A Survey of Incomplete Factorization Preconditioners

Edmond Chow

Center for Applied Scientific Computing Lawrence Livermore National Laboratory

PIMS Workshop on Numerical Linear Algebra and Applications, 2003, UCRL-PRES-155107 – p.1/40

$$A = LU - R$$

- Classical algorithms for ILU
 - ILU for General Matrices
 - ILU for Difference Operators
 - Dropping by position
 - Dropping by numerical size
- Existence problem and breakdown-free variants
- Stability problem and remedies
- Effect of ordering
- Some implementation considerations

ILU for General Matrices

Denote

$$A_{k-1} = \left(\begin{array}{cc} b_k & f_k^T \\ e_k & C_k \end{array}\right)$$

starting with $A_0 = A$, and consider step k of the outer-product form of Gaussian elimination

$$A_{k-1} = \begin{pmatrix} I & 0 \\ e_k b_k^{-1} & I \end{pmatrix} \begin{pmatrix} b_k & f_k^T \\ 0 & A_k \end{pmatrix}$$

where $A_k = C_k - e_k b_k^{-1} f_k^T$.

To make the factorization *incomplete*, entries are dropped in A_k ,

i.e., the factorization proceeds with $\tilde{A}_k = A_k + R_k$.

- The dropped entries form -R in A = LU R, that is, $R_{ij} = 0$ if no dropping in position (i, j)
- How to select which entries to drop?
 By *position* or by *numerical size*
- Does the factorization exist? Remain positive?
- Actual computation is row-wise (or column-wise) for *L* and *U*

Modified ILU (MILU)

- LUe = Ae and $(LU)^{-1}Ae = e$
- The entries dropped from A_k are added back to its diagonal
- A further diagonal perturbation of size $O(h^2)$ is often used

ILU for Difference Operators

PIMS Workshop on Numerical Linear Algebra and Applications, 2003, UCRL-PRES-155107 – p.5/40

ILU for Difference Operators

- Make LU and A match on the nonzeros of A
- Make the rowsums of LU and A match
- Factorization can be written as $(D + L_A)D(D + U_A)$

ILU for Difference Operators

Increasingly larger stencils for *L* (Gustafsson, 1978)

Convergence rate for 5-point Poisson problem

Grid	num. equations	IC(0)-PCG	MIC(0)-PCG
32×32	1024	34	24
64 imes 64	4096	66	35
128×128	16384	123	51
256×256	65536	246	74
$\kappa = O(h^{-2})$		$\kappa = O(h^{-2})$	$\kappa = O(h^{-1})$
		$O(h^{-1})$ steps	$O(h^{-1/2})$ steps

Convergence rate for 5-point Poisson problem

Earlier History

ILU for Difference Operators

- Buleev (1960), Oliphant (1961), Varga (1961)
- Stone (1968), Dupont, Kendall, and Rachford (1968)

ILU for General Matrices

- Meijerink and Van der Vorst (1977)
- Gustafsson (1978)
- Kershaw (1978)

Dropping Strategies for General Matrices

- Based on numerical size (Munksgaard, 1980, Zlatev, 1982)
- Based on position (Watts, 1981)

Dropping by position or "level"

$$A_0 = \begin{pmatrix} b & f^T \\ e & C \end{pmatrix}$$
, $A_1 = C - ef^T/b$

Let A_0 have diagonal elements of size $O(\varepsilon^0)$ and off-diagonal elements of size $O(\varepsilon^1)$, with $\varepsilon < 1$, represented by

$$A_{0} = \begin{pmatrix} 1 & \varepsilon & \varepsilon & \varepsilon \\ \hline \varepsilon & 1 & \varepsilon & \\ \varepsilon & \varepsilon & 1 & \varepsilon \\ \varepsilon & \varepsilon & 1 & \varepsilon \\ \varepsilon & \varepsilon & 1 \end{pmatrix}, \qquad A_{1} = \begin{pmatrix} (1 - \varepsilon^{2}) & (\varepsilon - \varepsilon^{2}) & (-\varepsilon^{2}) \\ (\varepsilon - \varepsilon^{2}) & (1 - \varepsilon^{2}) & (\varepsilon - \varepsilon^{2}) \\ (-\varepsilon^{2}) & (\varepsilon - \varepsilon^{2}) & (1 - \varepsilon^{2}) \end{pmatrix}$$

Dropping by position or "level"

Initial level-of-fill

$$\operatorname{level}_{ij}^{(0)} = \begin{cases} 0 & \text{if } a_{ij} \neq 0\\ \infty & \text{otherwise} \end{cases}$$

When an element is updated, update its level-of-fill

$$\operatorname{level}_{ij}^{(k)} = \min(\operatorname{level}_{ik}^{(k-1)} + \operatorname{level}_{kj}^{(k-1)} + 1, \operatorname{level}_{ij}^{(k-1)})$$

- ILU(k): Retain the nonzeros with level $\leq k$
- In practice, the best *k* are 0, 1, and 2 for 2-D and 0 and 1 for 3-D

Graph interpretation of "level-of-fill"

- Numbers indicate order of elimination
- Nonzero created at (4,6) from eliminating 1 and 2, since the path (4, 2, 1, 6) exists
- Level of fill-in is one less than the length of the shortest path between 4 and 6 through 1 and 2; in this case, level = 2
- Multilevel dropping strategies?

