A Survey of Incomplete Factorization Preconditioners

Edmond Chow
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Incomplete LU Factorizations

$$
A=L U-R
$$

- Classical algorithms for ILU

■ ILU for General Matrices

- ILU for Difference Operators
- Dropping by position
- Dropping by numerical size
- Existence problem and breakdown-free variants
- Stability problem and remedies
- Effect of ordering
- Some implementation considerations

ILU for General Matrices

Denote

$$
A_{k-1}=\left(\begin{array}{cc}
b_{k} & f_{k}^{T} \\
e_{k} & C_{k}
\end{array}\right)
$$

starting with $A_{0}=A$, and consider step k of the outer-product form of Gaussian elimination

$$
A_{k-1}=\left(\begin{array}{cc}
I & 0 \\
e_{k} b_{k}^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
b_{k} & f_{k}^{T} \\
0 & A_{k}
\end{array}\right)
$$

where $A_{k}=C_{k}-e_{k} b_{k}^{-1} f_{k}^{T}$.
To make the factorization incomplete, entries are dropped in A_{k},
i.e., the factorization proceeds with $\tilde{A}_{k}=A_{k}+R_{k}$.

ILU for General Matrices

- The dropped entries form $-R$ in $A=L U-R$, that is, $R_{i j}=0$ if no dropping in position (i, j)
\square How to select which entries to drop?
- By position or by numerical size
- Does the factorization exist? Remain positive?
- Actual computation is row-wise (or column-wise) for L and U

Modified ILU (MILU)

- $L U e=A e$ and $(L U)^{-1} A e=e$
- The entries dropped from A_{k} are added back to its diagonal
- A further diagonal perturbation of size $O\left(h^{2}\right)$ is often used

ILU for Difference Operators

ILU for Difference Operators

- Make $L U$ and A match on the nonzeros of A
- Make the rowsums of $L U$ and A match
\square Factorization can be written as $\left(D+L_{A}\right) D\left(D+U_{A}\right)$

ILU for Difference Operators

Increasingly larger stencils for L (Gustafsson, 1978)

Convergence rate for 5-point Poisson problem

Grid	num. equations	IC(0)-PCG	MIC(0)-PCG
32×32	1024	34	24
64×64	4096	66	35
128×128	16384	123	51
256×256	65536	246	74
$\kappa=O\left(h^{-2}\right)$		$\kappa=O\left(h^{-2}\right)$	$\kappa=O\left(h^{-1}\right)$
		$O\left(h^{-1}\right)$ steps	$O\left(h^{-1 / 2}\right)$ steps

Convergence rate for 5-point Poisson problem

Earlier History

ILU for Difference Operators

- Buleev (1960), Oliphant (1961), Varga (1961)
- Stone (1968), Dupont, Kendall, and Rachford (1968)

ILU for General Matrices

- Meijerink and Van der Vorst (1977)

■ Gustafsson (1978)

- Kershaw (1978)

Dropping Strategies for General Matrices

- Based on numerical size (Munksgaard, 1980, Zlatev, 1982)
- Based on position (Watts, 1981)

Dropping by position or "level"

$$
A_{0}=\left(\begin{array}{cc}
b & f^{T} \\
e & C
\end{array}\right), \quad A_{1}=C-e f^{T} / b
$$

Let A_{0} have diagonal elements of size $O\left(\varepsilon^{0}\right)$ and off-diagonal elements of size $O\left(\varepsilon^{1}\right)$, with $\varepsilon<1$, represented by

$$
A_{0}=\left(\begin{array}{c|ccc}
1 & \varepsilon & \varepsilon & \varepsilon \\
\hline \varepsilon & 1 & \varepsilon & \\
\varepsilon & \varepsilon & 1 & \varepsilon \\
\varepsilon & & \varepsilon & 1
\end{array}\right), \quad A_{1}=\left(\begin{array}{ccc}
\left(1-\varepsilon^{2}\right) & \left(\varepsilon-\varepsilon^{2}\right) & \left(-\varepsilon^{2}\right) \\
\left(\varepsilon-\varepsilon^{2}\right) & \left(1-\varepsilon^{2}\right) & \left(\varepsilon-\varepsilon^{2}\right) \\
\left(-\varepsilon^{2}\right) & \left(\varepsilon-\varepsilon^{2}\right) & \left(1-\varepsilon^{2}\right)
\end{array}\right)
$$

