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Abstract—This paper presents the first quantum chemistry
calculations using a recently developed vectorized library for
computing electron repulsion integrals. To lengthen the SIMD
loop and thus improve SIMD utilization, the approach used in
this paper is to batch together multiple integrals that can be
computed using the same code path. The standard approach is
to compute integrals one at a time, and thus a batching procedure
had to be developed. This paper shows proof-of-concept and
demonstrates the performance gains possible when the batched
approach is used. Batching also enables certain optimizations
when the integrals are used to compute the Fock matrix. We
further describe several other optimizations that were needed to
obtain up to a 270% speedup over the non-batching version of
the code, making a compelling case for adopting the presented
techniques in quantum chemistry software.

Index Terms—electron repulsion integral, vectorization, batch-
ing, Hartree-Fock, quantum chemistry

I. INTRODUCTION

Quantum chemistry is a mature area of computational
science with many methods and codes developed that are used
across chemistry, biochemistry, and materials science. The
main kernels in quantum chemistry are electron repulsion in-
tegral (ERI) calculations, eigenvalue computations, and tensor
contractions. Among these three kernels, ERI calculations are
the most irregular and challenging to optimize. In particular,
the ERI algorithms are recursive and loops have small trip
counts, making efficient vectorization very difficult.

Previous attempts to improve the vector performance of
ERI libraries took the approach of restructuring loops to make
them vectorizable, annotating code to help the compiler auto-
vectorizer, as well as hand-coding with intrinsics [1], [2].
However, the resulting vectorization efficiency was still poor,
because the recursions and short loops of the ERI algorithms
could not be addressed without a drastic code transformation
or rewrite.

Recently, a library for ERI calculations, called Simint [3],
was developed with the goal obtaining high vector efficiency.
Simint is based on the idea of simultaneously computing the
components of an ERI, called primitive integrals, that have
the same code path. Benchmarks showed superior performance
over existing ERI libraries and this performance improvement
could be directly attributed to improved vector performance.

However, ERIs may only have a single or small number
of primitive integrals, which would give Simint little or no

advantage over other ERI libraries in this case. The solution
here is to batch together the computation of multiple ERIs, si-
multaneously computing primitive integrals for these multiple
ERIs, as long as the computation of these primitive integrals
share the same code path. With enough primitive integrals,
the vector loop computing the primitive integrals can become
much more efficient.

This paper makes the following contributions:
1) In Section IV, we present optimizations for Simint, in-

cluding a non-intuitive way to perform vector reductions,
and a sorting procedure to improve vector utilization
in the presence of primitive screening (neglect of small
primitive integrals).

2) In Section V, we present an algorithm for batching
ERIs and in Section VII we demonstrate the overall
performance improvement that this batching approach
can have in a quantum chemistry calculation.

3) In Section VI, we present efficient techniques for con-
structing the Fock matrix in the context of multiple
threads updating a shared matrix. One of these tech-
niques arises from the fact that the ERIs are batched.

4) Previous performance studies of Simint used mi-
crobenchmarks that only timed the ERI calculation. Our
tests in Section VII use Simint in a Hartree-Fock appli-
cation, giving a more realistic picture of performance,
while allowing a wider range of optimizations.

II. BACKGROUND

The solution to a quantum chemistry problem can be
expressed in terms of basis functions φi, with 1≤ i≤ n for n
basis functions. “Gaussian” basis functions are most common,
particularly for molecular systems, and are the target of this
work, although other types of basis functions, such as plane
waves and wavelets [4], are also used, particularly for materials
systems.

An ERI describes the Coulombic interaction between two
electrons in terms of four basis functions

(AB|CD) =
∫

φA(~x1)φB(~x1)
1

r12
φC(~x2)φD(~x2)d~x1d~x2

where the (AB|CD) is notation denoting a specific ERI and
r12 is the distance between the two electrons at ~x1 and ~x2.
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Each basis function is generally a linear combination (or
“contraction”) of known primitive functions, χAµ , i.e.,

φA =
KA

∑
µ

cAµ χAµ

(similarly for the other functions φB, φC, and φD) and thus the
integral, which can be called a contracted integral for clarity,
is the result of a four-fold sum,

(AB|CD) =
KA

∑
µ

KB

∑
ν

KC

∑
λ

KD

∑
σ

cAµ cBν cCλ cDσ [χAµ χBν |χCλ χDσ ]

where [χAµ χBν |χCλ χDσ ] in square brackets denotes a primitive
integral. It is these primitive integrals involving recursive
calculations that are difficult to vectorize. In the above ex-
ample, the contracted integral is the sum of KAKBKCKD
primitive integrals. Note that, nominally, n4 ERIs must be
computed, a potentially very large number. Neglect of small
ERIs, called screening, and exploiting symmetries such as
(AB|CD) = (BA|CD) = (CD|BA) are necessary in practical
implementations.

A basis set is a specification of the basis functions to use
for different atomic species in a molecule. Some basis sets
are highly contracted, meaning its basis functions are sums of
many primitive functions (up to a dozen or more), whereas
others are lightly contracted, meaning its basis functions are
mostly represented by a single primitive function.

A basis function is characterized by its angular momentum
(AM), which can take on values 0,1,2,3,4, . . ., denoted as
s, p,d, f ,g, . . ., respectively. The primitive functions compris-
ing a basis function have the same AM as the basis function.
Since an integral is associated with four basis functions, an
integral is also associated with four AM numbers, e.g., (ss|pd),
where the bracket notation has been overloaded, and denotes
the AM class of an integral. Important for this paper, primitive
integrals of the same class can be computed by the same code
path, and can thus be computed simultaneously in vectorized
fashion.

The Simint library vectorizes the computation of primitive
integrals of the same class. For the computation of the specific
ERI (AB|CD), the number of primitive integrals is KAKBKCKD.
Three cases are illustrated in Figure 1. For lightly contracted
basis sets (a), the number of primitive integrals may be as
small as 1, and thus no vectorization is possible. Even for
moderately contracted basis sets (b), SIMD utilization may be
poor because a large proportion of the integrals is calculated
outside the SIMD loop. For highly contracted basis sets (c),
SIMD utilization is good. Thus, for good performance for
all basis sets, particularly lightly contracted basis sets, we
need to batch together contracted integrals of the same class,
computing their primitive integrals in the same SIMD loop.

Basis functions related in a specific way are grouped into
sets called shells. Four shells M, N, P, Q, are called a
shell quartet and define a set of integrals (MN|PQ). Integral
libraries always compute ERIs in these shell quartet sets in
order to reuse intermediate computations, but computation of
the ERI in these sets is not naturally vectorizable.

(a) Single primitive integral: poor SIMD utilization

(b) Small number of primitives: generally poor SIMD utilization

(c) Large number of primitives: good SIMD utilization

Fig. 1. Different numbers of primitive integrals calculated using SIMD
vectorization using the example of 4 doubles per SIMD word. (Primitive
integrals occupying lanes of a SIMD word are shown with red shading.) For
high SIMD utilization, a large number of primitive integrals of the same AM
class are necessary.

III. RELATED WORK

Vectorization of ERI calculations has been considered since
the era of pipelined vector supercomputers. On the CRAY-
1, Saunders and Guest [5] proposed vectorizing primitive
integral calculations for low AM cases, where the shell quartet
structure, which complicates vectorization, could be ignored
without too high a cost. For the high AM cases, it was
suggested to vectorize the contractions. On the Alliant FX-8,
Gill, Head-Gordon, and Pople [6] also proposed vectorizing
primitive integrals. Here, contractions could be performed
early or late in the algorithm depending on AM class. In the
mid 1990s, Wolinski et al. [7] proposed batching contracted
integrals in the TEXAS code to improve performance in the
same vein as using BLAS constructs.