Dropping by numerical size (Threshold ILU)

- Do not know beforehand which nonzeros to keep
- Define a drop tolerance *τ*; Two places to drop nonzeros:
 small pivots, and small entries in *L* and *U*
- To control the maximum size of L and U, restrict the maximum number of nonzeros per row: ILUT (Saad, 1994)

Definition. *A* is an *M*-matrix if *A* is nonsingular, $a_{ij} \leq 0$ for $i \neq j$, and $A^{-1} \geq 0$.

- The ILU factorization exists for an *M*-matrix, using any sparsity pattern including the diagonal (Meijerink and Van der Vorst, 1977)
- Same result for *H*-matrices (Varga, Saff, and Mehrman, 1980, Manteuffel, 1980, Robert, 1982)
- Note: the ILU factorization may break down or become indefinite for a positive matrix; the IC factorization may not exist for a SPD matrix

Shifted factorization

- Replace negative or zero pivots with small positive values (Kershaw, 1978)
- Shifted factorization: Factor $A + \alpha \operatorname{diag}(A)$. An α exists such that this factorization exists (Manteuffel, 1980)

If *d* is to be dropped, s > 0, the submatrix is modified by adding

$$\begin{pmatrix} \ddots & & & \\ & s|d| & -d & \\ & & \ddots & \\ & -d & \frac{1}{s}|d| & \\ & & \ddots \end{pmatrix}$$

which is positive semidefinite. The modified matrix remains positive definite and factorization cannot break down. **Ajiz and Jennings, 1984**

Cf. *diagonally compensated reduction* (Axelsson and Kolotilina, 1994)

$$A = \begin{pmatrix} b & f^T \\ e & C \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ e/b & I \end{pmatrix} \begin{pmatrix} b & 0 \\ 0 & S \end{pmatrix} \begin{pmatrix} 1 & f^T/b \\ 0 & I \end{pmatrix}$$

where $S = C - ef^T/b$. Now define p_e and p_f^T as e/b and f^T/b after dropping. Tismenetsky's factorization uses

$$\widetilde{S} = (-p_e \ I) A \left(-p_f^T \ I\right)^T$$
$$= C + b p_e p_f^T - e p_f^T - p_e f^T$$

Tismenetsky, 1991, Kaporin, 1998

- \widetilde{S} is SPD when A is SPD
- Need to keep track of $(p_e e/b)$ and $(p_f f^T/b)$
- Very effective, but high intermediate storage costs PIMS Workshop on Numerical Linear Algebra and Applications, 2003, UCRL-PRES-155107 – p.18/40

Factorization via *A***-orthogonalization**

Use *A*-orthogonalization to produce $Z^T A Z = D$, with *Z* uppertriangular. The root-free Cholesky factor is $L = AZD^{-1}$.

Benzi and Tůma, 2002

- Make incomplete by dropping in Z (and L)
- Breakdowns can be avoided
- Needs intermediate storage, but not as much as Tismenetsky's

Stability

- When an ILU factorization fails to help convergence, inaccuracy is often blamed
- For nonsymmetric and indefinite matrices, *instability* of the LU factors is a common problem, i.e., $||L^{-1}||$ and $||U^{-1}||$ are very large
- Note: R = LU A and $L^{-1}AU^{-1} = I + L^{-1}RU^{-1}$
- Van der Vorst (1981), Elman (1986), Chow and Saad (1997)
- This problem is rare in *complete* factorizations

Unstable triangular factor

Triangular solve recurrence:

$$x_i = 2x_{i-1} + b_i$$

Unstable triangular solves

Measure $\log_{10} ||(LU)^{-1}e||_{\infty}$ (Chow and Saad, 1997)

Another difficulty: Very small pivots

- Lead to unstable factorizations, i.e., ||L|| and ||U|| are large
- Which lead to numerically zero pivots (via swamping)
- The small pivots might have been caused initially by inaccuracy due to dropping

Possible effect of small pivots

- Originally symmetric structure
- Large, erroneous, off-diagonal entries are propagated

Assessing a factorization

Statistic	Meaning	
condest	$\ (LU)^{-1}e\ _{\infty}, e = (1, \dots, 1)^T$	
1/pivot	size of reciprocal of the smallest pivot	
max(L+U)	size of largest element in L and U	

