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• -Eliminate branches

– Predication (more on later)

• Delayed branch slot 

– SPARC, MIPS 

• Dual-path execution (more on later) 

• Or predict? 



• Branches are very frequent

– Approx. 20% of all instructions

• Can not wait until we know where it goes

– Long pipelines

• Branch outcome is known after B cycles

• No scheduling past the branch until outcome known

– Superscalars (e.g., 4-way)

• Branch every cycle or so!

• One cycle of work, then bubbles for ~B cycles?



• Predict Branches

– And predict them well!

• Fetch, decode, etc. on the predicted path

– Option 1: No execution until branch is resolved

– Option 2: Execute anyway (speculation)

• Recover from mispredictions

– Restart fetch from correct path



• Need to know two things

– Whether the branch is taken or not (direction)

– The target address if it is taken (target)

• Direct jumps, Function calls: unconditional 

branches

– Direction known (always taken), target easy to 

compute

• Conditional Branches (typically PC-relative)

– Direction difficult to predict, target easy to compute

• Indirect jumps, function returns

– Direction known (always taken), target difficult



• Needed for conditional branches

– Most branches are of this type

• Many, many kinds of predictors for this

– Static: fixed rule, or compiler annotation
(e.g. br.bwh (branch whether hint. IA-64))

– Dynamic: hardware prediction

• Dynamic prediction usually history-based

– Example: predict direction is the same
as the last time this branch was executed



• Always predict NT

– easy to implement

– 30-40% accuracy … not so good

• Always predict T

– 60-70% accuracy 

• BTFNT

– loops usually have a few iterations, so this is 

like always predicting that the loop is taken

– don’t know target until decode



K bits of branch

instruction address

Index

Branch history

table of 2^K entries,

1 bit per entry

Use this entry to

predict this branch:

0: predict not taken

1: predict taken

When branch direction resolved,

go back into the table and

update entry: 0 if not taken, 1 if taken



0xDC08: for(i=0; i < 100000; i++)

{

0xDC44: if( ( i % 100) == 0 )

tick( );

0xDC50: if( (i & 1) == 1)

odd( );

}

T

N



• Example: short loop (8 iterations)

– Taken 7 times, then not taken once

– Not-taken mispredicted (was taken previously)

Act:   TTTTTTTNTTTTTTNTTTTTTTNT…

Pred: XTTTTTTTNTTTTTTNTTTTTTTN

Corr:  Xooooo MMooooooMMooooooMM

Misprediction rate: 2/8 = 25% 

• Execute the same loop again

– First always mispredicted (previous outcome was not taken)

– Then 6 predicted correctly

– Then last one mispredicted again

• Each fluke/anomaly in a stable pattern results in two 

mispredicts per loop



DC08: TTTTTTTTTTT ... TTTTTTTTTTNTTTTTTTTT …

100,000 iterations

How often is branch outcome != previous outcome?

2 / 100,000

TN

NT

DC44: TTTTT ...     TNTTTTT    …       TNTTTTT …

2 / 100

DC50: TNTNTNTNTNTNTNTNTNTNTNTNTNTNT …

2 / 2

99.998%

Prediction

Rate
98.0%

0.0%
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Initial Training/Warm-up1bC:

2bC:

Only 1 Mispredict per N branches now!

DC08: 99.999% DC44: 99.0%
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We can 

live with 

these

These 

are good

This is bad!



• 98%  99%

– Who cares?

– Actually, it’s 2% misprediction rate  1%

– That’s a halving of the number of mispredictions

• So what?

– If a pipeline can fetch 5 instructions at a cycle and the branch 

resolution time is 20 cycles  

– To Fetch 500 instructions 

– 100 accuracy : 100 cycles 

– 98 accuracy:

• 100 (correctly fetch) + 20 (misprediction)*10 = 300 cycles 

– 99 accuracy 

• 100 (correctly fetch) + 20 misprediction *5 = 200 cycles



1 1 ….. 1 0

BHR

(branch 

history 

register)

00 …. 00

00 …. 01

00 …. 10

11 ….  11

0 1

2 3

index

Pattern History Table 

previous one 

Yeh&patt’92



0 0 0 0 0 0

History length 

Initialization value (0 or 1) 

1 : branch is taken 

0: branch is not-taken 

Old history New history 

New BHR  = old BHR<<1 | (br_dir) 

Example

BHR: 00000 

Br1 :  taken                   BHR 00001 

Br 2:  not-taken            BHR  00010 

Br 3:  taken                   BHR 00101



20

• Yeh and Patt 3-letter naming scheme

– Type of history collected

• G (global), P (per branch), S (per set)

– PHT type

• A (adaptive), S (static)

– PHT organization

• g (global), p (per branch), s (per set)



GBHR

PC

PHT 

GAp

BHR Table 

PC

PAp



• Local Behavior

– What is the predicted direction of Branch A 

given the outcomes of previous instances of 

Branch A?

• Global Behavior

– What is the predicted direction of Branch Z 

given the outcomes of all* previous branches 

A, B, …, X and Y?

* number of previous branches tracked limited by the history length



• Branches are correlated
Branch X: if (cond1)

….

Branch Y: if (cond 2)

….

Branch Z : if (cond 1 and cond 2)

…….1 0

Branch 

X

Branch

Y 

Branch

Z

1 0 0

1 1 1

0 1 0

0 0 0

BHR

…….1 1

…….01

…….00

PHT



1 1 ….. 1 0

2bc

2bc

2bc

2bc

BHR

index

0x809000

PC

XOR

McFarling’93

Predictor size:  2^(history length)*2bit 



predict_func(pc, actual_dir) 

{ 

index = PC xor BHR 

taken = 2bit_counters[index] > 2 ? 1 : 0 

correctly_predictied = (actual_dir == taken) ? 1 : 0  // stats 

}

updated_func(pc, actual_dir)

{

index = PC xor BHR 

if (actual_dir) SAT_INC( 2bit_counter[index] )

else SAT_DEC ( 2bit_counter[index] )

BHR = BHR << 1 | actual_dir

}