The above programs are legacy Fortran codes using common
blocks. The TEXAS integral module, however, was recently
converted to be used in a multithreaded environment [8] and
is still the default integral library in NWChem [9]. Despite its
design, however, Shan et al. [1] found vectorization perfor-
mance to be very poor: “Via substantial programming effort,
we obtained a vectorized version running approximately 25%
faster compared to non-vectorization mode on the MIC and
BG/Q platforms.”

Libint2 [10], one of the integral libraries used in GAMESS
[11], has experimental capability to vectorize across contracted
integrals, but does not appear to be used this way. Vec-
torizing across contracted integrals poses several challenges,
including the implementation of primitive integral screening,
much larger working set size than vectorizing across primitive
integrals, and needing to not only batch integrals with the same
AM class but also the same contraction pattern, KA, KB, KC,
KD.

Recently developed integral libraries have not focused on
vectorization. Sun [12] provides comprehensive functionality
although an expensive inner product in the Rys quadrature
method was vectorized. Zhang [13] uses tree search to find
efficient recursions and also uses a meta-algorithm approach,
applying the best algorithms for each AM class.

In the last decade, there has also been extensive interest in
computing ERIs on GPUs [14] [15] [16] [17] [18] [19]. Here,
research addressed the use of single precision, the host-device
bottleneck, and whether to vectorize primitive or contracted
integrals. Some of the codes developed are limited to low
AM functions as limited device memory makes simultaneous



computation of large numbers of high AM integrals very
challenging. These works also appeared to ignore practical
issues such as integral screening and exploitation of symmetry,
which would introduce thread divergence.

Ramdas and co-authors [20]–[22] discuss the advantages of
batching ERIs of the same AM class, such as instruction and
data cache exploitation, and propose batching algorithms that
can be implemented on FPGAs, but there are few details on
actual implementations.

IV. SIMINT PERFORMANCE OPTIMIZATIONS

Simint is a vectorized implementation of the Obara-Saika
(OS) algorithm [6], [23]–[27] for computing ERIs. In the OS
algorithm, an integral with AM class (i j|kl) can be computed
using recurrence relations involving auxiliary integrals with
lower AM class, i.e., involving functions with lower AM. To
give a conceptual but not precise description below, we denote
an auxiliary integral of class (i j|kl) as Θ

(N)
i jkl where the index

N equals 0 for the desired target integral.
To compute Θ

(0)
i jkl , multi-dimensional recurrence relations

are used, where the base of the recursions are Θ
(N)
0000 for any

value of N, which are called Boys functions of order N,
and which can be computed directly. The recurrence relations
can be organized into vertical recurrence relations (VRR) and
horizontal recurrence relations (HRR) and can be used as
follows.

To compute Θ
(0)
i jkl , one begins by computing Θ

(m)
i+ j,0,0,0 via a

recurrence relation known as a bra-side (i.e., left-hand side)
VRR, and then computing Θ

(m)
i+ j,0,k+l,0 via a ket-side (i.e., right-

hand side) VRR, followed by computing Θ
(m)
i, j,k+l,0 via a bra-

side HRR, and finally by computing Θ
(m)
i, j,k,l by a ket-side HRR.

For reference, these recurrence relations are:
Bra-side VRR:

Θ
(N)
i+1,0,0,0 = XPAΘ

(N)
i,0,0,0−

α

p
XPQΘ

(N+1)
i,0,0,0

+
i

2p

(
Θ

(N)
i−1,0,0,0−

α

p
Θ

(N+1)
i−1,0,0,0

)
Ket-side VRR:

Θ
(N)
i,0,k+1,0 = XQCΘ

(N)
i,0,k,0−

α

q
XPQΘ

(N+1)
i,0,k,0

+
k

2q

(
Θ

(N)
i,0,k−1,0−

α

q
Θ

(N+1)
i,0,k−1,0

)
+

i
2(p+q)

Θ
(N+1)
i−1,0,k,0

Bra-side HRR:

Θ
(N)
i, j+1,k,l = Θ

(N)
i+1, j,k,l +XABΘ

(N)
i, j,k,l

Ket-side HRR:

Θ
(N)
i, j,k,l+1 = Θ

(N)
i, j,k+1,l +XCDΘ

(N)
i, j,k,l .

In the above, XPA, etc., are parameters that depend on the
atomic coordinates of the molecular system, and p, q, α , are
parameters of the basis functions. The index m above denotes
an appropriate range of indices for auxiliary integrals that must
be computed.

Listing 1. General bra-side HRR function
void HRR_J_f_d(const int ncart, double *hAB,
double *fdXX, double *gpXX, double *fpXX) {
for (int iket = 0; iket < ncart; ++iket) {
fdXX[0*ncart+iket] = gpXX[0*ncart+iket]

+ hAB[0]*fpXX[0*ncart+iket];
fdXX[1*ncart+iket] = gpXX[3*ncart+iket]

+ hAB[1]*fpXX[0*ncart+iket];
fdXX[2*ncart+iket] = gpXX[6*ncart+iket]

+ hAB[2]*fpXX[0*ncart+iket];
fdXX[3*ncart+iket] = gpXX[4*ncart+iket]

+ hAB[1]*fpXX[1*ncart+iket];
// more calculations (no simple pattern)

}
}

Simint applies the VRRs to SIMD words rather than regular
double-precision words, i.e., to 8 doubles at a time in the
case of AVX-512. One could also apply the HRRs to SIMD
words, however, since the HRRs do not involve parameters
that depend on the basis functions, the primitive integrals
can be contracted at this point, before the HRRs, thus saving
computation and storage. Thus the HRRs are not perfectly
vectorized, but some auto-vectorization of the bra-side HRR
is possible. Consequently, the vector efficiency of Simint
depends on the AM class, with classes involving more VRRs
than HRRs being more efficient.

A. Optimizing General Functions for High AM Integrals

Simint code is generated, with separate functions for com-
puting integrals of each AM class. For low AM classes,
the recursive operations are expanded explicitly and inlined.
For high AM classes, in order to reduce code size, general
functions are used to implement the VRRs and HRRs involv-
ing high AM functions. The following two optimizations are
simple, although they could be easily missed, and give some
performance improvement.

1) General Bra-side HRR Functions: As an example, the
Simint function HRR J f d() computes auxiliary integrals of
class ( f d| ∗ ∗) from those of classes ( f p| ∗ ∗) and (gp| ∗ ∗)
using a bra-side HRR. These functions can be auto-vectorized
by the compiler, but timings show that some AM classes
with only VRRs and bra-side HRRs have poor vectorization
speedup, and that the general bra-side HRR functions consume
most of the time. These general bra-side HRR functions accept
a parameter, ncart, to specify the number of basis functions in
a shell on the ket side, and this parameter determines how data
is accessed (see Listing 1). If this parameter value is known
at compile time, auto-vectorization could be improved.

The parameter ncart only takes on a small set of val-
ues. Therefore, we have created specialized versions of
HRR J f d() and other functions for specific values of ncart.
These specialized versions are called from a wrapper function.
The general version is kept for large values of ncart, which
are rare. As a result, the compiler can compute all the offsets
of output auxiliary integrals and know the length of the loop
at compile time, which reduces the cost of the loop and leads
to better vectorization.



