

We model the communication time of collective operations

used in SymmSquareCube. The time taken to send a message

between any two nodes can be modeled as α +nβ , where α
is the network latency, β is the transfer time per byte (the

inverse of network bandwidth), and n is the message size.

For collective operations, Intel MPI can automatically choose

an algorithm according to parameters such as message size

and number of processes [15]. For theoretical analysis, we

assume the recursive doubling algorithm for broadcast and

Rabenseifner’s algorithm [16] for reduction because these are

appropriate choices for long messages. For these algorithms,

TBcast = α(log(p)+ p−1)+2β (p−1)n/p,

TReduce = 2αlog(p)+2β (p−1)n/p.

506

Now we consider the theoretical and actual time con-

sumption of the baseline SymmSquareCube algorithm on 64

Skylake nodes for molecular system 1hsg 70 using a single

MPI process per node. The matrix dimension for 1hsg 70 is

7645. (Details of the molecular systems are in Ref. [14] but

are immaterial to this paper except for the dimension of the

density matrices.) In this situation, p3 = 64, p = 4, the largest

matrix block size is (�7645/4�)2 = 19122, and the message

size is 19122×8 bytes = 27.89 MB. Since the message size is

large, the communication time should be dominated by data

transfer (the β terms), and thus we can ignore the network

latency (the α terms). Substituting p = 4, n = 27.89 MB, and

β = 1 / (12000 MB/s), we have the theoretical communication

time for the baseline algorithm:

TP2P = 2.324×10−3,

TBcast = TReduce = 3.487×10−3,

Tbaseline = 2× (TP2P +TReduce)+3×TBcast = 0.02208.

However, the average communication time for the baseline

algorithm is 0.07312 seconds, so the actual bandwidth is just

30.19% of the peak bandwidth. Meanwhile, two local matrix

multiplications in the baseline algorithm take 0.01794 seconds

on average, showing that communication indeed dominates

computation.

B. Micro-benchmark

We developed a micro-benchmark to measure the actual

bandwidth for broadcast and reduction operations across 4

nodes in three different cases. The second and third cases

overlap communication operations.

1) Blocking: this is the standard non-overlapped case using

one MPI process per node;

2) Nonblocking overlap with N DUP = 4: this is the new

technique using one MPI process per node and 4 MPI

communicators on each process. Each communicator

performs nonblocking collective operations with 1/4 of

the original message;

3) 4 PPN overlap: this is the multiple PPN overlap tech-

nique with 4 processes for each node. Each process is

involved in a blocking collective operation with pro-

cesses on other nodes with 1/4 of the original message.

Four collective operations are performed in overlapped

fashion.

Figure 4 shows the communication patterns of the first and

third cases, and in particular justifies the configuration used

in the third case. The third case has the same number of MPI

processes in each communication group and the same inter-

node communication volume as the first and the second cases.

Figure 5 shows the actual bandwidth of both broadcast and

reduction for these cases, assuming the communication vol-

ume is 2(p− 1)n/p for recursive doubling or Rabenseifner’s

algorithm, where n is the message size and p= 4 is the number

of processes participating in the collectives. For reduction, we

used the MPI FLOAT data type and the MPI SUM operation.

P1

P2

P3

P4

PPN=1 PPN=4

P1
P2

P3
P4

P1 P3 P3
P4

P5

P9

P13

P7

P11

P15

P7
P8

P

}
}
}
}

Node1

Node2

Node3

Node4

Node1

Node2

Node3

Node4

}
}
}
} 16

P
12P

11

P
15

Fig. 4. Communication patterns of the blocking and 4 PPN blocking
cases used in collective operation micro-benchmark. PPN=1 shows collective
communication between 4 nodes and 1 process per node. Each process holds
data of length N. PPN=4 shows the same effective communication using 4
nodes and 4 processes per node. Each process holds data of length N/4 and
communicates in a column communicator consisting of 4 processes.

