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•  Data Locality 
– Temporal: if data item needed now, 

it is likely to be needed again in near future 
– Spatial: if data item needed now, 

nearby data likely to be needed in near future 
•  Exploiting Locality: Caches 

– Keep recently used data 
in fast memory close to the processor 

– Also bring nearby data there 
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•  60-100ns not uncommon 
•  Quick back-of-the-envelope calculation: 

– 2GHz CPU 
– à 0.5ns / cycle 
– 100ns memory à 200 cycle memory latency! 

•  Solution: Caches 



  

•  Fast (but small) memory close to processor 
•  When data referenced 

–  If in cache, use cache instead of memory 
–  If not in cache, bring into cache 

(actually, bring entire block of data, too) 
–  Maybe have to kick something else out to do it! 

•  Important decisions 
–  Placement: where in the cache can a block go? 
–  Identification: how do we find a block in cache? 
–  Replacement: what to kick out to make room in cache? 
–  Write policy: What do we do about stores? 

Key: Optimize the 
average memory 
access latency 



•  Memory addresses A, A+1, A+2, A+3, A+4  
–  Spatial locality or temporal locality?:  
–  Spatial locality  

•   Memory addresses A, B,C, A,B,C,A,B,C 
–  Spatial locality or temporal locality? 
–  Temporal locality 

  



  

•  Cache consists of block-sized lines 
– Line size typically power of two 
– Typically 16 to 128 bytes in size 

•  Example 
– Suppose block size is 128 bytes 

•  Lowest seven bits determine offset within block 

– Read data at address A=0x7fffa3f4 
– Address begins to block with base address 

0x7fffa380 

MSB LSB 

Block size 



  

•  Placement 
– Which memory blocks are allowed 

into which cache lines 
•  Placement Policies 

– Direct mapped (block can go to only one line) 
– Fully Associative (block can go to any line) 
– Set-associative (block can go to one of N lines) 

•  E.g., if N=4, the cache is 4-way set associative 
•  Other two policies are extremes of this 

(E.g., if N=1 we get a direct-mapped cache)  



  

•  When address referenced, need to 
– Find whether its data is in the cache 
–  If it is, find where in the cache 
– This is called a cache lookup 

•  Each cache line must have 
– A valid bit (1 if line has data, 0 if line empty)  

•  We also say the cache line is valid or invalid 

– A tag to identify which block is in the line 
(if line is valid) 
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•  Need a free line to insert new block 
– Which block should we kick out? 

•  Several strategies 
– Random (randomly selected line) 
– FIFO (line that has been in cache the longest) 
– LRU (least recently used line) 
– LRU Approximations (Pseudo LRU) 



  

•  Have LRU counter for each line in a set 
•  When line accessed 

– Get old value X of its counter 
– Set its counter to max value 
– For every other line in the set 

•  If counter larger than X, decrement it 

•  When replacement needed 
– Select line whose counter is 0 



•  Here is a series of address 
references given as word 
address: 
1,4,8,5,20,17,19,56,9,11,4,4
3,5,6,9,17. Assuming a 
direct-mapped cache with 16 
one-word blocks that is 
initially empty, label each 
reference in the list as a hit 
or miss and show the final 
contents of the cache.  

  

1%16 =1 
4%16 = 4 
8%16 =8 
5%16 =5 
20%16 = 4 
17%16 = 1 
19%16 =3 
56%16 = 8 
9%16 =9 
11%16 =11 
4%16 = 4    
43 % 16 = 11 
5%16 = 5 Hit 
6%16 = 6  
9%16 = 9 Hit 
17%16 =1 Hit 
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•  Do we allocate cache lines on a write? 
–  Write-allocate 

•  A write miss brings block into cache 
–  No-write-allocate 

•  A write miss leaves cache as it was 
–  Pros and cons?  

•  Depends on temporal locality  

•  Do we update memory on writes? 
–  Write-through 

•  Memory immediately updated on each write 
–  Write-back 

•  Memory updated when line replaced 
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•  Need a Dirty bit for each line (stored in the 
Tag!) 
– A dirty line has more recent data than memory 

•  Line starts as clean (not dirty) 
•  Line becomes dirty on first write to it 

– Memory not updated yet, cache has the only 
up-to-date copy of data for a dirty line 

•  Replacing a dirty line 
– Must write data back to memory (write-back) 



•  Any information related to cache other than 
data is stored in the tag storage.  