Listing 2. contract all() implementation for AVX-512
inline void contract_all(int ncart,

__m512d const *src, double *dest) {
for (int np = 0; np < ncart; np++)

dest[np] += _mm512_reduce_add_pd(src[np]);
}

2) General VRR Functions: In Simint, the function os-
tei general vrr K() implements a ket-side VRR. Profiling
found that this function is a hotspot when the basis set has
many high AM shells. This function is implemented in a
general way to open algorithmic options: it can compute
(i, j|k + 1, l) for any given i, j,k, l ≥ 0. However, the ket-
side VRR in the OS algorithm assumes targets of the form
(i,0|k + 1,0). By specializing this function for this case,
branches that determine which recursions to take can be
reduced from 16 to 4 and can also be moved from the inner-
most loop to an outer loop. The original general function is
retained for use with different algorithmic options.

B. Optimizing Contractions for AVX-512

The contraction operation sums primitive auxiliary inte-
grals to form a contracted auxiliary integral. In Simint, the
contract all() function performs, for a set of SIMD words,
a horizontal reduction of double-precision words in a SIMD
word, as shown in Listing 2. Each SIMD word corresponds
to a different auxiliary integral, not the same integral. The
contract all() function was measured to be a computational
hotspot.

In the AVX-512 case shown in Listing 2, contract all(),
naturally uses the mm512 reduce add pd() intrinsic function
to sum the components of a SIMD vector. However, analyzing
the assembly code for contract all() reveals two problems:
(1) mm512 reduce add pd() does not have a corresponding
CPU instruction, but is emulated by 8 instructions; (2) when
ncart > 10, the compiler does not unroll the loop.

Considering that the AVX-512 instruction set has new shuf-
fle instructions and that the Intel compilers can utilize these
instructions efficiently [28] [29], we use a novel approach to
accelerate the contract all() function. For a 8× 8 block of
double-precision words (8 SIMD words), we first transpose the
block, then perform vectorized add for the transposed vertical
vectors. Listing 3 is the new, optimized implementation. Lines
10 - 12 transpose a 8×8 block, and line 13 effectively hints to
the compiler that the transposed data will be used immediately
and should be kept in registers. As a quick comparison, for
a 8× 8 block, the optimized implementation needs 47 CPU
instructions, while the original approach needs 16× 8 = 128
CPU instructions. Since ncart is not always a multiple of 8,
we use the original approach for the remainder part.

We also make a special optimization for AM class (ss|ss),
since contract all() for (ss|ss) is a large portion of the runtime
when using basis sets with few high AM functions. The
subroutine for computing (ss|ss) calls contract all() with
ncart = 1, so the remainder part in Listing 3 would be used.
Instead, to use the new approach, we gather 8 SIMD words

Listing 3. Optimized contract all() implementation for AVX-512
1inline void contract_all(int ncart,
2__m512d const *src, double *dest) {
3int ntrans = ncart / 8;
4int np_start = ntrans * 8;
5double tmp[64];
6__m512d dst[8];
7// Transpose-Add part
8for (int it = 0; it < ntrans; it++) {
9double *src_ptr = (double*)src + it * 64;
10for (int i = 0; i < 8; i++) {
11for (int j = 0; j < 8; j++)
12tmp[i * 8 + j] = src_ptr[j * 8 + i];
13dst[i] = _mm512_load_pd(tmp + i * 8);
14}
15__m512d res = _mm512_loadu_pd(dest + it * 8);
16for (int i = 0; i < 8; i++)
17res = _mm512_add_pd(res, dst[i]);
18_mm512_storeu_pd(dest + it * 8, res);
19}
20// Remainder part
21for (int np = np_start; np < ncart; np++)
22dest[np] += _mm512_reduce_add_pd(src[np]);
23}

corresponding to the same contracted integral, then store the
results separately. It should be noted that this gather-contract-
store approach can also be used for other AM classes, but it
would make the code much more complicated, and the cost of
extra operations in these cases may cancel out the saved time.

C. Sorting for Primitive Screening

Primitive screening is the concept of neglecting the compu-
tation of primitive integrals when they are known to be small.
Since the computation of the primitive integrals is vectorized,
primitive screening creates “holes” (screened primitives) in the
SIMD words, which are not handled efficiently. Simint only
neglects the computation of primitive integrals if all primitives
in a SIMD word are screened. To improve vectorization
efficiency, we sort all primitives in a shell pair in descending
order according to an upper bound based on the Cauchy-
Schwarz inequality. If a primitive involving a shell pair is
screened, all primitives behind it will also be screened. As a
result, all neglected primitives will be placed together, which
increases the probability that all primitives in a SIMD word
are screened. Figure 2 shows the mechanism of sorting for
primitive screening in Simint.

V. BATCHING ERI CALCULATIONS TO IMPROVE
VECTORIZATION

In distributed memory quantum chemistry codes, the set
of shell quartets to be computed is partitioned statically or
dynamically among the compute nodes. Within a node, each
thread computes and consumes the integrals for a shell quartet,
one shell quartet at a time. As described in Section II, SIMD
utilization in Simint for computing ERIs may be poor when
shell quartets are computed one at a time. In this Section, we
describe a batching procedure for shell quartets of the same
AM class that is executed on each node. Each thread will thus
compute the integrals for multiple shell quartets as one unit



SIMD word

SIMD word
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SIMD word SIMD word
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No  primitive

sorting:

With  primitive

sorting:

Screened primitive Shell pair

Primitives

Fig. 2. Sorting primitive integrals for primitive screening. Heavy lines
delineate primitive integrals corresponding to a ket-side shell pair. An example
is shown for a sequence of 5 ket-side shell pairs with 2, 5, 1, 3, and 5 primitive
integrals, respectively. Without sorting, no SIMD words can be skipped. With
sorting, two of the four SIMD words can be skipped. All four primitives in a
SIMD word are screened (shown in gray) when a SIMD word can be skipped.

of work and thus improve SIMD utilization, particularly for
lightly contracted basis sets.

The batching procedure has several requirements:
1) Only unique shell quartets are computed, i.e., (MN|PQ)

is symmetric with 7 other shell quartets, for example
(NM|QP), and only one of these should be computed.

2) Shell quartets containing integrals that all are small in
magnitude are neglected and the shell quartet is not
computed; this is called shell quartet screening and is
different from and used together with primitive integral
screening.

3) Batching cannot precompute a list of all shell quartets
with the same AM class, as the large number of shell
quartets makes this infeasible.

4) Batching for a given AM class should be handled by
a single thread; this maximizes the number of shell
quartets that can be batched together.

A. ERI Batching Scheme
Our solution is to use a dynamic procedure where queues

for each AM class are maintained. Shell quartets are added to
the appropriate queue depending on their AM class, and a full
queue constitutes a batch of shell quartets with integrals to be
computed.

Algorithm 1 shows the procedure. For simplicity, we assume
an appropriate partitioning of the shell quartets among the
nodes and that the indices M, N, P, Q are only over the indices
for quartets that are assigned to a node. The M,N loop (line
2) is parallelized with OpenMP multithreading. Each thread
maintains its private shell quartet queues, pushing all valid
shell quartets it encounters to a queue according to the AM
of the P and Q shells (lines 4 - 6). A batch of shell quartets
will be submitted to Simint when a queue is full, then the ERI
results are consumed, and this queue is reset (lines 7 - 10).
When a thread has looped over all P,Q pairs for a given M,N
pair, it submits all its non-empty queues to Simint and resets
these queues (lines 13 - 16). We note that the procedure is
thread-aware but lock-free.