16 B 128 B 1 KB 8 KB 64 KB 256 KB 1 MB 4MB 16 MB

2000

4000

6000

8000

10000

12000

Message size

In
te

r−
no

de
 b

an
dw

id
th

 (
M

B
/s

)

Blocking Bcast
Blocking Reduce
Nonblocking overlap w/ N_DUP=4 Bcast
Nonblocking overlap w/ N_DUP=4 Reduce
4 PPN overlap Bcast
4 PPN overlap Reduce

Fig. 5. Measured broadcast and reduction bandwidth versus message size
on 4 nodes. Three cases are tested: blocking (not overlapped), nonblocking
overlap with N DUP = 4, and 4 PPN overlap.

We observe that the actual bandwidth of the blocking

broadcast is only about 75% of the peak unidirectional point-

to-point bandwidth when the message size is 16 MB. The

actual bandwidth of the blocking reduction is much smaller

than the peak unidirectional point-to-point bandwidth, which

is the main reason that the actual bandwidth of the baseline

SymmSquareCube algorithm is far from the peak unidirec-

tional point-to-point bandwidth. Both nonblocking overlap and

multiple PPN overlap can improve the performance of the

single blocking collective operations.

Figure 6 shows the corresponding timing data on node 0 for

the 8MB case. For the nonblocking operations, the timings are

split into the time for posting the operation and waiting for

the operation to complete. Timings for 2MB messages using

single blocking and nonblocking collective operations are also

shown for comparison.

Consider first the reduction operation (top half of Figure 6).

In the nonblocking overlap case, the nonblocking reductions

are posted in sequence, and this is clearly seen in the figure.

This serialization of the posting overhead makes the nonblock-

ing overlap technique worse than the multiple PPN overlap

technique (shown in light blue). Both techniques are much

507

2137

5746

269

1139

265

281

357

349

1900

4457

2613

2416

2143

1878

2491

2481

2396

2457

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Nonblocking 2MB
Blocking 2MB

Nonblocking 8MB
Blocking 8MB

1st nonblocking 2MB
2nd nonblocking 2MB
3rd nonblocking 2MB
4th nonblocking 2MB
Proc. 1 blocking 2MB
Proc. 2 blocking 2MB
Proc. 3 blocking 2MB
Proc. 4 blocking 2MB

Reduction Time (microseconds)

MPI_Reduce MPI_Ireduce Wait for MPI_Ireduce 4 PPN MPI_Reduce

370

1392

2

1

1

2

493

1

392

1433

1014

1014

568

677

1324

1360

1371

1368

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

Nonblocking 2MB
Blocking 2MB

Nonblocking 8MB
Blocking 8MB

1st nonblocking 2MB
2nd nonblocking 2MB
3rd nonblocking 2MB
4th nonblocking 2MB
Proc. 1 blocking 2MB
Proc. 2 blocking 2MB
Proc. 3 blocking 2MB
Proc. 4 blocking 2MB

Broadcast Time (microsceonds)

MPI_Bcast MPI_Ibcast Wait for MPI_Ibcast 4 PPN MPI_Bcast

Fig. 6. Time diagram for reducing (top) and broadcasting (bottom) 8MB data
using blocking (not overlapped), nonblocking overlapped with N DUP = 4,
and 4 PPN overlap on process 0. Timings for broadcasting and reducing (a)
2MB data using single blocking and nonblocking calls (not overlapped), and
(b) 8MB data using single nonblocking call (not overlapped), are also shown
for comparison.

faster than the non-overlapped case, which is evidence that

the network resources are better utilized. The data for the non-

overlapped nonblocking reduction shows that time for posting

the operation (1139μs) is comparable to the time for posting

all four overlapped nonblocking operations (265+281+357+
349μs). That all four nonblocking operations complete at

approximately the same time suggests that actual data transfer

may not be starting until the last nonblocking operation is

posted.