Dropping by position or "level"

- Initial level-of-fill

$$
\operatorname{level}_{i j}^{(0)}= \begin{cases}0 & \text { if } a_{i j} \neq 0 \\ \infty & \text { otherwise }\end{cases}
$$

- When an element is updated, update its level-of-fill

$$
\operatorname{level}_{i j}^{(k)}=\min \left(\operatorname{level}_{i k}^{(k-1)}+\operatorname{level}_{k j}^{(k-1)}+1, \operatorname{level}_{i j}^{(k-1)}\right)
$$

- ILU(k): Retain the nonzeros with level $\leq k$
- In practice, the best k are 0,1 , and 2 for 2-D and 0 and 1 for 3-D

Graph interpretation of "level-of-fill"

- Numbers indicate order of elimination
- Nonzero created at $(4,6)$ from eliminating 1 and 2, since the path $(4,2,1,6)$ exists
- Level of fill-in is one less than the length of the shortest path between 4 and 6 through 1 and 2; in this case, level $=2$
- Multilevel dropping strategies?

Dropping by numerical size (Threshold ILU)

- Do not know beforehand which nonzeros to keep
- Define a drop tolerance τ; Two places to drop nonzeros:
- small pivots, and small entries in L and U
- To control the maximum size of L and U, restrict the maximum number of nonzeros per row: ILUT (Saad, 1994)

Existence

Definition. A is an M-matrix if A is nonsingular, $a_{i j} \leq 0$ for $i \neq j$, and $A^{-1} \geq 0$.

- The ILU factorization exists for an M-matrix, using any sparsity pattern including the diagonal (Meijerink and Van der Vorst, 1977)
■ Same result for H-matrices (Varga, Saff, and Mehrman, 1980, Manteuffel, 1980, Robert, 1982)
- Note: the ILU factorization may break down or become indefinite for a positive matrix; the IC factorization may not exist for a SPD matrix

Shifted factorization

- Replace negative or zero pivots with small positive values (Kershaw, 1978)
- Shifted factorization: Factor $A+\alpha \operatorname{diag}(A)$. An α exists such that this factorization exists (Manteuffel, 1980)

Ajiz-Jennings factorization

If d is to be dropped, $s>0$, the submatrix is modified by adding

$$
\left(\begin{array}{lllll}
\ddots & & & & \\
& s|d| & & -d & \\
& & \ddots & & \\
& -d & & \frac{1}{s}|d| & \\
& & & & \ddots
\end{array}\right)
$$

which is positive semidefinite. The modified matrix remains positive definite and factorization cannot break down. Ajiz and Jennings, 1984

Cf. diagonally compensated reduction (Axelsson and Kolotilina, 1994)

Tismenetsky's factorization

$$
A=\left(\begin{array}{cc}
b & f^{T} \\
e & C
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
e / b & I
\end{array}\right)\left(\begin{array}{cc}
b & 0 \\
0 & S
\end{array}\right)\left(\begin{array}{cc}
1 & f^{T} / b \\
0 & I
\end{array}\right)
$$

where $S=C-e f^{T} / b$. Now define p_{e} and p_{f}^{T} as e / b and f^{T} / b after dropping. Tismenetsky's factorization uses

$$
\begin{aligned}
\widetilde{S} & =\left(\begin{array}{ll}
-p_{e} & I
\end{array}\right) A\left(\begin{array}{ll}
-p_{f}^{T} & I
\end{array}\right)^{T} \\
& =C+b p_{e} p_{f}^{T}-e p_{f}^{T}-p_{e} f^{T}
\end{aligned}
$$

Tismenetsky, 1991, Kaporin, 1998
$\square \widetilde{S}$ is SPD when A is SPD
\square Need to keep track of $\left(p_{e}-e / b\right)$ and $\left(p_{f}-f^{T} / b\right)$

- Very effective, but high intermediate storage costs

Factorization via A-orthogonalization

Use A-orthogonalization to produce $Z^{T} A Z=D$, with Z uppertriangular. The root-free Cholesky factor is $L=A Z D^{-1}$.