The shell quartet queues in Algorithm 1 should be long
enough to provide good SIMD efficiency, but very long queues

Algorithm 1 Batched ERI computation
1: Each thread initializes its private queues
2: for shell pairs M,N in parallel do
3: for shell pairs P, Q do
4: if (MN|PQ) is unique and not screened then
5: Compute bra-side shell pair id: id = (P,Q)
6: Push (MN|PQ) to queue q[id]
7: if queue q[id] is full then
8: Compute shell quartets in queue q[id]
9: Reset queue q[id]

10: end if
11: end if
12: end for
13: for a non-empty queue q[i] do
14: Compute shell quartets in queue q[i]
15: Reset queue q[i]
16: end for
17: end for

are not necessary. In the experimental tests (see Table V later
in this paper), we found a queue length of 16 to give good
performance.

B. ERI Library Issues for Batched Computation

To compute the integrals for a batch of shell quartets,
Algorithm 1 calls Simint with the handle of shell pair (M,N),
and a set of handles to shell pairs {(Pi,Qi)} such that all shells
Pi have the same AM and all shells Qi have the same AM. This
should be considered the basic unit of work for a vectorized
integral library.

The computation of the ERIs in a shell quartet (MN|PQ)
uses some quantities that only depend on shell pairs (M,N)
and (P,Q). These quantities, called shell pair data, can be
precomputed and stored because they are used for multiple
shell quartets. If we store shell pair data, we must gather
the appropriate data into a continuous buffer for batched ERI
computation, since the vectorized computation needs the data
in this format. Alternatively, shell pair data can be regenerated
every time they are needed.

Let p1 and p2 be the number of primitive functions for two
shells in a shell pair. The store-reuse approach needs to copy
12× p1× p2 double-precision words for this shell pair, where
12 is the number of arrays in its shell pair data. Regeneration
of the shell pair data only needs to read the coordinates and
coefficients data for the two shells, which is 6+ 2× (p1 +
p2) double-precision words. With primitive screening without
primitive sorting, the regeneration approach could be a little
faster than the store-reuse approach in some cases.

To see which approach is more efficient, we tested
both these approaches with different workloads. Experiments
showed that storing and reusing all shell pair data is much
faster in most cases. If we disable sorting for primitive
screening, recomputing shell pair data is a little bit faster in a
few cases. Therefore, we use the store-reuse approach.



Finally, we note a caveat when using batching with a
dynamic distribution of shell quartets to the compute nodes.
When dynamic distribution is used, a task containing some
number of shell quartets is assigned to a node that is free.
When ERI computations are batched, one must make sure that
the tasks contain enough shell quartets such that large enough
batches of the same AM class can be formed.

VI. OPTIMIZING MULTITHREADED FOCK MATRIX
ACCUMULATION

Once ERIs are computed, they are used to form the Fock
matrix in the Hartree-Fock (HF) method [30], density func-
tional theory (DFT) [31], and other methods. In the case of
HF, blocks of the Fock matrix F have the form

FMN = Hcore
MN +∑

PQ
DPQ {2(MN|PQ)− (MP|NQ)} ,

where (MN|PQ) is a shell quartet of ERIs, D is the density
matrix, and Hcore is a known, fixed matrix. The Fock matrix,
however, is not constructed one block at a time as the
above equation suggests. Instead, because of the high cost
of computing the ERIs, a unique shell quartet (MN|PQ) is
computed once (which is equivalent to computing (PQ|MN)
and 6 other symmetric shell quartets), and then contributions
to FMN , FMP, FNP, FPQ, FMQ, FNQ are accumulated into F .
These six blocks are all the ways of choosing pairs of the 4
shell indices, M, N, P, Q. Note also that F is symmetric so
FNM , etc., do not need to be computed.

Since multiple threads are computing shell quartets and
accumulating them into a shared Fock matrix F , a thread-safe
Fock matrix accumulation algorithm is needed. Previously,
codes have used a combination of atomic operations and
private copies of F that are summed at the end [2], [8], [32]. In
the past, the performance of Fock matrix accumulation has not
been critical since the ERI calculations are dominant. How-
ever, with more efficient ERI calculations and large numbers
of threads, we find that the execution time for Fock matrix
accumulation can be significant, especially when using basis
sets with small numbers of basis functions per atom.

After a thread computes a shell quartet (MN|PQ), the basic
Fock matrix accumulation procedure executed by the thread
is shown in Algorithm 2. In the Algorithm, ERI denotes
the 4-D array storing the ERIs in the shell quartet, with
dimensions dimM× dimN × dimP× dimQ. A four-fold loop
iterates over each of the elements of the shell quartet and
computes contributions to F .

Assuming one copy of F for some set of threads, for thread
safety, atomic operations are used to update FPQ, FMQ, and
FNQ (lines 9-11), resulting in 3×dimM×dimN×dimP×dimQ
atomic operations. Updates to FMN , FMP and FNP can be
accumulated in registers, with atomic operations used to
accumulate these register values outside the iQ loop to update
F . The total number of atomic operations needed here is

AO1 = 3×dimM×dimN×dimP×dimQ +

2×dimM×dimN×dimP+dimM×dimN.

Algorithm 2 Fock matrix accumulation, given shell quartet
(MN|PQ) with dimensions dimM×dimN×dimP×dimQ.

1: for iM = 0 to dimM-1 do
2: for iN = 0 to dimN-1 do
3: for iP = 0 to dimP-1 do
4: for iQ = 0 to dimQ-1 do
5: I = ERI(iM, iN, iP, iQ)
6: Update FMN(iM, iN) with DPQ(iP, iQ), I
7: Update FMP(iM, iP) with DNQ(iN, iQ), I
8: Update FNP(iN, iP) with DMQ(iM, iQ), I
9: Update FPQ(iP, iQ) with DMN(iM, iN), I

10: Update FMQ(iM, iQ) with DNP(iN, iP), I
11: Update FNQ(iN, iQ) with DMP(iM, iP), I
12: end for
13: end for
14: end for
15: end for

Our paramount consideration is reducing the usage of
atomic operations, which we find to limit the performance
of this approach. Thus, an obvious alternative is to split
Algorithm 2 into six four-fold loops such that each four-fold
loop only updates one block of the Fock matrix. The order of
the loops can be exchanged so that atomic operations can be
placed in the second nested loop. Algorithm 3 is an example
for FMQ. The calculation and update of other Fock matrix
blocks are similar. After splitting, the total number of atomic
operations becomes

AO2 = dimM× (dimN +dimP+dimQ) +

dimN× (dimP+dimQ)+dimP×dimQ.

AO2 equals the sum of the sizes of blocks FMN , FPQ, FMP,
FMQ, FNP and FNQ, so it is the lower bound for the number
of atomic operations needed.

Algorithm 3 Updating FMQ with a separate four-fold loop
1: for iM = 0 to dimM-1 do
2: for iQ = 0 to dimQ-1 do
3: register fMQ = 0
4: for iN = 0 to dimN-1 do
5: for iP = 0 to dimP-1 do
6: I = ERI(iM, iN, iP, iQ)
7: Update fMQ with DNP(iN, iP) and I
8: end for
9: end for

10: atomic add(FMQ(iM, iQ), fMQ)
11: end for
12: end for

As the price of reducing the number of atomic operations,
the performance of this new approach is bounded by memory
access: it needs to read the entire ERI array six times and has
discontinuous memory access to ERI when updating FMQ, FNQ
and FPQ. We want to find a way that uses only AO2 atomic
operations while reading ERI continuously only once.