The situation is different for the broadcast operation for

this message size (bottom half of Figure 6). The nonblocking

overlap technique is better than the multiple PPN overlap

technique. Here, posting the nonblocking broadcasts in non-

blocking overlap take either very little time, or a significant

amount of time (e.g., 493μs). As a comparison, posting

nonblocking broadcasts for multiple PPN overlap take very

little time (data not shown), which suggests that actual data

transfer may have started before posting the third nonblocking

broadcast in the nonblocking overlap case.

C. SymmSquareCube Results for Nonblocking Overlap with
N DUP = 4

We now compare the performance of the original, baseline,

and optimized SymmSquareCube algorithms. Table I shows

the performance of these algorithms and the speedup of

the optimized algorithm over the baseline algorithm. As the

TABLE I
PERFORMANCE OF SYMMSQUARECUBE ALGORITHMS AND SPEEDUP OF

THE OPTIMIZED ALGORITHM (ALG. 5) OVER THE BASELINE ALGORITHM

(ALG. 4)

Test Matrix Performance (TFlops) Alg. 5 over
System Dimension Alg. 3 Alg. 4 Alg. 5 Alg. 4

1hsg 45 5330 12.36 13.20 16.05 1.21
1hsg 60 6895 16.83 17.57 20.57 1.17
1hsg 70 7645 18.49 19.21 22.48 1.17

TABLE II
PERFORMANCE OF OPTIMIZED SYMMSQUARECUBE FOR DIFFERENT

VALUES OF N DUP. N DUP = 1 IS THE SAME AS THE BASELINE

SYMMSQUARECUBE ALGORITHM.

Test Performance (TFlops) as function of N DUP
System 1 2 3 4 5 6

1hsg 45 13.17 15.30 14.61 16.05 16.19 16.07
1hsg 60 17.57 19.82 19.43 20.57 21.21 20.68
1hsg 70 19.21 21.51 21.47 22.48 22.39 22.54

baseline algorithm is already substantially optimized [14], the

observed speedups are very significant.

Overall, we observe that the baseline algorithm (Alg. 4)

gives some speedup over the original algorithm (Alg. 3).

Pipelining and overlapping communication operations with

other communication operations in the optimized algorithm

(Alg. 5) give 17% or more performance improvement over

the baseline algorithm. Transposing D2 (line 6) in the original

algorithm has fewer steps and smaller communication volume

compared to the collective operations, so we can expect

that the speedup of the baseline algorithm over the original

algorithm to be smaller when using more MPI processes.

For smaller matrices, the synchronization cost relative to data

transfer is larger. Therefore, pipelining and overlapping com-

munications and adjusting point-to-point operations give larger

speedup for 1hsg 45 compared to 1hsg 60 and 1hsg 70. For

larger matrices, pipelining and overlapping communications

benefit more from better utilizing communication bandwidth.

Table II shows the performance of the optimized Symm-

SquareCube algorithm for different values of N DUP. The

results justify our choice of using N DUP= 4. Larger N DUP
values can give further performance improvement, but the

performance is close to that for N DUP = 4.

D. SymmSquareCube Results for Multiple PPN Overlap

Table III shows the performance of the optimized Symm-

SquareCube algorithm with N DUP = 1 and N DUP = 4

using different numbers of MPI processes per node for the

1hsg 70 molecular system. The case N DUP = 1 corresponds

to the baseline algorithm without the nonblocking overlap

technique, and thus shows the effect of the multiple PPN

overlap technique by itself.

