
Fall 2011
Prof. Hyesoon Kim

1 1 ….. 1 0

2bc

2bc

2bc

2bc

BHR
index

0x809000

PC

XOR

McFarling’93

Predictor size: 2^(history length)*2bit

predict_func(pc, actual_dir)
{
 index = pc xor BHR
 taken = 2bit_counters[index] > =2 ? 1 : 0
 correctly_predictied = (actual_dir == taken) ? 1 : 0 // stats
}

updated_func(pc, actual_dir)
{
 index = PC xor BHR
 if (actual_dir) SAT_INC(2bit_counter[index])
 else SAT_DEC (2bit_counter[index])
 BHR = BHR << 1 | actual_dir
}

There are three static branches, br1, br2,
br3. dynamic branch trace is
T,N,T,T,T,T,N,N,T (br1,br2, br3 is repeated
three times). 3 bit BHR (start from 000).

PC addresses of the branches are 1,2,3
respectively. Calculate g-share branch
predictor accuracy.

Init value of 2-bit counter is 2 (weakly taken)
 Please turn in your solutions after the class.

•  When do we know the branch outcome?
•  Two options:

–  (1) After we know the actual branch outcome
–  (2) Speculatively update

•  Pros: & Cons:
– Think about deeper pipelines

•  How about prog assignment #2?

•  Local Behavior
– What is the predicted direction of Branch A

given the outcomes of previous instances of
Branch A?

•  Global Behavior
– What is the predicted direction of Branch Z

given the outcomes of all* previous branches
A, B, …, X and Y?

* number of previous branches tracked limited by the history length

2bc

2bc

2bc

2bc

0x809000 PC

n-bit

2^n entry table

Typical Local predictor
When does it work?
- Loop,
- Repeat pattern
 a++;

if (!(a%3)) { ..}

•  No predictor is clearly the best
– Different branches exhibit different behaviors

•  Some “constant”, some global, some local

•  Idea:
Let’s have a predictor to predict
which predictor will predict better J

Pred0 Pred1
Meta-

Predictor

Final Prediction

table of 2-/3-bit counters

Pred0 Pred1
Meta

Update

û û ---
û ü Inc
ü û Dec
ü ü ---

If meta-counter MSB = 0,
use pred0 else use pred1

•  Global history + Local history
•  “easy” branches + global history

– 2bC and gshare
•  short history + long history

•  Many types of behaviors, many
combinations

if (t1 == 0 && t2 == 0 && t3 == 0) {
}
Hard to predict branches.
Anything can we do?

 if ((t1 | t2 | t3)) == 0) {
 ….
 }

 From “the software optimization cookbook” Intel

•  Size of branch predictor:
– Typically the size of PHT (Pattern History

Table) (aka 2-bit counter table)
– G-share: 2^n (n is the history length)
– As n increases, accuracy?
– Why?

•  Downside of large size tables:
– Longer to train
– Long access time

•  Use machine learning to train a branch
predictor

•  Outcome is not always taken or not-taken
•  Train weight factors
•  Requires much smaller storage
•  Negative: complex calculation (solution:

pipelining), linearly inseparable (solution:
piece-wise linear predictor)

•  Inputs (x’s) are from branch history and are -1 or +1
•  n + 1 small integer weights (w’s) learned by on-line

training
•  Output (y) is dot product of x’s and w’s; predict taken if y
≥ 0

•  Training finds correlations between history and outcome

 from D. Jimenez’s slides

15
 from D. Jimenez’s slides

16

•  The bias weight, w0:
–  Proportional to the probability that the branch is taken
–  Doesn’t take into account other branches; just like a Smith predictor

•  The correlating weights, w1 through wn:
–  wi is proportional to the probability that the predicted branch agrees

with the ith branch in the history

•  The dot product of the w’s and x’s
–  wi × xi is proportional to the probability that the predicted branch is

taken based on the correlation between this branch and the ith branch
–  Sum takes into account all estimated probabilities

•  What’s θ?
–  Keeps from overtraining; adapt quickly to changing behavior

 from D. Jimenez’s slides

17

•  Keeps a table of m perceptron weights vectors
•  Table is indexed by branch address modulo m

[Jiménez & Lin, HPCA 2001]

 from D. Jimenez’s slides

•  How do we know when to access a branch
predictor?

•  Branch Target Buffer
–  IF stage: need to know fetch addr every cycle
–  Need target address one cycle after fetching a branch
–  For some branches (e.g., indirect) target known

only after EX stage, which is way too late
–  Even easily-computed branch targets need to wait until

instruction decoded and direction predicted in ID stage
(still at least one cycle too late)

–  So, we have a fast predictor for the target
that only needs the address of the branch instruction

•  BTB indexed by instruction address (or fetch
address)

•  We don’t even know if it is a branch!
•  If address matches a BTB entry, it is

predicted to be a branch
•  BTB entry tells whether it is taken (direction) and

where it goes if taken
•  BTB takes only the instruction address, so

while we fetch one instruction in the IF stage
we are predicting where to fetch the next one
from

Direction prediction
can be factored out
into separate table

•  Target address != next PC address
–  (at least in this course and in the lab

assignments)
– Cond. Br TARGET
– Br is taken next PC = TARGET
– Br is not-taken next PC = current PC + Inst

size
•  (1) BTB stores target address:

– Direction prediction?
•  (2) BTB stores next PC addresses

•  When do we have more than one target
address for one BTB entry?
– Return
–  Indirect branches
– BTB is indexed with fetch address
– Fetch address ?

