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Decentralized Multigrid for In-situ Big Data Computing

Goutham Kamath, Lei Shi, Edmond Chow, Wenzhan Song*, and Junjie Yang

Abstract: Modern seismic sensors are capable of recording high precision vibration data continuously for several
months. Seismic raw data consists of information regarding earthquake’s origin time, location, wave velocity, etc.
Currently, these high volume data are gathered manually from each station for analysis. This process restricts
us from obtaining high-resolution images in real-time. A new in-network distributed method is required that can
obtain a high-resolution seismic tomography in real time. In this paper, we present a distributed multigrid solution
to reconstruct seismic image over large dense networks. The algorithm performs in-network computation on
large seismic samples and avoids expensive data collection and centralized computation. Our evaluation using
synthetic data shows that the proposed method accelerates the convergence and reduces the number of messages

exchanged. The distributed scheme balances the computation load and is also tolerant to severe packet loss.
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1 Introduction

Current volcano monitoring systems lack the capability
of obtaining real time information and recover the
physical dynamics of seismic activity with sufficient
resolution. At present, the seismic tomography process
involves aggregation of raw seismic data to centralized
server for post-processing and analysis. To give some
perspective on the volume, the raw seismic data are
sampled with 16-24 bit precision at 50-200 Hz. These
high fidelity samples are generally primary (P) or
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secondary (S) wave, which contain information such
as earthquake origin time, location, wave velocity,
etc. This high frequency sampling at each node makes
it extremely difficult to transmit the data over a dense
sensor network due to severe limitations on energy and
bandwidth. Due to these restrictions, many of the most
threatening active volcanoes worldwide use fewer than
20 nodes!!!. The existing scheme also requires months
to generate satisfactory tomography images. This limits
our ability to understand volcano dynamics and physical
processes in real-time. The centralized solution also
introduces a bottleneck in computation. The risk of data
loss also increases in case of node failures, especially
at the base station. The centralized algorithm for these
battery powered nodes, which have high risk of failures,
is not suitable for volcano monitoring.

The high volume raw samples consist of sparse
earthquake information, however current technology
requires station to transfer all the raw samples of P
and S waves to centralized station for post processing.
In Ref. [2] the data collected from 1980-2004 consists
only of 19 379 useful earthquake events and in addition
6916 events from October 2004-December 2005.
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Figure 1 shows the parse distribution of earthquake
events obtained from 78 stations placed on Mt St Helens
(MSH). Few stations receive as few as 10 events while
others receive more than 900. This sparse feature of
raw samples has led researchers to adopt distributed
techniques to perform in-network processing and
avoid centralized computation. The advancement in
current wireless sensor technology makes it possible
to deploy and maintain a large-scale network for
environmental monitoring and surveillance. However,
seismic tomography algorithms commonly in use today
cannot be easily implemented under this distributed
scenario as it relies on centralized processing. Thus,
real-time volcano tomography requires a practical
approach which is distributed, scalable, and efficient
with respect to tomography computation.

Seismic tomography can be broadly classified into
two main categories: active and passive tomographies.
In active seismic tomography, earth’s interior is studied
by sending P wave signal through external source
such as vibrator, however in passive tomography,
measurements are taken based on P wave generated by
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Fig.1 Non-uniform distribution of rays and events at Mt St
Helens.

natural sources such as earthquake. Since late 1970s,
active tomographic inversion of 2-D and 3-D structures
has been studied widely both theoretically and
experimentally by applying it to oil field exploration
and volcanoes'!. Only in recent years, passive seismic
tomography has been studied and the data obtained
from few tens of nodes are being used to study
seismic activities. As mentioned earlier, these inversion
methods rely on centralized data gathering scheme and
have been implemented on volcanoes such as Mount St.
Helens!*! and Mount Rainier!®! as well as many others.
The resolutions of such inversions are typically in tens
of kilemeter’s and higher resolutions are hard to obtain
from the existing systems as the number of sensors
is not sufficient to cover the entire region of interest.
Deploying large sensor nodes using the current data
gathering network is also not feasible as these networks
do not scale and sometimes it becomes impossible due
to data load. To overcome this, we developed a method
called Component Average-Distributed Multiresolution
Evolving Tomography (CA-DMET) which computes
the tomography over sensor networks!®. In this
method each sensor nodes were responsible to
calculate partial solution by solving large sparse
linear equation available to them using Bayesian
Algebraic Reconstruction Technique (BART)!”!. The
partial solution obtained from each node was later
combined with others to obtain the next iteration.
Convergence of this algorithm was proved to be better
than other distributed methods. In this paper we try to
accelerate its convergence and improve the performance
of the reconstruction using multigrid approach.
Typically when solving large sparse linear systems,
iterative methods tend to reduce high-frequency
(oscillatory) components directly while not lower the
errors caused due to low-frequency. Multigrid methods
are often used to mitigate these low-frequency errors,
as they reduce them by transferring the problem to
lower grids. We investigated our seismic tomography
inversion problem and found that multigrid could be
used to accelerate the convergence. In this paper, we
propose Distributed MultiGrid Tomography (DMGT)
algorithm which accelerates the convergence rate of
CA-DMET. Our contribution in the proposed approach
differs from our previous algorithm CA-DMET in
three ways: firstly we prove that BART satisfies the
smoothing property and can be used as a smoother in
multigrid. Secondly, we show that multigrid with BART
as smoother when applied on each node converges
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faster than applying only BART as used in CA-DMET.
Thirdly, we show that multigrid can be applied on each
node distributedly and the intermediate result can be
combined using the component average method. This
paper mainly focuses on the distributed tomography
algorithm, while assuming the arrival time of events
at each node has been extracted from the raw seismic
data by each node itself’®°!. The algorithm proposed
here has application to fields far beyond the specifics
of volcanology, e.g., oil field explorations have similar
problems and needs.

