
Fall 2011
Prof. Hyesoon Kim

• Instructor: Hyesoon Kim (KACB 2344)
• Email: hyesoon@cc.gatech.edu

• Homepage
– http://www.cc.gatech.edu/~hyesoon/fall11
– T-square (http://www.t-square.gatech.edu)

• Office hours: 3:00-4:30 Tu/Th
• TA: TBA
• Group mailing list: cs6290-2011@googlegroups.com

• Textbook: No required text book
– Recommended book: Computer Architecture: AQA, 4th Edition by

Hennessy and Patterson
– Jean-Loup Baer, Microprocessor Architecture: From Simple

Pipelines to Chip Multiprocessors, 1st edition.
Papers

http://groups.google.com/group/cs6290-2011
http://groups.google.com/group/cs6290-2011
http://groups.google.com/group/cs6290-2011
mailto:cs6290-2011@googlegroups.com

 http://www.chipworks.com/en/technical-competitive-analysis/resources/technology-blog/2011/03/apple-a5-vs-a4-floorplan-comparison/

A4 A5

Problem

Algorithm

ISA

u-architecture

Circuits

Electrons

ISA: Interface between s/w & h/w

• This course requires heavy
programming

• Don’t take too many program heavy
courses!

• It is 3-credit course but you feel a 4-
5 credit course

• The most ECElike course in CS

• can be fun or can be hard or look so
easy…

• Select target platforms
– Identify important applications
– Identify design specifications (area, power budget etc.)

• Design space explorations
• Develop new mechanisms
• Evaluate ideas using

– High-level simulations
– Detailed-level simulations

• Design is mostly fixed hardware description languages
• VLSI
• Fabrications
• Testing

Simple
performance

model

Detailed
performance

model

VHDL
performance

model

Circuit/layout
design

Benchmarks
Performance

evaluation

Verification FAB

• Pipeline depth?
• # of cores?
• Cache sizes?, cache configurations? Memory

configurations. Coherent, non-coherent?
• In-order/ out of order
• How many threads to support?
• Power requirements?
• Performance enhancement mechanisms

– Instruction fetch: branch predictor, speculative execution
– Data fetch : cache, prefetching
– Execution : data forwarding

• Two common measures
– Latency (how long to do X)

• Also called response time and execution time
– Throughput (how often can it do X)

• Example of car assembly line
– Takes 6 hours to make a car

(latency is 6 hours per car)
– A car leaves every 5 minutes

(throughput is 12 cars per hour)
– Overlap results in Throughput > 1/Latency

• Benchmarks
– Real applications and application suites

• E.g., SPEC CPU2000, SPEC2006, TPC-C, TPC-H,
EEMBC, MediaBench, PARSEC, SYSmark

– Kernels
• “Representative” parts of real applications
• Easier and quicker to set up and run
• Often not really representative of the entire app

– Toy programs, synthetic benchmarks, etc.
• Not very useful for reporting
• Sometimes used to test/stress specific

functions/features

“Representative” applications keeps growing with time!

• Test, train and ref
• Test: simple checkup
• Train: profile input, feedback compilation
• Ref: real measurement. Design to run long

enough to use for real system
– -> Simulation?

• Reduced input set
• Statistical simulation
• Sampling

• Measure transaction-processing
throughput

• Benchmarks for different scenarios
– TPC-C: warehouses and sales transactions
– TPC-H: ad-hoc decision support
– TPC-W: web-based business transactions

• Difficult to set up and run on a simulator
– Requires full OS support, a working DBMS
– Long simulations to get stable results

• SPLASH: Scientific computing kernels
– Who used parallel computers?

• PARSEC: More desktop oriented
benchmarks

• NPB: NASA parallel computing
benchmarks

• GPGPU benchmark suites
– Rodinia, Parboil, SHOC

• Not many

• GFLOPS, TFLOPS
• MIPS (Million instructions per second)

Machine A with ISA “A”: 10 MIPS
Machine B ISA “B”: 5 MIPS
which one is faster?

Alpha ISA

LEA A
LD R1 mem[A]
Add R1, R1 #1
ST mem[A] R1

X86 ISA

INC mem[A]

Case 1

Case 2

Add, ADD, NOP ADD, ADD NOP, NOP ADD , NOP

 timecycleClock CyclesClock CPU timeCPU ×=

 timecycleClock nInstructioPer CyclesCount n Instructio timeCPU ××=

CycleClock
Seconds

nInstructio
CyclesClock

Program
nsInstructio

Program
Seconds timeCPU ××==

Hardware
Technology,
Organization

Organization,
ISA

ISA,
Compiler
Technology

A.K.A. The “iron law” of performance

 timecycleClock CyclesClock CPU timeCPU ×=

 timecycleClock CPI IC timeCPU
n

1i
ii ×× 







= ∑

=

For each kind
of instruction

How many
instructions of this
kind are there in the
program

How many cycles it
takes to execute an
instruction of this kind

Instruction
Type

Frequency CPI

Integer 40% 1.0

Branch 20% 4.0

Load 20% 2.0

Store 10% 3.0

 timecycleClock CPI IC timeCPU
n

1i
ii ×× 







= ∑

=

Total Insts = 50B, Clock speed = 2 GHz

= (0.4*1.0 + 0.2*4.0+0.2*2.0 + 0.1*3.0) * 50 *10^9*1/(2*10^9)