Benzi and Tůma, 2002

- Make incomplete by dropping in Z (and L)

■ Breakdowns can be avoided

- Needs intermediate storage, but not as much as Tismenetsky's

Stability

- When an ILU factorization fails to help convergence, inaccuracy is often blamed
- For nonsymmetric and indefinite matrices, instability of the LU factors is a common problem, i.e., $\left\|L^{-1}\right\|$ and $\left\|U^{-1}\right\|$ are very large
- Note: $R=L U-A$ and $L^{-1} A U^{-1}=I+L^{-1} R U^{-1}$
- Van der Vorst (1981), Elman (1986), Chow and Saad (1997)
- This problem is rare in complete factorizations

Unstable triangular factor

$$
\left(\begin{array}{ccccc}
1 & & & & \\
-2 & \ddots & & & \\
& \ddots & \ddots & & \\
& & \ddots & \ddots & \\
& & & -2 & 1
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{i} \\
\vdots \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{i} \\
\vdots \\
\vdots
\end{array}\right)
$$

Triangular solve recurrence:

$$
x_{i}=2 x_{i-1}+b_{i}
$$

Unstable triangular solves

Measure $\log _{10}\left\|(L U)^{-1} e\right\|_{\infty}$ (Chow and Saad, 1997)

Another difficulty: Very small pivots

■ Lead to unstable factorizations, i.e., $\|L\|$ and $\|U\|$ are large

- Which lead to numerically zero pivots (via swamping)
- The small pivots might have been caused initially by inaccuracy due to dropping

Possible effect of small pivots

■ Originally symmetric structure

- Large, erroneous, off-diagonal entries are propagated

Assessing a factorization

Statistic	Meaning		
condest	$\left\\|(L U)^{-1} e\right\\|_{\infty}, \quad e=(1, \ldots, 1)^{T}$		
$1 /$ pivot	size of reciprocal of the smallest pivot		
$\max (\mathrm{L}+\mathrm{U})$	size of largest element in L and U		

	condest	
	small	large
	Inaccuracy due to dropping	unstable triangular solves
$\begin{gathered} \text { 品 } \\ \text { 药 } \end{gathered}$		very small pivots

Possible Remedies for Instability and Small Pivots

Stabilization

\square Shifted factorization: $A+\alpha \operatorname{diag}(A)$, best α is larger than the one that makes factorization exist (Manteuffel, 1980)

- Modify diagonals of L and U to make the factors diagonally dominant (Van der Vorst, 1981, Munksgaard, 1980, Elman, 1989)
\square Replace small pivots: sign of the pivot matters
Other Techniques
- Preserving symmetric structure
- Pivoting
- Reordering
- Blocking

Shifted factorization, nonsymmetric problem

Static, structure-based orderings

Natural

Reverse Cuthill-McKee

Minimum degree

Effect of ordering

Symmetric positive definite problems (Duff and Meurant, 1989)

- Natural and RCM orderings work well
- Minimum degree is better only with large amounts of fill-in

Nonsymmetric problems (Dutto, 1993, Benzi et al., 1997)

- RCM ordering is generally best
- Natural ordering generally worst

Coefficient-dependent orderings

Very unstructured problems

- ILUT with pivoting, called ILUTP (Saad, 1988)
- Maximum product transversals (Duff and Koster, 1999)

Anisotropy: complete U factor, two orderings

Ordering along weak directions is better. This is counter-intuitive.