The rest of the paper is organized as follows.
In Section 2, we provide background on seismic
tomography inversion and present the problem
formulation. Section 3 presents related work on
distributed least squares and distributed multigrid
methods. In Section 4, we first discuss mathematical
developments that lead to the design of DMGT and
then present the DMGT algorithm in detail. Simulation
results are shown in Section 5. Finally we conclude the
paper in Section 6.

2 Problem Formulation

Seismic tomography: The methodology used in
seismic tomography is borrowed from medical
tomography where the travel time of elastic wave is
used to probe internal structure. Although this idea is
common in these two applications, there are significant
differences, mainly pertaining to size of the structures
and to event generation. The velocity model used in
seismic tomography is non-linear and the ray path of
the waves traveling through the ground may be highly
curved due to the size and complexity of the volcano.
Typically, the ray source in volcano tomography is
an earthquake event where the distribution of the
ray path is highly non-uniform unlike uniform short
distance rays generated in medical imaging. These
differences indicate that special care must be taken
when techniques borrowed from medical tomography
are applied to seismic data.

The basic principle behind 2-D or 3-D seismic
tomography is to use the arrival time of the P wave
to derive the internal velocity structure of the volcano.
This approach is called travel-time seismic tomography
and the model here is continuously evolving and refined
as more earthquakes are recorded. Below we explain
the three basic principles involved in travel-time seismic
tomography.

Step1 Event location: Once an earthquake occurs,
seismic disturbances are detected by sensor nodes and
arrival times are recorded. Using these estimated arrival
times, Geiger!!'"! introduced a technique to estimate the
earthquake location and origin time. This is a classic
and widely used event localization scheme generally
using Gauss-Newton optimization.

Step 2 Ray tracing: This is the technique of
finding the ray paths from the seismic source locations
to the sensor nodes with minimum travel time. Given
the source location of the seismic events and the current
velocity mode of the volcano, ray tracing finds the ray
paths from the event source location to the nodes as
shown in Fig. 2b.

Step 3 Tomographic inversion: The ray paths
traced in turn are used to estimate the velocity model
of the volcano. The volcano is partitioned into small
blocks as shown in Fig. 2¢. This allows us to formulate
the tomography problem as a system of sparse linear
equations. Suppose there are N sensor nodes and
E earthquakes and x* denotes the reference slowness
(reciprocal of velocity) model of the volcano with
resolution M blocks (e.g., 32 x 32). Let x* denote
the sum of x°, unperturbed model, and x, a small
perturbation, i.e., x* = x° + x.

Letb] = [b}. b}, . bl]", where b}, be the travel
time experienced by node i in the e-th event. Based on
the ray paths traced in Step 2, the travel time of a ray is
the sum of the slowness in each block times the length
of the ray within that block, i.e., b*, = A;[e, m] - x*[m]
where A;[e, m] is the length of the ray from the e-th
event to node 7 in the m-th block and x* is the slowness
of the m-th block. Let b)Y = [bY.5%. - . b%]" be the
unperturbed travel times where b) = A;[e, m] - x°[m].
In the matrix notation we have the following equation,

Aix* —A;x° =Aix (1)
where A; € REXM | Let b; = [bi1,bin,--- .big]" be
the travel time residual such that b; = b} — b?, Eq. (1)
can be rewritten as

A,-x = bi (2)

Since each ray path intersects the model at a small
number of blocks, the design matrix, A;, is sparse. For
the system with N sensor nodes, the equation of the
entire system would be

Ax =B 3)
where B = [by,bs,--- ,bn]". b; = [bi1.biz.,--- . big]",
and A = [A],Az, ,AN]T.