We observe that AO2 is relatively small in most cases. If the
maximum AM of the shells in a given problem is 4, which is
not uncommon, then the maximum size of any dimension of
the ERI array is 15, and thus AO2 ≤ 152×6 = 1350 doubles.
Each thread can use a thread-private buffer to accumulate the
updates of the six Fock submatrices and add them to the shared
F matrix at the end. Therefore, we do not need to split the
four-fold loop in Algorithm 2 and we can avoid reading ERI
multiple times. The buffer for each thread is small enough (<
11 KB for maximum AM = 4) to fit in the L1 data cache of
most processors.

When the ERIs are computed in batched fashion, another
optimization allows us to eliminate about half of the atomic
operations. In the batched ERI algorithm, line 3 of Algorithm 1
actually contains two loops: the outer loop iterates over shell
indices P and the inner loop iterates over shell indices Q. As
a result, all shell quartets in a batch have the same M and N
shells and are likely to have only a small number of different
P shells.

Suppose that all shell quartets in a batch have the same M,
N and P shells. In this case, all shell quartets in the batch
update the same FMN , FMP, FNP. Therefore, the accumulation
of FMN , FMP, FNP can be performed in the thread-local buffers
without atomics until the end of the batch. Atomics are only
used at the end of the batch to accumulate these thread-local
buffers into the shared F . As before, the accumulation of FPQ,
FMQ, FNQ needs atomics for each shell quartet processed. Thus
the number of atomic operations can be reduced to

AO3 = dimQ× (dimM+dimN +dimP)

per shell quartet other than the last quartet in a batch. We
present this optimized Fock matrix accumulation procedure
in Algorithm 4. We should note that after optimization, the
performance of this procedure is still bounded by two factors:
(1) the flop-per-byte ratio of Algorithm 4 is still low, and (2)
dimQ is usually very small (basis sets usually have more low
AM shells than high AM shells), which leads to a significant
vectorization overhead in Algorithm 4.

VII. PERFORMANCE RESULTS

To test the performance of vectorized and batched ERI
computation in a quantum chemistry application, we use the
GTFock code [2], [33], [34] which implements the Hartree-
Fock method for distributed memory computers. GTFock
originally used an optimized version of the ERD integral
library, called OptERD [2], which has a 2× performance
advantage over the original ERD library [35] developed for the
ACES III quantum chemistry package [36]. ERD and OptERD
use the Rys quadrature [37] method for computing ERI. We
updated GTFock to use Simint to compute ERIs in vectorized
fashion. Our implementation calls Simint one shell quartet at
a time, or with batches of shell quartets, using our batching
procedure described in Section V.

We have also modified the multithreaded Fock matrix ac-
cumulation routine in GTFock using the optimized procedure

Algorithm 4 Optimized Fock matrix accumulation, for shell
quartet (MN|PQ)

1: if MN has changed since last call then
2: Initialize thread-local buffer fMN to 0
3: end if
4: if MP and NP have changed since last call then
5: Initialize thread-local buffers fMP, fNP to 0
6: end if
7: Initialize thread-local buffers fMQ, fNQ, fPQ to 0
8: for iM = 0 to dimM-1 do
9: for iN = 0 to dimN-1 do

10: for iP = 0 to dimP-1 do
11: for iQ = 0 to dimQ-1 do
12: I = ERI(iM, iN, iP, iQ)
13: Update fMN(iM, iN) with DPQ(iP, iQ), I
14: Update fMP(iM, iP) with DNQ(iN, iQ), I
15: Update fNP(iN, iP) with DMQ(iM, iQ), I
16: Update fPQ(iP, iQ) with DMN(iM, iN), I
17: Update fMQ(iM, iQ) with DNP(iN, iP), I
18: Update fNQ(iN, iQ) with DMP(iM, iP), I
19: end for
20: end for
21: end for
22: end for
23: Update FMQ, FNQ,FPQ with fMQ, fNQ, fPQ
24: if last MP and NP then
25: Update FMP, FNP with fMP, fNP
26: end if
27: if last MN then
28: Update FMN with fMN
29: end if

described in Section VI. Further, our tests use our optimiza-
tions for Simint described in Section IV.

The Hartree-Fock method is based on self-consistent field
(SCF) iterations. The vast majority of the execution time of
each iteration is spent building the Fock matrix (“Fock build”)
which itself consists of computing the ERIs and forming and
accumulating the blocks of the Fock matrix (“Fock accum”).
The eigenvalue calculations in each SCF iteration require
very little time, although they do require relatively more
time in DFT calculations where large molecular or materials
systems are simulated with different approximations than used
in Hartree-Fock. All reported timings for a Fock build or
Fock accum are averaged over the SCF iterations needed for
a Hartree-Fock calculation.

The tolerance for screening of shell quartets implemented
in GTFock is 10−11. The tolerance for primitive integral
screening is 10−14 used for Simint and OptERD. These are
commonly used values for these parameters.

Tests were performed using the Intel Xeon Phi 7250
(Knights Landing, or KNL) nodes on the Cori supercomputer
at NERSC. Each of these nodes has 68 cores running at 1.4
GHz with 4 hyperthreads per core and 16 GB MCDRAM.
Since January 2018, the Cori KNL nodes are fixed to use



TABLE I
TEST SYSTEMS FOR PERFORMANCE EVALUATION

Test Basis Atoms Shells Basis
System Set Functions

protein 28 aug-cc-pVTZ 30 350 1230
protein 28 cc-pVDZ 30 138 310
protein 28 ANO-DZ 30 214 526
1hsg 28 cc-pVDZ 122 549 1220
1hsg 45 cc-pVDZ 554 2430 5330

quadrant clustering mode and MCDRAM is fixed to use cache
mode. Most tests below were performed on a single KNL
node but some tests were performed with 9 or 64 nodes.
Tests on a single node used 9 MPI processes and 28 threads
per process (total of 252 threads). Tests on 64 nodes used
4 MPI processes per node and 68 threads per process (total
of 272 threads per node). Tests with 9 nodes used varying
configurations described below. Codes were compiled with
Intel C/C++/Fortran compiler version 17.0.4 and Cray MPI
version 7.6.2.

Tests were performed using basis sets with different
amounts of contraction:
• aug-cc-pVTZ: A lightly contracted basis set,
• cc-pVDZ: A moderately contracted basis set that has few

high AM shells,
• ANO-DZ: A heavily contracted basis set.
The test molecular systems are derived from a protein-

ligand complex consisting of a human immunodeficiency virus
(HIV) drug molecule bound to HIV II protease. The atomic
configuration comes from the protein data bank (code 1HSG).
Small test systems, called protein 28, consist of just the
binding pocket portion of the protein. Larger test systems,
called 1hsg 28 and 1hsg 45 consist of the drug molecule and
a portion of its protein environment. See Table I for additional
details of these test systems. Tests in Sections VII-A to VII-E
using a single KNL node use protein 28. The larger molecular
systems are used for other tests.

A. Overall Results

Four cases are of primary interest for comparison. These
are the implementations using (1) OptERD, (2) scalar Simint
without batching, (3) vectorized Simint without batching, (4)
vectorized Simint with batching. Scalar Simint is a version
of Simint compiled without vector instructions and is useful
to quantify the effectiveness of Simint’s vectorization. Table II
shows the timings for one Fock build when different basis sets
are used. Table III shows the component of these timings that
is due to ERI calculation. In all cases, low-level optimizations
and primitive sorting are enabled in Simint. Our Fock matrix
accumulation optimization is also enabled, including in the
OptERD case.