Possible Remedies for Instability and Small Pivots

Stabilization

- Shifted factorization: $A + \alpha \operatorname{diag}(A)$, best α is larger than the one that makes factorization exist (Manteuffel, 1980)
- Modify diagonals of L and U to make the factors diagonally dominant (Van der Vorst, 1981, Munksgaard, 1980, Elman, 1989)
- Replace small pivots: sign of the pivot matters

Other Techniques

- Preserving symmetric structure
- Pivoting
- Reordering
- Blocking

Shifted factorization, nonsymmetric problem

PIMS Workshop on Numerical Linear Algebra and Applications, 2003, UCRL-PRES-155107 – p.27/40

Static, structure-based orderings

Natural

Reverse Cuthill-McKee

Minimum degree

Symmetric positive definite problems (Duff and Meurant, 1989)

- Natural and RCM orderings work well
- Minimum degree is better only with large amounts of fill-in

Nonsymmetric problems (Dutto, 1993, Benzi et al., 1997)

- RCM ordering is generally best
- Natural ordering generally worst

Coefficient-dependent orderings

Very unstructured problems

- ILUT with pivoting, called ILUTP (Saad, 1988)
- Maximum product transversals (Duff and Koster, 1999)

Anisotropy: complete *U* **factor, two orderings**

Ordering along weak directions is better. This is counter-intuitive.

Dynamic, coefficient-dependent ordering

Recall

$$A_{k-1} = \left(\begin{array}{cc} b_k & f_k^T \\ e_k & C_k \end{array}\right)$$

and

$$A_k = C_k - e_k b_k^{-1} f_k^T, \qquad \tilde{A}_k = A_k + R_k$$

Anisotropic problems

Given a sparsity pattern for the factorization, dynamically choose an ordering for A_{k-1} that will reduce some norm of R_k (D'Azevedo, Forsyth, and Tang, 1991)

Implementation considerations for Threshold ILU

Nonzeros in *L* part must be eliminated in topological order

Crout version of ILU

Li, Saad, and Chow, 2002

- Avoids the topological sort
- Can produce a factorization with symmetric structure
- Dropping based on L^{-1} and U^{-1} can be implemented
- Cholesky and IC versions: Eisenstat, Schultz, and Sherman (1981), Jones and Plassmann (1995)

Skyline version of ILU

Let A_{k+1} be the (k + 1)-st leading principal submatrix of A and assume we have the decomposition $A_k = L_k D_k U_k$. Compute the factorization of A_{k+1} via

$$\left(\begin{array}{cc}A_k & v_k\\ w_k & \alpha_{k+1}\end{array}\right) = \left(\begin{array}{cc}L_k & 0\\ y_k & 1\end{array}\right) \left(\begin{array}{cc}D_k & 0\\ 0 & d_{k+1}\end{array}\right) \left(\begin{array}{cc}U_k & z_k\\ 0 & 1\end{array}\right)$$

$$\left(\begin{array}{cc}A_k & v_k\\ w_k & \alpha_{k+1}\end{array}\right) = \left(\begin{array}{cc}L_k & 0\\ y_k & 1\end{array}\right) \left(\begin{array}{cc}D_k & 0\\ 0 & d_{k+1}\end{array}\right) \left(\begin{array}{cc}U_k & z_k\\ 0 & 1\end{array}\right)$$

Compute:

$$z_{k} = D_{k}^{-1}L_{k}^{-1}v_{k}$$

$$y_{k} = w_{k}U_{k}^{-1}D_{k}^{-1}$$

$$d_{k+1} = \alpha_{k+1} - y_{k}D_{k}z_{k}.$$

Chow and Saad, 1997

- Need sparse approximate solves
- May need a *companion structure* for L and U
- A running condition estimate $||(L_k U_k)^{-1}||_{\infty}$ is available

What we didn't cover

Block variants

- Block tridiagonal: Axelsson, Brinkkemper, and Il'in (1984), Concus, Golub, and Meurant (1985), Kolotilina and Yeremin (1986)
- Dense blocks: Fan, Forsyth, McMacken, and Tang (1996), Ng, Peyton, and Raghavan (1999)
- BPKIT Software: Chow and Heroux (1998)
- Multilevel versions
 - Brand and Heinemann (1989), Saad (1996), Botta, van der Ploeg, and Wubs (1996), Saad and Zhang (1999), Saad, Sosonkina, and Suchomel (2000)
 - Relation of block variants to multigrid methods

What we didn't cover (cont'd)

- Parallel ILU for General Matrices
 - Multicoloring: Jones and Plassmann (1995)
 - Domain Decomposition: Saad and others (1994), Karypis and Kumar (1996), Hysom and Pothen (1998)
- Perturbed MILU
 - Beauwens, Notay, Magolu, Eijkhout, and others

What we covered

- Classical algorithms for ILU
 - ILU for General Matrices
 - ILU for Difference Operators
 - Dropping by position
 - Dropping by numerical size
- Existence problem and breakdown-free variants
- Stability problem and remedies
- Effect of ordering
- Some implementation considerations

Acknowledgment

This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