Now from the above equation, each seismic sensor
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Fig. 2 Procedures of seismic tomography inversion.

i €(1,---, N)contains at least E rows, i.e., earthquake
events and travel time information. The column size of
A denotes the resolution of the slowness model x being
calculated. Our goal is to obtain the slowness model x
without collecting the event information from each node
in a centralized server, but only by exchanging partial
slowness between the sensors.

3 Related Work

3.1 Distributed linear least squares

The tomography inversion process mainly involves
solving large systems of
linear equations (Eq. (3)) and iterative methods are

sparse overdetermined

commonly used. Several parallel and distributed
iterative methods have been developed and are
currently being used to solve a large variety of
problems!'" 121 Consensus-based methods are the
most widely used distributed algorithm for wireless
sensor networks, e.g., Ref. [13]. These algorithms
use a weighted sum of local estimates to achieve
consensus. Each sensor node maintains its own local
estimation and exchanges information locally to achieve
consensus. These methods are primarily designed for
estimation of low dimensional vectors typically in a
parallel environment. To achieve global convergence,
protocols require relatively
high execution time and frequent communication

consensus generally
between neighbors. In seismic tomography networks,
this approach not only means high communication
overhead but also longer delays involving many multi-
hop communications. Therefore, the consensus-based
distributed least square algorithms are not suitable
for high-resolution seismic tomography in sensor
networks.

Another method originally proposed for parallel
computing is the multi-splitting solution of the least
squares problem!'#!, This method partitions the system
into columns instead of rows, letting each processor

compute a partial solution. These partial solutions are
exchanged iteratively to obtain global convergence.
Column splitting of Eq. (3) in seismic tomography
means splitting the travel time B. Since we only
have the information of total travel time from event
source to node, we cannot divide B exactly and any
heuristic approach will add error in addition to existing
system noise. Apart from that, this method is only
linearly convergent and the communication cost is very
expensive as it requires exchanging B which in our case
increases with occurrences of earthquake events. Due
to these reasons, column partitioning is not suitable for
seismic tomography.

method for  solving
overdetermined systems was proposed by Kaczmarz

A popular iterative
(KACZ)!"3!, which is an alternating projection method.
This method is also known under the name ART in

computer tomography!!®’

. This algorithm does not
require the full matrix to be in memory at one time and
can incorporate new information (ray paths) real-time
the fly. The vectors of unknowns are updated after
processing each equation of the system and this cycle
repeats until convergence. These iterative algorithms
are distributed by averaging the boundary information,
e.g., Component AVeraging (CAV)!'71, Block Iterative-
Component AVeraging (BI-CAV)!!8), and Component-
Averaged Row Projections (CARP)!'). A survey paper
comparing various block parallel methods based on
their performance on GPU’s is Ref. [20]. CA-DMET!®/
involved modification of these algorithms for seismic
tomography. The convergence of the iterative method
used depended on spectral properties of the iteration
matrix. Generally in iterative methods, convergence
stalls once the error is smooth, i.e., high-frequency
errors are reduced. Multigrid methods provide great
tool to prevent stagnation by transferring smooth errors
from fine grids to coarse grids, resulting in overall
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acceleration of convergence!?!!, however, it cannot be
applied to solve all the problems arising from systems
of linear equations/??!. In this paper, we analyze the
tomography problem carefully and develop tools such
as smoothers, intergrid operator, etc., satisfying the
requirements of multigrid.

3.2 Distributed multigrid

Multigrid has been parallelized on multicore computers
and distributed memory clusters’>»?¥, To perform
multigrid in distributed networks, many new
considerations arise, including high communication
cost and the possibility of packet loss. For example,
some existing parallel and distributed multigrid
algorithms partition the multigrid levels among
different cores/nodes and the intergrid operators
communicate between each other to perform a
multigrid cycle®:2%!, In case of seismic tomography,
exchanging the rows of matrix A (ray information)
between each nodes is expensive and defeats the whole
purpose of the distributed approach. Thus, we cannot
adopt all previous techniques for parallelizing multigrid
and apply them to volcano tomography over sensor
networks.

Iterative methods such as Jacobi, Gauss-Seidel, and
SOR for many problems have the property of smoothing
the error and are used as the “smoother” in multigrid
methodst?!. However, for solving overdetermined
systems, it is more natural to use Kaczmarz or ART
as the smoother. This appears to be first considered
in Refs. [27, 28] for multigrid in medical image
tomography in a centralized setup. For inconsistent
overdeteremined systems, Extended Kacmarz (EK)
was introduced®’ which performs column operations
at each iteration to manipulate the right hand side
of the linear equation. However in our case, since
information over sensors is split row wise, column
operations over the entire network will add significant
communication. In this paper we propose DMGT which
accelerates the convergence of seismic tomography
inversion over a network and balances the computation
cost with reduced communication. DMGT uses BART
as a smoother and we prove that BART satisfies the
smoothing property. We also show that DMGT is
applicable to seismic tomography. To the best of our
knowledge, this work is the first attempt to distribute the
multigrid computation of seismic tomography in sensor
networks.