The number of MPI processes per node, PPN, is chosen

such that 64× (PPN− 1) < p3 ≤ 64×PPN, where p3 is the

number of processes. The column “total nodes” is the actual

number of nodes utilized, �p3/PPN�. We use a “natural”

assignment of the MPI ranks to the p× p× p process mesh,

508

TABLE III
PERFORMANCE OF THE OPTIMIZED SYMMSQUARECUBE ALGORITHM

WITH N DUP = 1 AND 4 FOR DIFFERENT NUMBERS OF PPN

Process Configuration Performance (TFlops)
PPN Process Mesh Total Nodes N DUP = 1 N DUP = 4

1 4×4×4 64 19.21 22.48
2 5×5×5 63 20.61 26.45
4 6×6×6 54 26.24 33.87
6 7×7×7 58 27.53 36.73
8 8×8×8 64 24.98 32.38

TABLE IV
ESTIMATED INTER-NODE COMMUNICATION VOLUME, BANDWIDTH, AND

TIME USING MICRO-BENCHMARK DATA AND ACTUAL INTER-NODE

COMMUNICATION TIME OF THE BASELINE SYMMSQUARECUBE

ALGORITHM FOR DIFFERENT NUMBERS OF PPN

Estimated inter-node communication Actual
PPN volume Reduce BW Bcast BW time inter-node

(MB) (GB/s) (GB/s) (s) comm. time (s)
1 265.0 2.4 8.5 0.058 0.073
2 311.5 3.1 8.8 0.056 0.066
4 405.1 5.1 9.0 0.054 0.056
6 429.7 8.3 9.1 0.047 0.050
8 390.5 8.7 9.1 0.043 0.054

i.e., the ranks are assigned row by row in one plane and then

plane by plane. Also, the MPI ranks on a node are numbered

consecutively.

We observe that using multiple MPI processes per node

gives considerable speedup to the SymmSquareCube algorithm

with either N DUP = 1 or N DUP = 4 compared to using a

single MPI process per node. When running multiple MPI

processes per node, using N DUP = 4 is always faster than

using N DUP = 1. It is surprising that, for the optimized

SymmSquareCube algorithm, using N DUP = 4 with only 2

MPI processes per node is almost always faster than using

N DUP = 1 with any number of MPI processes per node.

This shows that combining the two techniques, nonblocking

overlap and multiple PPN overlap, is a better choice than

using only one of the techniques. The best performance of

SymmSquareCube, combining the two overlapping techniques,

is 91.2% faster than the baseline performance without use of

communication overlap.

For theoretical analysis, we estimate the inter-node com-

munication volume, bandwidth, and time for the baseline

SymmSquareCube algorithm using the multiple PPN overlap

technique. We assume that all inter-process communication

within a node uses shared memory and we report the inter-

process communication volume that results from communi-

cation between processes on different nodes. We use the

micro-benchmark in Section V-B to estimate the achievable

bandwidth of broadcast and reduction operations when using

different numbers of processes per node.

Table IV shows the estimated inter-node communication

volume, bandwidth, and time as well as the actual inter-

node communication time of the baseline SymmSquareCube

algorithm. We observe that the inter-node communication

volume increases when the number of MPI processes per node

increases. This fact can discourage HPC developers from using

multiple PPN to overlap communications. However, using

more MPI processes per node allows collective operations to

achieve a larger inter-node communication bandwidth, which

reduces the time for inter-node communication.

E. SymmSquareCube using 2.5D Matrix Multiplication

We also test SymmSquareCube implemented using 2.5D

matrix multiplication. This version of SymmSquareCube is

shown in Algorithm 6. Our implementation of 2.5D matrix

multiplication is based on that of Solomonik and Demmel [9]

and uses a step of Cannon’s algorithm as a subroutine. For

simplicity, we skip the details of Cannon’s algorithm, which

includes point-to-point communications and local matrix mul-

tiplications. To optimize this version of SymmSquareCube by

overlapping communications, each collective operation (steps

1, 3, and 5) is overlapped with itself using the nonblock-

ing overlap technique. The algorithm does not present an

opportunity to pipeline the communications like we did in

Algorithm 5. We also test the implementation using multiple

PPN overlap.