•  Not only tag bits, information for 
replacement, dirty bits (if we need), valid bit  

(in the future, cache coherence state 
information) 

  



•  Offset: Byte offset in block 
•  Index: Which set in the cache is the block 

located 
•  Tag: need to match address tag in cache 
•  Set: Group of blocks corresponding to 

same index 
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•  Miss rate 
– Fraction of memory accesses that miss in 

cache 
– Hit rate = 1 – miss rate 

•  Average memory access time 
 AMAT = hit time + miss rate * miss penalty 

•  Memory stall cycles 
 CPUtime = CycleTime x (CyclesExec + CyclesMemoryStall) 

CyclesMemoryStall = CacheMisses x (MissLatencyTotal – MissLatencyOverlapped) 



  

•  AMAT = hit time + miss rate * miss penalty 
– Reduce miss penalty 
– Reduce miss rate 
– Reduce hit time 

•  CyclesMemoryStall = CacheMisses x 
(MissLatencyTotal – MissLatencyOverlapped) 
–  Increase overlapped miss latency 
–  Increase memory level parallelism 



•  Memory latency = 100 cycles 
•  16KB cache, 3 cycle latency, 85% hit rate 
•  What’s the baseline AMAT? 
 = 3+100*0.15 = 18 
•  What’s the best way to reduce latency? 

–  Smaller 8KB cache: 1 cycle latency, 75% hit rate 
= 1+ 100*0.25 = 26 
–  Larger 32KB cache: 4 cycle latency, 90% hit rate 
 = 4 + 100*0.1 =  14 

  



  

•  Multilevel caches 
– Very Fast, small Level 1 (L1) cache 
– Fast, not so small Level 2 (L2) cache 
– May also have slower, large L3 cache, etc. 

•  Why does this help? 
– Miss in L1 cache can hit in L2 cache, etc. 

AMAT = HitTimeL1+MissRateL1MissPenaltyL1 
MissPenaltyL1= HitTimeL2+MissRateL2MissPenaltyL2 

MissPenaltyL2= HitTimeL3+MissRateL3MissPenaltyL3 



•  Memory latency = 100 cycles 
•  16KB L1 cache, 3 cycle latency, 85% hit 

rate 
•  Use two levels of caching 

–  Smaller 8KB cache: 1 cycle latency, 75% hit rate 
–  Larger 128KB cache: 6 cycle latency, 60% hit rate 

•  Exclusion Property 
–  If block is in L1 cache, it is never in L2 cache 
–  Saves some L2 space 

•  Inclusion Property 
–  If block A is in L1 cache, it must also be in L2 cache 

  



  

•  Early Restart & Critical Word First 
–  Block transfer takes time (bus too narrow) 
–  Give data to loads before entire block arrive 

•  Early restart 
–  When needed word arrives, let processor use it 
–  Then continue block transfer to fill cache line 

•  Critical Word First 
–  Transfer loaded word first, then the rest of block 

(with wrap-around to get the entire block) 
–  Use with early restart to let processor go ASAP 



  

•  Increase Load Miss Priority 
– Loads can have dependent instructions 
–  If a load misses and a store needs to go to 

memory, let the load miss go first 
– Need a write buffer to remember stores 

•  Merging Write Buffer 
–  If multiple write misses to the same block, 

combine them in the write buffer 
– Use block-write instead of a many small writes 



  

•  The “3 Cs” 
– Compulsory: have to have these 

•  Miss the first time each block is accessed 

– Capacity: due to limited cache capacity 
•  Would not have them if cache size was infinite 

– Conflict: due to limited associativity 
•  Would not have them if cache was fully associative 



  

•  Victim Caches 
– Recently kicked-out blocks kept in small cache 
–  If we miss on those blocks, can get them fast 
– Why does it work: conflict misses 

•  Misses that we have in our N-way set-assoc cache, 
but would not have if the cache was fully 
associative 

– Example: direct-mapped L1 cache and 
a 16-line fully associative victim cache 



  

•  Larger blocks 
– Helps if there is more spatial locality 



  

•  Larger caches 
– Fewer capacity misses, but longer hit latency! 

•  Higher associativity 
– Fewer conflict misses, but longer hit latency! 

– … need to work through AMAT equations to 
figure out which is better 



  

•  Pseudo Associative Caches 
– Similar to way prediction 
– Start with direct mapped cache 
–  If miss on “primary” entry, try another entry 
– Results in varying access time  

•  Compiler optimizations 
– Loop interchange 
– Blocking (e.g., tiled matrix multiplication) 



  

•  For loops over multi-dimensional arrays 
– Example: matrices (2-dim arrays) 

•  Change order of iteration to match layout 
– Gets better spatial locality 
– Layout in C: last index changes first 

for(j=0;j<10000;j++) 
  for(i=0;i<40000;i++) 
    c[i][j]=a[i][j]+b[i][j]; 

for(i=0;i<40000;i++) 
  for(j=0;j<10000;j++) 
    c[i][j]=a[i][j]+b[i][j]; 

a[i][j] and a[i+1][j] 
are 10000 elements apart 

a[i][j] and a[i][j+1] 
are next to each other 



Reduce the working set size.  
To make the code fit into the cache  
Example  
1D case  
   for (k = 0; k < N; k++)  

for (j=0; j<M; j++)  
if (B[j] == a[k]) sum[k]++; 
 