4 Distributed Algebraic
Tomography

Multigrid for

4.1 Mathematical developments

4.1.1 Bayesian ART

The tomography inverse problem involves finding
a solution x which satisfies Eq. (3). Typically, the
seismic tomography equation is quasi-overdetermined,
inconsistent, and
Therefore, we need to use some form of regularization
to avoid strong, undesired influence of small singular
values dominating the solutions. This can be achieved
by using a regularization parameter for the least-squares

contains measurement noise.

solution xrg , i.€.,
xis = argmax |B —Ax|* + 2%|x|* @)

where A is the trade-off parameter that regulates the
relative importance we assign to models that predict the
data versus models that have a characteristic, a priori
variance.

A variant of ART called Bayesian ART can be used
for solving Eq. (3) by minimizing Eq. (4). Suppose the
system Ax = b is inconsistent, then we have Ax+y = b
where y is chosen from any given x. Then the system is
transformed to a well-posed problem. Now x and y can
be solved simultaneously using the iterative algorithm
1, as shown in Algorithm 1, where e; is a unit vector
with the i-th component equal to one, and A is the
regularization parameter.

Note that in the Bayesian ART method, we need an
additional vector y of length E, but in the k-th step
only one component of 7*) needs to be updated. This
method has been used for seismic imaging in Ref. [7].

4.1.2 Multigrid

Multigrid methods are among the most efficient
methods for solving the very large sparse system
of linear equations?:??!, The core idea of multigrid
is to reduce the error via transferring the problem
between multiple levels and solving them over these
levels. The residual equation is transferred to coarser
grids and its solution is used to correct the finer

Algorithm 1 Bayesian ART

1: for k <— 0 until convergence or maximum number of iteration do

22 k<i mod m+1m o
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resolution solution. This is performed recursively until
the convergence is met. The idea of multigrid aligns
with multi-resolution techniques and we have shown in
Ref. [6] that multi-resolution is essential in estimating
volcano tomography.

The main components of multigrid are the smoother
and prolongation and restriction operators, and wide
variety of these are used in different scenarios. These
components are chosen based on the type of the
problem to optimize the convergence. Prolongation and
restriction operators mainly decide the construction of
finer and coarser grids. In case of tomography the grids
are constructed based on the principle of ray tracing
and here we will show that ray tracing can be used for
prolongation and restriction in multigrid. Prolongation
and restriction are generally termed as intergrid
operators as they define the transfer process between the
grids. As mentioned earlier, the tomography problem
has a geometric structure and here we exploit this
structure to define the intergrid operators. However,
these intergrid operators must have certain properties
and in this section we will show that our ray tracing
satisfies these properties.

Let n be the number of columns in A and suppose that
n = 4p where p denotes the number of pixels given
in Fig. 3a and let Py,---, P, be the pixels on the fine
grid. The coarse grid is obtained by combining its 4
adjacent pixels of the fine grid as shown in Fig. 3a. Let
S(j),j €1,---, p be the set of indices of the fine grid
that form the coarse grid P].H, i.e.,

S() =4J1, j2, ja, ja} Vj=1,---,p,
where
J1 < Jj2<j3<ja
such that
From the above equation the coarse grid matrix A,

will be
AT = 3" AgVi=1..mj=1-.p (5

keS()
Now the interpolation operator I; is given by
L ifi .
p=) b HEesUy ©
p 0, ifi ¢ S())
We now see that A = A, x I, satisfying the

interpolation property. We also observe that I;’, has full
column rank.

Remark 1 Notice that the interpolation operator
only increases the number of columns in matrix A. We

Ray i / "

(b) Coarse grid

Fig. 3 Relation between fine and coarse grids.

can also consider a similar operator which also reduces
the rows by weighting them, however this is beyond the
scope of this paper.

Remark 2 The above multigrid operators are
designed for 2-D cases, however 3-D case can be easily
derived using n = 8p, i.e., cuboid.

We have now shown that the interpolation operator
formed by using the property of ray tracing can be used
as an intergrid operator in multigrid. We also saw that
BART can be used for solving tomography problems.
Next we show how BART can act as a smoother and
prove it satisfies the smoothing property of multigrid.