Algorithm 6 SymmSquareCube using 2.5D Matrix Multipli-

cation
Input: matrix D distributed on P:,:,1, communicators

row comm, col comm, grd comm, total number of processes

p, and replication factor c
Output: D2, D3 distributed as D

1: Pi, j,1 broadcasts Di, j as Ai, j and Bi, j to Pi, j,: using

MPI Bcast with grd comm
2: Perform

√
p/c3 steps of Cannon’s algorithm including

local matrix multiplication and circular shift of A and B
blocks using point-to-point communications in row comm
and col comm

3: Allreduce sum Ci, j,k to D2
i, j using MPI Allreduce with

grd comm, D2
i, j will be used as the new Bi, j in next step

4: Perform
√

p/c3 steps of Cannon’s algorithm including

local matrix multiplication and circular shift of A and B
blocks using point-to-point communications in row comm
and col comm

5: Reduce sum Ci, j,k to D3
i, j on Pi, j,1using MPI Reduce with

grd comm

Table V shows the performance of the optimized 2.5D

matrix multiplication version of SymmSquareCube using sev-

eral process mesh configurations and replication factors c.

The process mesh configurations are limited;
√

P/c must be

integral, where P is the total number of processes. Results

are shown for N DUP = 1 and N DUP = 4 and for different

numbers of PPN. The test molecular system is 1hsg 70.

The results show that the nonblocking overlap technique

with N DUP = 4 consistently speeds up the non-overlapped

case with N DUP = 1. However, the speedup is small, likely

because different communication operations could not be over-

lapped and pipelined like in the 3D case. The results also show

509

TABLE V
PERFORMANCE OF THE OPTIMIZED 2.5D ALGORITHM VERSION OF

SYMMSQUARECUBE WITH N DUP = 1 AND 4 FOR DIFFERENT NUMBERS

OF PPN AND DUPLICATION FACTOR c.

2.5D Process Configuration Performance (TFlops)
PPN

√
P/c×√

P/c× c Total Nodes N DUP = 1 N DUP = 4
2 8×8×2 64 24.39 24.55
5 12×12×2 58 26.36 28.04
8 16×16×2 64 32.16 34.69
4 9×9×3 61 22.86 23.53
7 12×12×3 62 28.21 30.15
1 4×4×4 64 10.75 11.86
4 8×8×4 64 22.05 23.03
2 5×5×5 63 11.25 12.22
4 6×6×6 54 18.12 19.14
6 7×7×7 58 18.96 20.05
8 8×8×8 64 20.28 21.70

that, for the same replication factor c and thus same memory

utilization, increasing PPN roughly improves performance.

VI. CONCLUSIONS

Overlapping communication operations, especially of col-

lective operations, does not appear to be well-known, but the

concept is simple and general and has the potential to be

applied to a variety of applications. A new technique, called

nonblocking overlap, can be used to incorporate communica-

tion overlapping into an existing code unobtrusively. Another

technique is to use multiple PPN to overlap communications.

Using this technique is nonintuitive, since using multiple

PPN usually increases communication volume in distributed

memory codes. However, this form of overlapping can also

help utilize the available network bandwidth. To effectively

use this multiple PPN overlap technique, we advocated using

a different number of PPN for different stages of a code.

We have also developed a new implementation of a dense

symmetric matrix squaring and cubing kernel that is useful

for density matrix purification in electronic structure calcu-

lations. Our optimizations to SymmSquareCube in GTFock

have been incorporated into the open-source software released

at https://github.com/gtfock-chem. Although we treated the

dense matrix case, the same ideas could be applied to the

sparse matrix case.

In future work, we plan to investigate the effectiveness of

overlapping communication operations in algorithms besides

those of dense matrix computations. In distributed particle sim-

ulations, the forces between a set of particles can be arranged

in a matrix that is partitioned using a 2D partitioning. This

leads to algorithms that use collective communication along

processor rows and columns of a processor mesh [17]. We also

plan to investigate the use of overlapping communications in

block iterative linear solvers, where reductions (vector norms

and dot products) involving large numbers of nodes are the

bottleneck.

