
Fall 2011 

Prof. Hyesoon Kim 



FE ID EX MEM WB

add  r1, r2, r3 add

mul

mul

mul

add

sub  r4, r1, r3 sub addsub add

addsubmul r5, r2, r3 mul sub

subsub add

add

add

Add: 2 cycles

add add

add

subsub

subsubmul

L L L L L

FE_stage



FE ID EX MEM WB

br0x800

br target   0x800

add r1, r2,r3 0x804

target sub r2,r3,r4  0x900

br0x804

br

br

br

0x804

0x804

0x900

PC (latch)

add

add

add

sub

0x904

1

cycle

2

3

4

5

6 add sub

FE_stage



• -Eliminate branches

– Predication (more on later)

• Delayed branch slot 

– SPARC, MIPS 

• Dual-path execution (more on later) 

• Or predict? 



• Branches are very frequent

– Approx. 20% of all instructions

• Can not wait until we know where it goes

– Long pipelines

• Branch outcome is known after B cycles

• No scheduling past the branch until outcome known

– Superscalars (e.g., 4-way)

• Branch every cycle or so!

• One cycle of work, then bubbles for ~B cycles?



• Predict Branches

– And predict them well!

• Fetch, decode, etc. on the predicted path

– Option 1: No execution until branch is resolved

– Option 2: Execute anyway (speculation)

• Recover from mispredictions

– Restart fetch from correct path



• Need to know two things

– Whether the branch is taken or not (direction)

– The target address if it is taken (target)

• Direct jumps, Function calls: unconditional 

branches

– Direction known (always taken), target easy to 

compute

• Conditional Branches (typically PC-relative)

– Direction difficult to predict, target easy to compute

• Indirect jumps, function returns

– Direction known (always taken), target difficult



• Needed for conditional branches

– Most branches are of this type

• Many, many kinds of predictors for this

– Static: fixed rule, or compiler annotation
(e.g. br.bwh (branch whether hint. IA-64))

– Dynamic: hardware prediction

• Dynamic prediction usually history-based

– Example: predict direction is the same
as the last time this branch was executed



• Always predict NT

– easy to implement

– 30-40% accuracy … not so good

• Always predict T

– 60-70% accuracy 

• BTFNT

– loops usually have a few iterations, so this is 

like always predicting that the loop is taken

– don’t know target until decode



K bits of branch

instruction address

Index

Branch history

table of 2^K entries,

1 bit per entry

Use this entry to

predict this branch:

0: predict not taken

1: predict taken

When branch direction resolved,

go back into the table and

update entry: 0 if not taken, 1 if taken



0xDC08: for(i=0; i < 100000; i++)

{

0xDC44: if( ( i % 100) == 0 )

tick( );

0xDC50: if( (i & 1) == 1)

odd( );

}

T

N



• Example: short loop (8 iterations)

– Taken 7 times, then not taken once

– Not-taken mispredicted (was taken previously)

Act:   TTTTTTTNTTTTTTNTTTTTTTNT…

Pred: XTTTTTTTNTTTTTTNTTTTTTTN

Corr:  Xooooo MMooooooMMooooooMM

Misprediction rate: 2/8 = 25% 

• Execute the same loop again

– First always mispredicted (previous outcome was not taken)

– Then 6 predicted correctly

– Then last one mispredicted again

• Each fluke/anomaly in a stable pattern results in two 

mispredicts per loop



DC08: TTTTTTTTTTT ... TTTTTTTTTTNTTTTTTTTT …

100,000 iterations

How often is branch outcome != previous outcome?

2 / 100,000

TN

NT

DC44: TTTTT ...     TNTTTTT    …       TNTTTTT …

2 / 100

DC50: TNTNTNTNTNTNTNTNTNTNTNTNTNTNT …

2 / 2

99.998%

Prediction

Rate
98.0%

0.0%



0 1

FSM for Last-time

Prediction

0 1

2 3

FSM for 2bC

(2-bit Counter)

Predict NT

Predict T

Transistion on T outcome

Transistion on NT outcome



2

T



3

T

3

T

 

…3

N



N

1



T

0



0

T

1

T T T T
…

T

1 1 1 1

     

T

1



T
…1



0

T

1

T

2

T

3

T

3

T
… 3

T

    

Initial Training/Warm-up1bC:

2bC:

Only 1 Mispredict per N branches now!

DC08: 99.999% DC44: 99.0%

0 1

2 3



We can 

live with 

these

These 

are good

This is bad!



• 98%  99%

– Who cares?

– Actually, it’s 2% misprediction rate  1%

– That’s a halving of the number of mispredictions

• So what?

– If a pipeline can fetch 5 instructions at a cycle and the branch 

resolution time is 20 cycles  

– To Fetch 500 instructions 

– 100 accuracy : 100 cycles 

– 98 accuracy:

• 100 (correctly fetch) + 20 (misprediction)*10 = 300 cycles 

– 99 accuracy 

• 100 (correctly fetch) + 20 misprediction *5 = 200 cycles



1 1 ….. 1 0

BHR

(branch 

history 

register)

00 …. 00

00 …. 01

00 …. 10

11 ….  11

0 1

2 3

index

Pattern History Table 

previous one 

Yeh&patt’92



0 0 0 0 0 0

History length 

Initialization value (0 or 1) 

1 : branch is taken 

0: branch is not-taken 

Old history New history 

New BHR  = old BHR<<1 | (br_dir) 

Example

BHR: 00000 

Br1 :  taken                   BHR 00001 

Br 2:  not-taken            BHR  00010 

Br 3:  taken                   BHR 00101



20

• Yeh and Patt 3-letter naming scheme

– Type of history collected

• G (global), P (per branch), S (per set)

– PHT type

• A (adaptive), S (static)

– PHT organization

• g (global), p (per branch), s (per set)



GBHR

PC

PHT 

GAp

BHR Table 

PC

PAp



• Local Behavior

– What is the predicted direction of Branch A 

given the outcomes of previous instances of 

Branch A?

• Global Behavior

– What is the predicted direction of Branch Z 

given the outcomes of all* previous branches 

A, B, …, X and Y?

* number of previous branches tracked limited by the history length



• Branches are correlated
Branch X: if (cond1)

….

Branch Y: if (cond 2)

….

Branch Z : if (cond 1 and cond 2)

…….1 0

Branch 

X

Branch

Y 

Branch

Z

1 0 0

1 1 1

0 1 0

0 0 0

BHR

…….1 1

…….01

…….00

PHT



1 1 ….. 1 0

2bc

2bc

2bc

2bc

BHR

index

0x809000

PC

XOR

McFarling’93

Predictor size:  2^(history length)*2bit 



predict_func(pc, actual_dir) 

{ 

index = PC xor BHR 

taken = 2bit_counters[index] > 2 ? 1 : 0 

correctly_predictied = (actual_dir == taken) ? 1 : 0  // stats 

}

updated_func(pc, actual_dir)

{

index = PC xor BHR 

if (actual_dir) SAT_INC( 2bit_counter[index] )

else SAT_DEC ( 2bit_counter[index] )

BHR = BHR << 1 | actual_dir

}