4.1.3 Bayesian ART as a smoother

For seismic tomography, BART is commonly used
rather than ART or Gauss-Seidel. The problem being
inconsistent and ill-posed, BART outperforms other
standard iterative algorithms in terms of convergence
and solution!”!. However, BART has not been proven as
a smoother in a multigrid setup and in this section we
will prove that BART satisfies the smoothing property.
Definition 1 The smoothing property is satisfied
by the relaxation scheme if there exists a constant o« > 0
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(independent of size or eigenvalues of A) such that

ez < llellZ —elirlif- + Iyllp- @)

where,e =x—x* ,r = Ae = Ax—b,e = x—x*,D =
diag(A), |x[la = V/{Ax.x), and |[r]p,-1 = V(D" 'r.r).
With respect to the above definitions and notation,
Theorem 6 in Ref. [27] shows that Kaczmarz relaxation
for consistent systems satisfies the following smoothing

property,

212 < llel> — 71D°r|? ®)
where
ﬁézszg( ! TR ! ) )
AT
rE i r@arnay 0
and

~ |Al’A
() =
7-(4) 1Qq§:|M”2’

[(Ai.A))
‘A) =
r+A) = IQQE:”AW

Theorem 1 Bayesian ART (Algorithm 1) as a
relaxation scheme for inconsistent system (3) satisfies
the smoothing property if there exists

L1 L1
lel* < llell* = 7ID>r|? + |D?y|> (11
Proof Shown in Appendix 6 |
4.1.4 Three-grid V-cycle

Here we describe the three-grid correction scheme used
in our algorithm, as shown in Algorithm 2. If the finest
resolution of our system to solve is of dimension 32x32,
then resolution 16 x 16 is used as an intermediate grid
and resolution 8 x 8 the coarsest grid. The coarsest grid
is solved directly as the dimension is small, however we
can also solve it by certain sweeps/iteration of BART.
Later, the fine grid correction step is applied. The total

Algorithm 2 v* < V-cycle(v", b")
: v = BART(A", b",v")
st = b — Ayt

cr2h = 2hrh

2h = BART(A%", 12", 0)
4h — r2h _ Azhv2h

4h Iéthrzh

% Relax using [ sweeps of BART
% Compute fine-grid residual
% Restrict the residual to coarse grid

v
r
r
. Ay A = pan

. edh = (A4h)—1r4/z

. e2h = If/}lleﬂz

10: v?" = v2" 4 e2h

11: €2 = BART(A%", b2, v2h)
12: e = I}, 2"

13: v = v + e

14: v/ = BART(A", b", v")

% Solve directly

o I R R

% Interpolate coarse grid error to fine grid
% Correct the fine-grid approximation
% Relax using /| sweeps of BART
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number of iterations for one three-grid V-cycle will
be equal to 4 x [;. The three-grid V-cycle scheme is
represented diagrammatically in Fig. 4.

4.2 Design of DMGT algorithm

In Section 4.1, we discussed separately the components
of multigrid suitable for tomography. In this subsection
we will put these ideas together to design a distributed
multigrid scheme that can balance the computation
load and compute the least-square solution for seismic
tomography inversion over a sensor network. The
seismic sensors are deployed on top of the volcano
and each sensor gathers ray information after detecting
earthquake events and forms a partial set of linear
equations. Later, each sensor performs DMGT locally
to obtain the partial slowness model (x%) which is
then combined with the partial slowness model obtained
from other nodes using component averaging as shown
in Fig. 5 to obtain the next iteration (xk +1). This
process is repeated until it converges to a threshold after
which we obtain the global slowness model (x). Here,
we first show how component averaging can be used to
combine the partial slowness from each node to form
the next iteration. Later we discuss the working of
distributed multigrid algorithm in detail.

Suppose there are N sensor nodes in the network and
E ray paths are traced on each sensor node, following
some earthquake events. From Section 2 the seismic
tomography model will be of the form,

Ax =B (12)
i -/-
\"\ 7
]

Fig.4 V-cycle scheme for three levels.

BART sweeps (smoothing)

Restriction of fine to coarse

/y Prolongation of coarse to fine
D Exact solution on coarse grid

[ ]#h V-cycle applied 4, times

O Sensor nodes
Q© Cluster head

— Tree-based
aggregate

Q ? [x'] Partial slowness

Fig. 5 Communication pattern for component averaging.
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Let the size of A be m x n, where ﬁ denotes
the resolution we are calculating in case of 2-D. Let
A1,Ay--- ,Apn each contain my, my,--- ,mg number
of rows. Now in each node, we calculate the number
of non-zero coefficients Vj, where 1 < j < n. Let
I; denote the index set of the blocks that contain an
equation with a non-zero coefficient of x;. Lets; = |I;|
(size of I;).