Overall, we observe that vectorized Simint with batching
gives a large speedup compared to using OptERD in all cases.

A surprising result is that, without batching, vectorized
Simint is only slightly better than scalar Simint for the
moderately contracted basis set cc-pVDZ and is actually worse

TABLE II
FOCK BUILD TIMINGS (IN SECONDS)

Scalar Vectorized Vectorized
Basis Set OptERD Simint w/o Simint w/o Simint w/

Batching Batching Batching
aug-cc-pVTZ 345 221 250 92.5

cc-pVDZ 2.98 1.66 1.56 0.68
ANO-DZ 3578 1722 427 436

TABLE III
ERI CALCULATION TIMINGS (IN SECONDS)

Scalar Vectorized Vectorized
Basis Set OptERD Simint w/o Simint w/o Simint w/

Batching Batching Batching
aug-cc-pVTZ 251 128 143 39.4

cc-pVDZ 2.03 0.75 0.67 0.33
ANO-DZ 3511 1677 393 406

than scalar Simint for the lightly contracted basis set aug-
cc-pVTZ. This is due to extremely short SIMD loop lengths
in these two cases when batching is not used, as will be
shown below. This poor performance was not noticed in the
original Simint paper [3] which only used a microbenchmark
to measure ERI calculation time in a way that is divorced
from how Simint would actually be called from a quantum
chemistry code.

For highly contracted basis sets like ANO-DZ, Simint has
a large speedup of approximately 4× due to vectorization
even without batching. For highly contracted basis sets, the
vast majority of the computation is spent on well-vectorized
VRRs rather than the poorly-vectorized HRRs that take place
after the primitive integrals are contracted. The overhead of
gathering shell pair data for batching actually has a small
negative impact on the Fock build performance in this case.

For the lightly and moderately contracted basis sets, aug-cc-
pVTZ and cc-pVDZ, the speedup of using vectorized Simint
with batching vs. without batching is significant: 2.70 and
2.29, respectively. Therefore, batching for Simint is essential
when using lightly and moderately contracted basis sets.

To support these observed results of batching on vectoriza-
tion efficiency, we compare the average length of the SIMD
loop in Simint with and without ERI batching. Table IV
shows that without batching, the average SIMD loop length
when using aug-cc-pVTZ and cc-pVDZ basis sets is very
small, which means that the SIMD utilization is low. Very
low SIMD utilization can make vectorized Simint slower than
scalar Simint, as we saw above. When using the ANO-DZ
basis set, the average SIMD loop length before batching is
already large enough to obtain high vectorization efficiency.

Table V shows timings for different queue lengths used in
Algorithm 1. The results justify our choice of 16 for the queue
length, with longer lengths not giving significant performance
improvement at the cost of additional storage.

B. Effect of Sorting for Primitive Screening

The goal of sorting for primitive screening is to increase
the fraction of SIMD words that can be neglected by trying



TABLE IV
AVERAGE SIMD LOOP LENGTH FOR EACH CALL TO SIMINT, WITH AND

WITHOUT BATCHING

Basis Set w/o Batching w/ Batching Ratio
aug-cc-pVTZ 2.7 40.0 14.81

cc-pVDZ 7.4 71.5 9.66
ANO-DZ 79.3 1184.8 14.94

TABLE V
FOCK BUILD TIMINGS (IN SECONDS) WITH DIFFERENT QUEUE LENGTHS

Basis Set 32 24 16 12 8 4
aug-cc-pVTZ 91.2 91.8 92.5 97.7 99.7 122.2

cc-pVDZ 0.66 0.67 0.68 0.71 0.74 0.84
ANO-DZ 436 440 436 431 430 432

to group together neglected primitive integrals in a SIMD
word. Table VI shows the percentage of primitive integrals
that can be neglected, and the percentage of SIMD words that
can be neglected, with and without sorting. In these tests, the
ERI calculation is batched, and our Simint optimizations are
enabled.

Compared to no sorting, primitive sorting increases the
fraction of neglected SIMD primitives for ANO-DZ but is not
as effective for aug-cc-pVTZ. This is reflected in the speedup
results also shown in the table.

C. Effect of Low-level Simint Optimizations

Table VII shows the Fock build runtime with and without
Simint low-level optimizations discussed in Sections IV-A
and IV-B. In these tests, the ERI calculation is batched, and
primitive sorting and Fock accumulation optimizations are
enabled. We observe some speedup in each case. The speedup
for the aug-cc-pVTZ basis set mainly reflects the effort of
optimizing for high AM functions, since aug-cc-pVTZ is
lightly contracted but has many such high AM functions. The
speedup for the cc-pVDZ and ANO-DZ basis sets mainly
reflects the effort of optimizing the contraction operation for
AVX-512, given that these two basis sets have few high AM
integrals, ANO-DZ is highly contracted, and the test molecule
with cc-pVDZ has many integrals that belong to the (ss|ss)
AM class.

D. Effect of Fock Accumulation Optimization

Table VIII shows the average runtime of unoptimized and
optimized Fock accumulation in one SCF iteration. The run-
time for batched ERI calculation with our Simint optimizations

TABLE VI
REDUCTION OF SIMD WORDS WITH PRIMITIVES AND FOCK BUILD

SPEEDUP VIA PRIMITIVE SORTING

Percent Percent Fock Build
Basis Neglected Neglected Speedup via
Set Primitives SIMD Words Sorting

w/o Sorting w/ Sorting
aug-cc-pVTZ 36.2 19.6 25.0 1.00

cc-pVDZ 62.0 41.6 51.3 1.05
ANO-DZ 91.3 64.6 78.4 1.33

TABLE VII
FOCK BUILD TIMINGS (IN SECONDS) WITH AND WITHOUT SIMINT

LOW-LEVEL OPTIMIZATIONS. FOCK BUILD SPEEDUP AND ERI
CALCULATION SPEEDUP DUE TO OPTIMIZATIONS ARE ALSO SHOWN.

Basis Fock Build Fock Build Fock Build ERI Calc.
Set w/o Opt. w/ Opt. Speedup Speedup

aug-cc-pVTZ 97.1 92.5 1.05 1.11
cc-pVDZ 0.74 0.68 1.09 1.12
ANO-DZ 485 436 1.11 1.11

TABLE VIII
FOCK ACCUMULATION TIMINGS (IN SECONDS) AND SPEEDUP AFTER

OPTIMIZATION

Basis Batched Fock Fock Fock
Set ERIs Accum. Accum. Accum.

w/o Opt. w/ Opt. Speedup
aug-cc-pVTZ 39.4 136.3 36.5 3.73

cc-pVDZ 0.336 0.432 0.197 2.19
ANO-DZ 405.5 13.3 6.15 2.16

is also shown for comparison. We observe that the runtime
of unoptimized Fock accumulation when using aug-cc-pVTZ
and cc-pVDZ basis sets is larger than the runtime of batched
ERI calculation. Therefore, reducing the runtime of Fock
accumulation is essential.

The optimized Fock accumulation algorithm greatly reduces
the runtime of the Fock accumulation procedure for all tested
basis sets and helps reduce the Fock build runtime. For the
ANO-DZ basis set, ERI calculation dominates the runtime
of Fock build, and optimizing the Fock accumulation only
has a small impact on the Fock build runtime. Table IX
justifies these statements, showing the Fock build time with
and without Fock accumulation optimizations.