• “X is n times faster than Y”

• “Throughput of X is n times that of Y”

n
timeExecution
timeExecution

X

Y =

n
unit timeper Tasks
unit timeper Tasks

Y

X =

• “X is n times faster than Y on A”

• But what about different applications
(or even parts of the same application)
– X is 10 times faster than Y on A, and 1.5 times

on B, but Y is 2 times faster than X on C,
and 3 times on D, and…

n
X machineon A app of timeExecution
Y machineon A app of timeExecution
=

So does X have better
performance than Y?

Which would you buy?

• Arithmetic mean
– Average execution time
– Gives more weight to longer-running programs

• Weighted arithmetic mean
– More important programs can be emphasized
– But what do we use as weights?
– Different weight will make different machines

look better

Machine A Machine B

Program 1 5 sec 4 sec

Program 2 3 sec 6 sec

What is the speedup of A compared to B on Program 1?

What is the speedup of A compared to B on Program 2?

What is the average speedup?

What is the speedup of A compared to B on Sum(Program1, Program2) ?

4/5

6/3

(4+6)/(5+3) = 1. 25

(4/5+6/3)/2 = 0.8

• Speedup of arithmetic means != arithmetic
mean of speedup

• Use geometric mean:

• Neat property of the geometric mean:
Consistent whatever the reference
machine

• Do not use the arithmetic mean for
normalized execution times

n
n

i

i∏
=1

on timeexecution Normalized

• Often when making comparisons in comp-
arch studies:
– Program (or set of) is the same for two CPUs
– The clock speed is the same for two CPUs

• So we can just directly compare CPI’s and

often we use IPC’s

• Average CPI = (CPI1 + CPI2 + … + CPIn)/n

• A.M. of IPC = (IPC1 + IPC2 + … + IPCn)/n

• Must use Harmonic Mean to remain ∝ to

runtime

Not Equal to A.M. of CPI!!!

• A program is compiled with different
compiler options. Can we use IPC to
compare performance?

• A program is run with different cache size
machine. Can we use IPC to compare
performance?

• H.M.(x1,x2,x3,…,xn) =
 n
 1 + 1 + 1 + … + 1
 x1 x2 x3 xn

• What in the world is this?
– Average of inverse relationships

• “Average” IPC = 1
 A.M.(CPI)
 = 1
 CPI1 + CPI2 + CPI3 + … + CPIn

 n n n n
 = n
 CPI1 + CPI2 + CPI3 + … + CPIn

 = n
 1 + 1 + 1 + … + 1 =

H.M.(IPC)
 IPC1 IPC2 IPC3 IPCn

• One solution: use Gmean or show average
without mcf and with mcf

• Use

Sum(base)-Sum(new)/Sum(base) = -0.005%
AVERAGE(delta) = 9.75%

FE ID EX MEM WB

add r1, r2, r3 add

mul
mul
mul

add

sub r4, r1, r3 sub add sub add

add sub mul r5, r2, r3 mul sub
sub sub add

add
add

Add: 2 cycles

add add
add

sub sub
sub sub mul

L L L L L
FE_stage

FE ID EX MEM WB
br

0x800

 br target 0x800
 add r1, r2,r3 0x804

target sub r2,r3,r4 0x900

br

0x804
br
 br

 br

0x804
0x804
0x900

PC (latch)

add

add
add
sub

0x904

1
cycle

2
3
4
5

6 add sub

FE_stage

Example: MIPS R4000

IF ID MEM WB

integer unit

FP/int Multiply

FP adder

FP/int divider

ex

m1 m2 m3 m4 m5 m6 m7

a1 a2 a3 a4

Div (lat = 25,
Init inv=25)

	CS4290/CS6290
	Class Info
	Floor Plan of A4 and A5 iPhones/iPads
	What is Architecture?
	Warning!!
	Architecture class
	Chip Design Process
	Architecture Study
	Design Options
	Metrics
	Performance
	Measuring Performance
	SPEC CPU (integer)
	SPEC CPU (floating point)
	Spec Input Sets
	TPC Benchmarks
	Multiprocessor’s benchmarks
	Performance Metrics
	MIPS
	CPU Performance Equation (1)
	CPU Performance Equation
	CPU performance w/ different instructions
	Comparing Performance
	If Only it Were That Simple
	Summarizing Performance
	Speedup
	Normalizing & the Geometric Mean
	CPI/IPC
	Average CPI vs. “Average” IPC
	IPC vs. Execution time
	Harmonic Mean
	A.M.(CPI) vs. H.M.(IPC)
	HMEAN’s trick
	AMEAN…
	Assignment #1
	Dependent Instructions:�dst data is available at WB
	Handling Branches
	Multicycle stages