We first show how the partial slowness obtained
from each node can be combined with others using an
averaging lemma. Let A = A{,A,,--- , Ay and )E;
denote the j-th component of partial slowness obtained
from i-th node. The component averaging operator
relative to A is transfer operator CA4 : (R")N — (R™)
and defined as follows: Let &!,--- , N e R" be
partial solution from all N sensor nodes. Then
CA4(x!,--- ,)_CN) is the point in R"” whose j-th
component is given by

N
_ _ 1 _
CALGEL, -+, %N = ;ijt

t=1

Assume that for some 1 < r < n the partial slowness
X1,+++,X, are shared by two or more nodes, i.e.,
81,8 = 2 and $y41,--+,5, = 1. For simplicity,

denote y as the components of R¥, and index vector of
R? is given by

Y= (V11 s Vsisio > Vel s Vrsps Vrtls o s Yn)-
Now we map the space from E : R" — R:
E(X1,-++ ,%n) =
(672 TS PRERINS P SPEEEIN S PEETING o S LS BT ) B
We can see from the above equation that
(»1,1,°+ , ys,5, contains s1 elements, (¥r 1, ", Vrs,)

contains s, elements. Now after taking averages
component-wise, we have our new update as follows:

_ 1 _ 1
X1 = _(y1,1+"'+ys,sl), Xr = _(yr,l+"'+yr,sr)s
S1 Sr
Xr+1 = Yr+1, Xn = Yn.

Remark 3 We notice that, number of nodes N in
component average scheme theoretically has no upper
limit and can be very large. It should be noted that
increasing N will increase the communication cost to
carry out the summation over the network. This might
also effect the rate of convergence and is shown in the
simulation result.

Now we give the formal description of DMGT
algorithm, see Algorithm 3.

Initialize lines 1-4: Suppose there are N sensors and
each sensor initializes its ID and starting resolution d.

Algorithm 3 Distributed Multigrid Tomography
Initialize

1: Node ID id,

2: Initialize the starting resolution dimension d

3: Initialize the number of seismic sensors N

4: Current resolution dimension Q = d x d

5: Initial slowness model for ray tracing x’

Repeat
1: Upon the detection of an event
2:  Trace the ray path a, for every node
3: Upon the reception of @, and b, at each node start performing
4: calculation at each node
50 Foreachl < j < Q, calculate s;
6:  Wheres; = |I;| ={1 <t < N|x; has nonzero
7:  coefficient in some equation of node N
8 k<«<0,x5<0
9 while not converged do

10: In every node ¢ for 1 < ¢ < N do in parallel

11: X! < V-cycle(x*, b")

12: Aggregate the partial slowness X’

13: from all nodes al}d find the next iterate:
&+ _ ) X ifs; =1;

1 A B yANE R

15: Send xj(.kJrl) to all the node N

16: k<—k+1

17: end while

18:  x! <« x*=D

19: Upon the convergence obtaining final x
20:  Update slowness model: x/+1 = x/
21: TERMINATE

!

Let Q = d x d be the current tomography resolution
where d is the initial resolution dimension. A slowness
model x' of resolution Q is used as an initial guess for
ray tracing.

Repeat lines 1 and 2: After the initialization, each

node will perform specific tasks based on the event
detection and message reception. Once an event is
detected by some node, the node will perform the ray
tracing algorithm (assuming each node is aware of event
location) and obtain the ray path. Then each node will
compute the ray information forming a set of linear
equation,
[A1,Ap, - AN [x1, X2, - ,xQ]T = [b1. b2, -+ by,
where rows in A; represents the ray information in
each node, b; represents the travel time residual of rays
obtained by that node and x; denotes the slowness of
the j-th grid in a 2-D tomographic cube of dimension
0.

Repeat lines 3-18: Once all nodes compute the
ray information, a parameter s; for all 1 < j < Q is
calculated by each of them. s; is the number of nodes
which has nonzero coefficient of particular x;. Once s;
is calculated, each node simultaneously performs some
finite number of Multigrid V-cycle (Algorithm 2). The
next iteration is determined by component averaging
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technique given by xj(.kH) =

% >N, 7. Here a tree-
based aggregation protocol is used to calculate the sum
and broadcast back xj(.kﬂ) to all the nodes. The updated
x](.kH) is used as an initial guess for the next iteration.
A stopping criteria is used to stop distributed multigrid
and the final slowness is sent to all the sensor nodes.
Repeat lines 19-21: Once a sensor node receives the
final slowness model x’ from all N nodes it will update
the previous slowness model x*" = x!. The algorithm
will TERMINATE if obtained result is satisfactory for
the volcanologists to interpret. Otherwise the process
is repeated with x(*!) as the slowness model to do ray
tracing with same resolution or with higher depending

upon the quality needed.
4.3 Communication cost

From the above algorithm we see that the actual
communication in the network occurs in lines 12-15
which involves aggregation of partial slowness data
of size n from all the nodes and then broadcasts
the component averaged result back to each node.
The communication scheme is shown in Fig. 5. Let
xi for 1 <i < N be the partial solution of node i.
Let |x’| denote the size of x' given by n. Then the
worst case communication cost involved would be
N Y, dim(x') = Nn. Similarly after calculation of
the component average, each node needs to flood the
information to all other nodes which involves another
Nn communication. Since this algorithm converges
after k iterations, the worst case communication cost
will be 2kn N .