Dynamic, coefficient-dependent ordering

Recall

$$
A_{k-1}=\left(\begin{array}{cc}
b_{k} & f_{k}^{T} \\
e_{k} & C_{k}
\end{array}\right)
$$

and

$$
A_{k}=C_{k}-e_{k} b_{k}^{-1} f_{k}^{T}, \quad \tilde{A}_{k}=A_{k}+R_{k}
$$

Anisotropic problems

- Given a sparsity pattern for the factorization, dynamically choose an ordering for A_{k-1} that will reduce some norm of R_{k} (D'Azevedo, Forsyth, and Tang, 1991)

Implementation considerations for Threshold ILU

- Nonzeros in L part must be eliminated in topological order

Crout version of ILU

Li, Saad, and Chow, 2002

- Avoids the topological sort
- Can produce a factorization with symmetric structure

■ Dropping based on L^{-1} and U^{-1} can be implemented

- Cholesky and IC versions: Eisenstat, Schultz, and Sherman (1981), Jones and Plassmann (1995)

Skyline version of ILU

Let A_{k+1} be the $(k+1)$-st leading principal submatrix of A and assume we have the decomposition $A_{k}=L_{k} D_{k} U_{k}$. Compute the factorization of A_{k+1} via

$$
\left(\begin{array}{cc}
A_{k} & v_{k} \\
w_{k} & \alpha_{k+1}
\end{array}\right)=\left(\begin{array}{cc}
L_{k} & 0 \\
y_{k} & 1
\end{array}\right)\left(\begin{array}{cc}
D_{k} & 0 \\
0 & d_{k+1}
\end{array}\right)\left(\begin{array}{cc}
U_{k} & z_{k} \\
0 & 1
\end{array}\right)
$$

Skyline version of ILU

$$
\left(\begin{array}{cc}
A_{k} & v_{k} \\
w_{k} & \alpha_{k+1}
\end{array}\right)=\left(\begin{array}{cc}
L_{k} & 0 \\
y_{k} & 1
\end{array}\right)\left(\begin{array}{cc}
D_{k} & 0 \\
0 & d_{k+1}
\end{array}\right)\left(\begin{array}{cc}
L_{k} & z_{k} \\
0 & 1
\end{array}\right)
$$

Compute:

$$
\begin{aligned}
z_{k} & =D_{k}^{-1} L_{k}^{-1} v_{k} \\
y_{k} & =w_{k} U_{k}^{-1} D_{k}^{-1} \\
d_{k+1} & =\alpha_{k+1}-y_{k} D_{k} z_{k}
\end{aligned}
$$

Chow and Saad, 1997

- Need sparse approximate solves
- May need a companion structure for L and U
- A running condition estimate $\left\|\left(L_{k} U_{k}\right)^{-1}\right\|_{\infty}$ is available

What we didn't cover

- Block variants

■ Block tridiagonal: Axelsson, Brinkkemper, and Il'in (1984), Concus, Golub, and Meurant (1985), Kolotilina and Yeremin (1986)

- Dense blocks: Fan, Forsyth, McMacken, and Tang (1996), Ng, Peyton, and Raghavan (1999)
- BPKIT Software: Chow and Heroux (1998)
- Multilevel versions
- Brand and Heinemann (1989), Saad (1996), Botta, van der Ploeg, and Wubs (1996), Saad and Zhang (1999), Saad, Sosonkina, and Suchomel (2000)
- Relation of block variants to multigrid methods

What we didn't cover (cont'd)

- Parallel ILU for General Matrices
- Multicoloring: Jones and Plassmann (1995)
- Domain Decomposition: Saad and others (1994), Karypis and Kumar (1996), Hysom and Pothen (1998)
- Perturbed MILU
- Beauwens, Notay, Magolu, Eijkhout, and others

What we covered

■ Classical algorithms for ILU

- ILU for General Matrices
- ILU for Difference Operators
- Dropping by position
- Dropping by numerical size
- Existence problem and breakdown-free variants
- Stability problem and remedies
- Effect of ordering
- Some implementation considerations

Acknowledgment

This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