E. Multi-thread Efficiency

We also tested the multi-thread efficiency of the optimized
Fock build procedure. Here, the tests are performed on 9 KNL
nodes with 1 MPI process per node. For 1 to 68 threads per
MPI process, each core is bound to a physical core. For 136 /
272 threads per MPI processes, we use 2 / 4 hyperthreads on
each physical core.

For the aug-cc-pVTZ and ANO-DZ basis sets, the test
molecule is protein 28, as used in the previous tests. However,
for the cc-pVDZ basis set, which uses a relatively small
number of basis functions, we use the larger test molecule
1hsg 28 (see Table I).

Figure 3 shows timings for the Fock build, the batched
ERI calculation, and the Fock accumulation. We can see that
these three parts have very good multithreading scalability

TABLE IX
FOCK BUILD TIMINGS (IN SECONDS) WITH AND WITHOUT FOCK

ACCUMULATION OPTIMIZATION

Basis Unoptimized Optimized Speedup of
Set Fock Accum. Fock Accum. Fock Build

aug-cc-pVTZ 204 92.5 2.20
cc-pVDZ 0.97 0.68 1.42
ANO-DZ 444 436 1.02



1 2 4 8 16 32 68 136 272

10
0

10
1

10
2

10
3

10
4

Threads per MPI Process

T
im

e 
(s

)

 

 
aug−cc−pVTZ
cc−pVDZ
ANO−DZ

Fig. 3. Multithreading runtime of Fock build. Different colors identify
different basis sets. Diamond marks are Fock build data, circle marks are ERI
calculation data, and cross marks are Fock accumulation data. The speedup
is almost perfect up to 68 threads.

TABLE X
FOCK BUILD TIMINGS (IN SECONDS) ON 9 KNL NODES FOR DIFFERENT

NUMBERS OF MPI PROCESSES (P) AND THREADS PER PROCESS (T).

Basis Set 9P × 272T 36P × 68T 81P × 30T 144P × 17T
aug-cc-pVTZ 13.6 12.1 15.2 18.1

cc-pVDZ 4.21 3.81 6.73 7.55
ANO-DZ 55.3 51.7 57.0 80.5

for all basis sets. In these test cases, the maximum AM is
3, which means that the size of the thread-local buffer for
Fock accumulation is 102×6×8 Bytes = 4800 Bytes. Using
4 hyperthreads on a physical core only requires 18.75 KBytes.
Therefore, we can see that using 4 hyperthreads per core can
also give speedup to Fock accumulation in these cases.

Table X shows timing results for different combinations of
number of MPI processes and OpenMP threads for 9 KNL
nodes. The results show that 4 MPI threads per node gives
the best result among the configurations tested. This may be
due to being able to more fully exploit the inter-node memory
bandwidth available when multiple MPI processes per node
are used.

F. Multi-node Test with and without Batching

Finally, we demonstrate our performance optimizations on
a large Hartree-Fock calculation, running GTFock with Simint
on 64 KNL nodes on the Cori supercomputer. The test system
is 1hsg 45 with the cc-pVDZ basis set (see Table I). Based on
the results in the previous subsection, we use 4 MPI processes
per node and 68 OpenMP threads per process, thus fully
utilizing all hyperthreads on the hardware.

For calculations with multiple nodes, GTFock uses Global
Arrays [38] and MPI. To accelerate convergence, the SCF
iterations use the method of commutator-based direct inversion
of the iterative subspace [39]. The initial guess for the density
matrix uses superposition of atomic densities [40].

We tested both the batched and non-batching version of
our code, with all our optimizations enabled. The Hartree-

Fock calculation for the system converged in 16 SCF iterations
to an energy of -12286.9243511005 Hartrees with the energy
changing less than 10−10 Hartrees at convergence. The average
Fock build time for one SCF iteration of the non-batching and
batched version is 59.1 and 33.3 seconds, respectively, giving
an average speedup of 1.77 when batching is used.

VIII. CONCLUSION

In this paper, we have described and demonstrated several
performance optimizations related to the computation and use
of ERIs in a quantum chemistry code. Adapting existing codes
to batch shell quartets with the same AM class can follow the
procedure described in this paper.

Our performance evaluation shows that batching shell quar-
tets is significant for improving vectorization efficiency of
a vectorized ERI library and can greatly improve the per-
formance of ERI calculation when using lightly and moder-
ately contracted basis sets. After accelerating ERI calculation,
accumulating the blocks of the Fock matrix became a new
performance bottleneck. This was resolved by using thread-
private accumulation buffers and reordering the accumulation
procedure. Multi-thread tests show that our optimized code
has very good multithreading scalability, suggesting that the
code does not stress shared resources such as L1 D-cache.

The batching procedure and improvements to Simint
and GTFock have been incorporated into their code bases
and are released in open-source form at https://github.com/
simint-chem and https://github.com/gtfock-chem, respectively.

Although our work has focused on quantum chemistry,
we found certain performance optimization principles to be
particularly useful, and which are applicable to other domains.
First, many of our optimizations arose from understanding the
behavior of the code for expected and common input data.
In other words, instead of optimizing code based on control
flow alone, we also considered patterns or properties of the
data. Second, compiler optimization reports were very useful
for identifying memory alignment and vectorization issues as
well as telling whether the compiler is optimizing the code
as we expected. Third, we focused our primary attention on
memory access patterns and the memory hierarchy, which is
well-accepted but performance issues here can be complex and
thus not always adequately addressed.

In future work, we plan to benchmark batched and vec-
torized ERI computation in the NWChem [9] and PSI4 [41]
packages, including with density fitting methods where 3-
center integrals are needed. We also plan to benchmark and
optimize our techniques for Intel Skylake processors.
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APPENDIX A
ARTIFACT DESCRIPTION APPENDIX: ACCELERATING

QUANTUM CHEMISTRY WITH VECTORIZED AND BATCHED
INTEGRALS

A. Abstract

This description contains the information needed to com-
pile and launch the computational experiments in the SC18
paper “Accelerating Quantum Chemistry with Vectorized and
Batched Integrals”. More precisely, we describe how to com-
pile the optimized Simint and GTFock programs and run the
examples in Section VII. The results in Section VII can be
reproduced and validated.

B. Description

1) Check-list (artifact meta information):
• Algorithm: Hartree-Fock, Obara-Saika
• Program: GTFock, Simint
• Compilation: Intel compilers version 16 or 17 and MPI-3

supported MPI library
• Binary: MPI executable
• Data set: Included in GTFock
• Run-time environment: Linux environment with MPI
• Hardware: Intel Xeon CPU or Intel Xeon Phi 7200 series CPU
• Output: On-screen output: runtime and system energy of each

iteration; optional file output: wavefunction matrix
• Experiment workflow: Clone and compile Simint code gen-

erator, generate and compile the source code of Simint, clone
and compile libcint and GTFock, run the binaries, observe the
results

• Publicly available?: Yes.

2) How delivered: Intel Parallel Studio XE including Intel
C/C++/Fortran compiler, Intel MPI and Intel MKL. Licenses
can be applied with education email account or for trial.
ARMCI-MPI and Global Arrays can be downloaded from their
websites. OptERD, libcint, Simint code generator and GTFock
can be cloned from https://github.com/gtfock-chem.

3) Hardware dependencies: None. For reproducibility, we
used Intel Xeon Phi 7200 series CPU.