In case of centralized computation we need to transfer
the information from all the nodes to centralized
server. Let m be average size of rows in each node,
then the worst case communication cost involved for
transferring data over the networks will be Nmn.
The average number of events each node detects,
i.e., m, will be of the order thousands or tens of
thousands. Moreover, m is not constant and increases
with occurrence of earthquake, therefore we see that
m > 2k. Also, in lines 12-15 the communication
involved is the summation of partial slowness over the
network and the size of x, i.e., n, remains constant and
is cheaper than passing all the node information to a
base station. Moreover, in centralized scenario if a node
close to base station fails then lots of packets will be
dropped making reconstruction impossible. While node
failure in distributed case will only lead to loss of part
of A and the reconstruction is possible using remaining

data.

5 Evaluation and Validation

In this section, we evaluate the DMGT algorithm
and present the simulation results. Typically, to test
tomography inversion algorithm a synthetic model is
used. This serves two purposes: (1) the real data set
such as from Mt. St Helens does not have a ground
truth and it is still uncertain which model is reliable.
(2) The simulation using synthetic model enables us
to investigate individually various phenomena which
cannot be separated physically. For example, P wave
data always contain noise due to measurement and
scattering, but simulation can indicate the specific effect
separately. For this reason, we adopt a synthetic
data of a fault model from Ref. [30] which has been
widely used for cross bore-hole tomography!*!l. This
fault model is created with velocities of 0.75km/s
for the right fault and 1.0km/s for the left fault
as shown in Fig. 6a. We perform the simulation in
a customized simulator where we have implemented
event detection, ray tracing, etc., for the fault model.
The test cases and convergence measure used in
computerized tomography are adopted to measure the
volcano tomography as these two processes are similar.

5.1 Synthetic fault model

Our experiment setup has a network of 64 nodes which
detects the earthquake event and traces the ray as
shown in Fig. 6b. A total of 512 earthquake events are
generated at random and a data generator traces the
ray to obtain the travel time at each node. In practice
these processes are independent and can be performed
at each node distributedly. After this, we obtain A and
b on each sensor node and we add Gaussian noise
to b to simulate the measurement noise. We perform
experiments for the finest resolution of dimension 32 x
32 with the three-grid V-cycle scheme. For the iterative
methods, the selection of relaxation and regularization
parameters p and A respectively are critical and in all
of our experiments these parameters remain constant
throughout the iterations, i.e., pk =p =0.25and Ak =
A=5forallk > 0.

In the implementation, 5 sweeps of BART are
performed at each level except the coarsest where it is
solved directly. This adds up to a total of 20 iterations
for a single V-cycle. For fair comparison we run 20
iterations at each node for CA-DMET. We use the
relative slowness updates of the estimation between
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(a) Magma/fault model (b) Ray traversal

Fig. 6 Synthetic model.

the two sweeps (one sweep means that all partial
slowness are averaged to calculate the next iteration)
as the stopping criteria. Convergence rates of different
algorithms are compared using relative updates (¢),
residuals (), and absolute error (¢) given by

¢ = T x|/,
k

x = llAx" —b],

e = |-k,

where x* is the ground truth.
5.2 Correctness and accuracy

Firstly, we compare the relative performance of DMGT
with two different algorithms: CA-DMET and MG-
ART?81, We use residuals and absolute error as the
parameters for comparison and results are shown in
Fig. 7. These plots demonstrate that there is a difference
in the initial convergence behavior in these algorithms.
Although the residuals of CA-DMET and MG-ART
decrease at a similar rate, the absolute error of MG-ART
tends to diverge from ground truth. This behavior is due
to the lack of regularization parameter in this algorithm
to handle inconsistent systems, whereas BART in
DMGT takes care of this using appropriate A. The
iterations on x-axis denote the number of component
averages required over a network, i.e., k as discussed
earlier. We can see that DMGT converges faster (lesser
k) compared to CA-DMET which means it requires
lesser communication over the network.