ACKNOWLEDGMENTS

The authors gratefully acknowledge funding from an In-

tel Parallel Computing Center grant and funding from the

National Science Foundation, grant ACI-1147843. The also

authors acknowledge the Texas Advanced Computing Center

(TACC) at The University of Texas at Austin for providing

HPC resources that have contributed to the research results

reported within this paper.

REFERENCES

[1] M. P. I. Forum, “MPI: A Message-Passing Interface Standard, version
3.1,” University of Tennessee, Tech. Rep., 2015.

[2] R. McWeeny, “Some recent advances in density matrix theory,” Reviews
of Modern Physics, vol. 32, no. 2, pp. 335–369, 1960.

[3] A. H. R. Palser and D. E. Manolopoulos, “Canonical purification of
the density matrix in electronic-structure theory,” Physical Review B,
vol. 58, no. 19, pp. 12 704–12 711, 1998.

[4] D. R. Bowler and T. Miyazaki, “O(n) methods in electronic structure
calculations,” Reports on Progress in Physics, vol. 75, no. 3, p. 036503,
2012.

[5] E. Chow, X. Liu, M. Smelyanskiy, and J. R. Hammond, “Parallel
scalability of Hartree-Fock calculations,” The Journal of Chemical
Physics, vol. 142, no. 10, p. 104103, 2015.

[6] R. A. van de Geijn and J. Watts, “SUMMA: Scalable Universal Ma-
trix Multiplication Algorithm,” Concurrency: Practice and Experience,
vol. 9, no. 4, pp. 255–274, 1995.

[7] E. Dekel, D. Nassimi, and S. Sahni, “Parallel matrix and graph algo-
rithms,” SIAM Journal on Computing, vol. 10, no. 4, pp. 657–675, 1981.

[8] R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar,
“A three-dimensional approach to parallel matrix multiplication,” IBM
Journal of Research and Development, vol. 39, no. 5, pp. 575–582, 1995.

[9] E. Solomonik and J. Demmel, “Communication-optimal parallel 2.5d
matrix multiplication and LU factorization algorithms,” Euro-Par 2011
Parallel Processing, pp. 90–109, 2011.

[10] A. Buluc and J. R. Gilbert, “Challenges and advances in parallel
sparse matrix-matrix multiplication,” in Proceedings of the 2008 37th
International Conference on Parallel Processing, ser. ICPP ’08. IEEE
Computer Society, 2008, pp. 503–510.

[11] ——, “Parallel sparse matrix-matrix multiplication and indexing: Im-
plementation and experiments,” SIAM Journal on Scientific Computing,
vol. 34, no. 4, pp. C170–C191, 2012.

[12] J. A. Calvin, C. A. Lewis, and E. F. Valeev, “Scalable task-based
algorithm for multiplication of block-rank-sparse matrices,” in Proceed-
ings of the 5th Workshop on Irregular Applications: Architectures and
Algorithms, ser. IA3 ’15. ACM, 2015, pp. 4:1–4:8.

[13] X. Liu, A. Patel, and E. Chow, “A new scalable parallel algorithm for
Fock matrix construction,” 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, 2014.

[14] E. Chow, X. Liu, S. Misra, M. Dukhan, M. Smelyanskiy, J. R.
Hammond, Y. Du, X.-K. Liao, and P. Dubey, “Scaling up Hartree-
Fock calculations on Tianhe-2,” The International Journal of High
Performance Computing Applications, vol. 30, no. 1, pp. 85–102, 2015.

[15] Intel, “Intel MPI library for Linux OS developer reference,”
2018. [Online]. Available: https://software.intel.com/sites/default/files/
intelmpi-2019-developer-reference-linux.pdf

[16] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in MPICH,” The International Journal of
High Performance Computing Applications, vol. 19, no. 1, pp. 49–66,
2005.

[17] S. Plimpton, “Fast parallel algorithms for short-range molecular-
dynamics,” Journal of Computational Physics, vol. 117, no. 1, pp. 1–19,
1995.

510