•  When a processor fetches more than one
instruction, it fetches a cache block. BTB is often
indexed with the cache block address.

•  X86 software optimization manual: Do not put
branches too nearby

main()
{

foo();
printf(“still hungry\n”);
….
foo();
printf(“full\n”);

}

foo(){
 …..

return
}

BTB

??

•  Function returns are frequent, yet
– Address is difficult to compute

(have to wait until EX stage done to know it)
– Address difficult to predict with BTB

(function can be called from multiple places)

main()
{

foo();
printf(“still hungry\n”);
….
foo();
printf(“full\n”);

}

foo(){

 …..

return
}

0x800

0x804

0x900

0x904

•  But return address is actually easy to
predict
–  It is the address after the last call instruction

that we haven’t returned from yet
– Hence the Return Address Stack

main()
{

foo();
printf(“still hungry\n”);
….
foo();
printf(“full\n”);

}

foo(){
 …..

return
}

0x800

0x804

0x900

0x904 0x904 0x804

•  Call pushes return address into the RAS
•  When a return instruction decoded,

pop the predicted return address from RAS
•  Accurate prediction even w/ small RAS

•  Now you learned RAS, what do you do to
write a program to improve performance?

– Match function calls & returns
– Do not overflow return address stack (depth is

limited.)

•  G-share predictor
•  RAS (Return Address Stack)
•  Updating branch predictor

•  Special treatment for loop branches
•  Why do we want loops specially?

– Easy to predict if we know N
– Easy to know in advance if we know N
– Pollute branch predictor

for (ii =0; ii < 10; ii++)
{
 …
} Loop branch is iterated 10 times all the time

•  Prepare to branch (HPL-PD)
– Software gives hints to the hardware about

what the branch target will be. It saves us the
target prediction since it has already been
written into one of the target registers.

– Works when?
•  Special Loop predictor (Intel’s Pentium M)

– Detect a loop branch
– Train the max iteration counter value

TARG A+1

A
T N

α	

 β	

A

δ	

?

Conditional (Direct) Branch Indirect Branch

ρ	

br.cond TARGET R1 = MEM[R2]
branch R1

• Use the BTB
• A special indirect branch predictor (Intel’s Core-2)

•  Switch statements
-few cases: a chain of conditional branches

•  Virtual functions

•  Tagged Target Cache (Chang‘97)

History Information

Branch Address
Hash Function

Target Cache

Target address

 Synthesis lecture: microarchitecture

•  Hybrid predictor
– combines local history and global history

components with a meta-predictor

•  Also hybrid, but uses tag-based selection
mechanism

•  Local component also has support for
loops
– accurately predict branches of the form (TkN)*

•  Special target prediction for indirect
branches
– common in object-oriented code (vtables)
– assumes correlation with global history

FE ID EX MEM WB

br

0x800

br

0x804

br
 br

 br

0x804
0x900
0x904

PC (latch)

add

add
sub
add

0x908

1
cycle

2
3
4
5

6 mul sub
sub
add

FE_stage

Always two cycles of pipeline bubble

0x800
0x804
0x808
0x80b
0x810
0x900 target mul r2, r3,r4

sub r1, r2,r3
add r4, r2,r3
br target

Change the rule!
Always execute the next two instructions after a branch

0x900 target mul r2, r3,r4

0x900 target mul r2, r3,r4

sub r1, r2,r3
add r4, r2,r3

br target 0x800
0x804

0x808

FE ID EX MEM WB

br

0x800
br

0x804

br
 br

 br

0x808
0x900
0x904

Fetch addr

sub
add
mul
div

0x908

1
cycle

2

3
4
5
6 add mul

mul
div

sub
add sub

add sub
add sub

0x90b 7 sub mul div add add

No pipeline bubble!!

•  N-cycle delay slot
•  The compiler fills out useful instructions

inside the delay slot
•  Different options:

–  Fill the slots instructions fro either taken or not-taken:
When a branch is executed in other way, flush!

•  Many DSP architecture, older RISC, MIPS, PA-
RISC, SPARC.

•  Delayed branches are architecturally invisible
–  Advantage:

•  better performance
–  Disadvantage:

•  what if implementation changes?
•  Deeper pipeline-> more branch delays?

•  Interrupt/exceptions?
–  Where to go back?

•  Combining with a branch predictor?

visible

I1
I2 br T1
I3
I4
I5
T1: I6
I7 br T2

T2: I13

I1

Traditional instruction cache

I2 I3 I4

I5 I6 I7 I8

I1

Trace cache

I2 I6 I7

Useless Fetch

All instructions are useful!

 Synthesis lecture: microarchitecture

•  Dual-path execution
– When you see a low-confidence branch, start

to fetch from only two paths
– See another low-confidence branch?

•  Ignore and just keep only two paths

•  Multi-path execution
– Whenever it sees a low-confidence branch,

forks

Low-confidence

C

D

E

F

B

D

E

F

A

B C

D

E

F

path 1 path 2

Dual-path

G

Low-confidence

Low-confidence

C

D

E

F

B

D

E

F

A

B C

D

E

F

path 1 path 2

Multi-path

G

Low-confidence

G

path 3

G

path 4

I H I H I H

•  G-share branch predictor
•  Deeper pipeline
•  No test case will be provided. Solve the

report questions: That will help you debug.

for (i=0;i<10;i++) {
 if (cond1) stat1
 else if (cond 2) stat2
 else stat3
}

Can we optimize this code?
If (cond1) for-loop{stat1}
elseif (cond2) for-loop{stat2}
else for-loop{stat3}