A visual verification of these three algorithms is
shown in Fig. 8. All the algorithms are run for the same
number of iterations. The reconstructed images from
different algorithms reveal that DMGT is able to obtain
better reconstruction compared to other algorithms. We
also observed that CA-DMET and DMGT algorithms
continued to improve its image reconstruction with
further increase in iterations, however MG-ART’s
reconstruction deteriorated with increase in iterations.
This is also because of the inconsistent system as

1051 :
CA-DMET

——MG-ART

—=—DMGT

Residuals

102.[

5 10 15 20
Iteration
(a) Residual

CA-DMET
—6—MG-ART ||

—=—-DMGT

Error

Iteration
(b) Absolute error

Fig.7 Comparing CA-DMET, MG-ART, and DMGT.

mentioned earlier.
5.3 Loss tolerance and performance

In the next set of experiments, loss tolerance and
robustness of DMGT are evaluated. The algorithm runs
with the same configuration for two different packet
loss ratios of 10% and 40% in the simulator and the
results are tabulated in Table 1. Figure 9 gives the 2-D
tomography with packet loss and we can see that with
10% or even 40% packet loss, there is no significance
difference in terms of the image reconstruction when
compared to the results with no packet loss. Since the
computation is distributed and all the nodes are involved
in slowness calculation, the proposed algorithm is
tolerant to a severe packet loss.

We also compare the efficiency of the algorithm by
creating partitions and varying its size. Simulation
results shown in Fig. 10 are run for total of 64 nodes,
with partition number varying from 8 (each partition

Table 1 Robustness of DMGT.

Case Relative error (¢p)  Absolute error (€ )
No packet loss 0.0052 3.4606
10% packet loss 0.0386 3.5281
40% packet loss 0.0612 3.7411
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Fig. 8 Final tomography model obtained from different algorithms. The values along x and y axis denote the pixel count. The
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having 8 nodes) through 64 (each partition having one
node). We can see that as partition number increases the
convergence rate decreases. This is mainly due to the
type of linear system each node has and the coefficient
shared among the nodes. From this we can conclude
that there is an optimal partition for a given set of nodes
and given set of events. Also, in Fig. 10b we notice that
for P = 8 case the solution diverges from ground truth.
This phenomena is due to over smoothing/relaxation
and to overcome this we need to dynamically select the
parameters such as A and p for a given partition size.
We address these questions in our future work and it is
beyond the scope of this paper.

5.4 Tomography with Magma model

Finally, we test the performance of DMGT using
different synthetic models as shown in Fig. 11a. In
this model we have Magma with velocity 4.5 km/s on
top right, 3.5km/s in the bottom left, and 4.0km/s
everywhere else. The difference in slowness is kept
15% compared to its surrounding value. This is because
even in real nature the slowness does not vary more than
10% — 15% and difference more than this is treated

4.6

(a) Magma model

3.6

(b) Ray tracing

Fig. 11 Different synthetic models. Different synthetic
model with velocities ranging from 3.5-4.5 km/s given by the
color bar on the right hand side.

to be an anomaly by geophysicists. Similar network
comprising of 64 nodes is deployed which detects
the earthquake event and traces the ray as shown in
Fig. 11b. We compare the performance of DMGT
with CA-DMET and CAV and the results are shown
in Fig. 12. CAV was chosen over MG-ART as we
saw earlier that MG-ART was not suitable in case of
inconsistent systems. These plots again demonstrate
that DMGT converges faster than CA-DMET and
CAV because of the V-cycle scheme in DMGT. The
convergence of absolute errors also show that DMGT
gives result close to the ground truth. By testing DMGT
on two different synthetic models and comparing its
performance with other distributed algorithms we can
say that it has accelerated convergence and requires
relatively less number of communication to achieve
similar results.

6 Conclusions

In this paper, we presented a new algorithm to
solve the seismic tomography problem over the sensor
network. We also proved that BART satisfies the
smoothing property and can also be used as smoother
in multigrid. We have also described the novel

——DMGT
——CA-DMET

—=-CAV

Residuals

5 10 15 20 25

Tteration
(a) Residuals
10°—& :
——DMGT
——CA-DMET

—=-CAV

0 5 10 15 20 25
Iteration

(b) Absolute error

Fig. 12 DMGT with different synthetic models.
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technique of performing multigrid in a distributed
manner altogether forming the DMGT algorithm. This
algorithm can distribute and balance the tomographic
inversion computation load over the network, while
computing real-time high-resolution tomography. The
experimental evaluation also showed that our proposed
method balances the computation load and is tolerant
to data loss. Further enhancement of this algorithm
can be done by applying the Full Approximation
Scheme (FAS) and Full MultiGrid (FMG). Dynamic
partitioning of clusters based on number of nodes
and events can also be considered to improve the
existing algorithm. With the introduction of embedded
devices like raspberry pi and beagleboards which have
computational power equivalent to a computer, we are
now able to run these complex algorithms easily. Until
now we have managed to build a mesh network with 20
sensors (beagleboards) and test the basic version of this
algorithm and in future we will focus on using real data
set for validation.
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Appendices

Proof of Theorem 1

Proof From the previous notations we have:
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We have now shown that BART satisfies the
smoothing property and can be used as smoother in

multigrid to solve the tomography problem. |
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