If one element in B is 4B and the total cache size is 1KB.  
1KB/4B = 256 elements; So   
for (j=0; j<M/256; j++)  
 for (k = 0; k < N; k++)  

 for (l = 0; l< 256; l++) 
 if (B[j*256+l] == a[k]) sum[k]++; 

 
  

  



•  Improving cache performance 
– Cache block sizes?  
– Cache write polices? 
– Multi-level caches  
–  Inclusion/exclusion property  
– Write buffers 
– Pseudo associativity cache, way predictor 
– Victim caches  
– Early restart & Critical words first  

  



•  Data alignment  
 malloc  

•  Use Hint bits: 
 Indicate temporal locality 
 Dead block  

 

  



#define MAX_LAST_NAME_SIZE 16 
typedef struct  _TAGPHONE_BOOK_ENTRY { 

char LastName[MAX_LAST_NAME_SIZE]; 
char FirstNAME[16]; char email[16]; char phone[10]; char cell[10]; char addr1[16]; 
char addr2[16]; char city[16]; char state[2]; char zip[5]; 
_TAGPHONE_BOOK_ENTRY *pNext; 
} Phone BOOK 
PhoneBook *FindName(char Last[], PhoneBook *pHead)  
{ 
While (pHead != NULL) { 
 if (stricmp (Last, pHead->LastName) == 0)  
Return pHead;  
pHead = pHead->pNext; 
} 
return NULL; 
} 

  

What are the problems and how to improve the cache locality?  
In Software solutions  



•  Among 127 B, only 20B 
are used.  

•  Cache block size is 64B 
•  (1) Rearrange the data 

structure (Put LastName & 
Pointers nearby) 

•  (2) Put all LastName 
together and then put the 
rest of them somewhere  

  

127B 

Last Name 
  

Pointer 
  

Last Name 
  Pointer 
  

Last Name 
  

Last Name 
  

Last Name 
  



  

•  Small & Simple Caches are faster 



  

•  Avoid address translation on cache hits 
•  Software uses virtual addresses, 

memory accessed using physical addresses 
–  virtual memory 

•  HW must translate virtual to physical 
–  Normally the first thing we do 
–  Caches accessed using physical address 
–  Wait for translation before cache lookup 

•  Idea: index cache using virtual address 
–  Virtual index physical tag (later lecture) 



  

•  Pipelined Caches 
–  Improves bandwidth, but not latency 
– Essential for L1 caches at high frequency 

•  Even small caches have 2-3 cycle latency at N GHz 
– Also used in many L2 caches 

•  Trace Caches 
– For instruction caches 

•  Way Prediction 
– Speeds up set-associative caches 
– Predict which of N ways has our data, 

fast access as direct-mapped cache 
–  If mispredicted, access again as set-assoc cache 



  

•  Idea: overlap miss latency with useful work 
–  Also called “latency hiding” 

•  Non-blocking (Lockup-free) caches 
–  A blocking cache services one access at a time 

•  While miss serviced, other accesses blocked (wait) 
–  Non-blocking caches remove this limitation 

•  While miss serviced, can process other requests 

•  Prefetching 
–  Predict what will be needed and get it ahead of time 



  

•  Hit Under Miss 
–  Allow cache hits while one miss in progress 
–  But another miss has to wait 

•  Miss Under Miss, Hit Under Multiple Misses 
–  Allow hits and misses when other misses in progress 
–  Memory system must allow multiple pending requests 

•  MSHR (Miss  Information/Status Holding Register): 
Stores unresolved miss information for each miss that will 
be handled concurrently.  



•  Track address, data, and status for multiple outstanding 
cache misses 

•  Provide correct memory ordering, other information (e.g, 
cache coherence) 

•  Valid flag,  
•  Write bits  
•  # of entries: # of outstanding memory requests 
•  aka MOB (Memory ordering buffer) 

  



•  Cache block size 64B 
•  Inst1: LD 0x0001 
•  inst2: LD 0x0010 
•  inst3: LD 0x0005 
•  Cache hit: 2 cycles, cache miss: 30 cycles 

  

- 

0x0010 
- 

- 

blocking cache:   30 + 2 + 2 + inst3 execution time  
Non-blocking cache 30 + inst 3 execution time    
 
Another question inst 1: cycle 1, inst 2: cycle 10, inst 3: cycle 15, when  
Will inst 3 be ready?    



  

Intel’s chip (Dunnington)16MB L3 cache XBox 



•  Where an op should wait if there is data 
dependence? 
– Wait at the last latch in the ID stage. So 

basically do not enter EX stage until all source 
operands are ready.  

•  N-stage deeper pipeline means? 
– Pipelined structure (see FAQ in the 

homepage)  
•  Do we need pc addresses? 

  