4) Software dependencies: Simint requires CMake 3.0 or
higher version and a C++11 compliant compiler which can
also use intrinsic functions for AVX, AVX2 and AVX-512
instruction sets. We tested the Intel compilers in Intel Parallel
Studio XE 2017 update 4, which is the version we suggest to
use. ARMCI-MPI requires an MPI-3 compliant MPI library.
We tested Intel MPI 2017 on a small cluster with Intel Xeon
CPU and Cray MPI 7.6.2 on Cori supercomputer. We suggest
using Intel MPI 2017 for small clusters and using vendor-
customized MPI implementations on supercomputers.

5) Datasets: The datasets in the paper are contained in the
GTFock repository on GitHub. The corresponding filenames
for testing are given in Table XI.

C. Installation

Set WORK TOP environment variable to the directory you
will install the libraries and GTFock.

TABLE XI
FILENAMES AND RELATIVE PATH OF DATASETS

Type Name Relative Path
basis set aug-cc-pVTZ data/aug-cc-pvtz/aug-cc-pvtz.gbs
basis set cc-pVDZ data/cc-pvdz/cc-pvdz.gbs
basis set ANO-DZ data/ano-dz.gbs
molecule protein 28 data/1hsg/protein 28.xyz
molecule 1hsg 28 data/1hsg/1hsg 28.xyz
molecule 1hsg 45 data/gb/1hsg 45.xyz

1) Compiling OptERD: OptERD is no longer supported in
GTFock. It should be used for performance comparison only.
Skip this part if you do not need the performance data of
GTFock with OptERD.

cd $WORK_TOP
git clone https://github.com/gtfock-chem\
/OptErd_Makefile.git
cd OptErd_Makefile
# Adjust the make.in according to your system
make -j4

2) Generating Simint Source Code and Compiling Simint:
To compile Simint, you need to compile the Simint code
generator and use it to generate the source code of Simint.
To disable the low-level optimizations for Simint in this
paper, execute git checkout 3257a93 at the top directory
of simint-generator to switch to the old version.

cd $WORK_TOP
git clone https://github.com/gtfock-chem\
/simint-generator.git
cd simint-generator
mkdir build
cd build
CC=icc CXX=icpc cmake ../
make -j16

Then, use a python script to generate all Simint source code.
The python script can be executed with python 2 or python 3:

cd $WORK_TOP/simint-generator
python create.py -g build/generator/ostei \
-l 4 -p 4 -d 0 -ve 4 -he 4 \
-vg 5 -hg 5 gtfock-simint
mv gtfock-simint ../

Finally, compile Simint for a target CPU architecture. Please
read the README file in the top directory of Simint to see
how to specify the target CPU architecture. The following
commands will compile Simint for KNL platforms.

cd $WORK_TOP/gtfock-simint
mkdir build-avx512
cd build-avx512
CC=icc CXX=icpc cmake ../ \
-DSIMINT_VECTOR=micavx512 \
-DCMAKE_INSTALL_PREFIX=./install
make -j32 install

To disable primitive sorting, comment line 575 and line 576
in the file $WORK TOP/gtfock-simint/simint/shell/shell.c.



3) Compiling libcint: libcint is a small library that serves as
an interface for calling either OptERD or Simint from GTFock.

cd $WORK_TOP
git clone https://github.com/gtfock-chem\
/libcint.git
cd libcint
# Adjust the Makefile according to the
# directory you compiled Simint
make libcint.a

4) Compiling ARMCI-MPI: ARMCI-MPI needs to be com-
piled with an MPI library. The following commands use Intel
compilers and Intel MPI. You may need to replace the MPI
compiler wrapper if you use other compilers and/or MPI
libraries. For the Cori supercomputer, you should always use
Cray MPI instead of Intel MPI.

cd $WORK_TOP
git clone git://git.mpich.org/armci-mpi.git
cd armci-mpi
git checkout mpi3rma
./autogen.sh
# Recommend using a build directory
mkdir build
cd build
../configure CC=mpiicc \
--prefix=$WORK_TOP/ARMCI-MPI
make -j16 install

5) Compiling Global Arrays: We suggest that you compile
Global Arrays with an MPI library and ARMCI-MPI. The
following commands use Intel compilers and Intel MPI. You
may need to replace the MPI compiler wrapper if you use other
compilers and/or MPI libraries. For the Cori supercomputer,
you should always use Cray MPI instead of Intel MPI. Please
make sure that the compiler and MPI environment are the
same as that of compiling ARMCI-MPI.

cd $WORK_TOP
# GA v5.3 is the only version we tested
wget http://hpc.pnl.gov/globalarrays\
/download/ga-5-3.tgz
tar xzf ga-5-3.tgz
cd ga-5-3
# Carefully set the mpi executables
# Recommend using a build directory
mkdir build
cd build
../configure CC=mpiicc MPICC=mpiicc \
CXX=mpiicpc MPICXX=mpiicpc \
F77=mpiifort MPIF77=mpiifort \
--with-mpi --with-armci=$WORK_TOP/ARMCI-MPI \
--prefix=$WORK_TOP/GAlib
make -j16 install

6) Compiling GTFock: The source code of GTFock can
be cloned from https://github.com/gtfock-chem/gtfock.git. To
compile GTFock, you need to modify the make.in file in the
top directory of GTFock. File make.in.Cori and make.in.KNL5
are the templates for compiling GTFock on the Cori super-
computer and a KNL node respectively. If you are using
Intel Parallel Studio XE, the math libraries (BLAS, BLACS,
LAPACK and ScaLAPACK) are provided by Intel MKL and

integrated with Intel MPI. If you are compiling on the Cori
supercomputer, the math libraries are provided by Cray SciLib
and combined with Cray MPI. The example SCF program is
$WORK TOP/gtfock/pscf/scf.

GTFock cannot work with Simint and OptERD at
the same time. To test GTFock with OptERD, execute
git checkout 67382ed at the top directory of GTFock to

switch to the old version of GTFock.
To test the non-batching version of GTFock, uncomment

line 136 and comment line 137 in file pfock/fock task.c.

D. Experiment workflow

For single node execution or launching on clusters without
a job scheduling system, the following command should run
on most platforms:

mpirun -np <nprocs> $WORK_TOP/gtfock/pscf/scf \
<basis> <xyz> <nprow> <npcol> \
<np2> <ntasks> <niters>

Where:
• nprocs: Number of MPI process
• basis: Gaussian94 format basis set file
• xyz: Cartesian coordinate file of the chemistry system
• nprow: Number of MPI process per row
• npcol: Number of MPI process per column
• np2: Number of MPI process per dimension (of cube)

for purification
• ntasks: Each MPI process has ntasks × ntasks

tasks
• niters: Maximum number of SCF iterations
Note:
• nprow × npcol mush be equal to nprocs
• np2 × np2 × np2 should be close to nprocs
• Suggested values for ntasks: 3, 4, 5
For clusters and supercomputers with job scheduling sys-

tems like slurm, you need to write job scripts for launch-
ing GTFock on multiple nodes. File Cori-KNL-*N.pbs are
the example job scripts for using KNL nodes on the Cori
supercomputer.

E. Evaluation and expected result

In the screen output, lines starting with “fock build takes”
show the elapsed wall-clock time of the Fock matrix construc-
tion in each SCF iteration; lines starting with “energy” show
the energy of the current solution, which is used for checking
convergence and correctness.

For the test system used in Section VII-F, GTFock with
batched ERI calculation and other optimizations should have
an average Fock matrix construction time of 33.3 seconds
when running on 64 KNL nodes with 68 threads per MPI
process and 4 MPI processes per KNL node on the Cori
supercomputer.


