
Fall 2011
Prof. Hyesoon Kim

Thanks to Prof. Loh & Prof. Prvulovic

•  Data Locality
– Temporal: if data item needed now,

it is likely to be needed again in near future
– Spatial: if data item needed now,

nearby data likely to be needed in near future
•  Exploiting Locality: Caches

– Keep recently used data
in fast memory close to the processor

– Also bring nearby data there

Register File

Instruction Cache Data Cache

L2 Cache

L3 Cache

Main Memory

Disk

Row buffer

SRAM Cache

Bypass Network

Capacity +
Speed -

Speed +
Capacity -

ITLB DTLB

•  60-100ns not uncommon
•  Quick back-of-the-envelope calculation:

– 2GHz CPU
– à 0.5ns / cycle
– 100ns memory à 200 cycle memory latency!

•  Solution: Caches

•  Fast (but small) memory close to processor
•  When data referenced

–  If in cache, use cache instead of memory
–  If not in cache, bring into cache

(actually, bring entire block of data, too)
–  Maybe have to kick something else out to do it!

•  Important decisions
–  Placement: where in the cache can a block go?
–  Identification: how do we find a block in cache?
–  Replacement: what to kick out to make room in cache?
–  Write policy: What do we do about stores?

Key: Optimize the
average memory
access latency

•  Memory addresses A, A+1, A+2, A+3, A+4
–  Spatial locality or temporal locality?:
–  Spatial locality

•  Memory addresses A, B,C, A,B,C,A,B,C
–  Spatial locality or temporal locality?
–  Temporal locality

•  Cache consists of block-sized lines
– Line size typically power of two
– Typically 16 to 128 bytes in size

•  Example
– Suppose block size is 128 bytes

•  Lowest seven bits determine offset within block

– Read data at address A=0x7fffa3f4
– Address begins to block with base address

0x7fffa380

MSB LSB

Block size

•  Placement
– Which memory blocks are allowed

into which cache lines
•  Placement Policies

– Direct mapped (block can go to only one line)
– Fully Associative (block can go to any line)
– Set-associative (block can go to one of N lines)

•  E.g., if N=4, the cache is 4-way set associative
•  Other two policies are extremes of this

(E.g., if N=1 we get a direct-mapped cache)

•  When address referenced, need to
– Find whether its data is in the cache
–  If it is, find where in the cache
– This is called a cache lookup

•  Each cache line must have
– A valid bit (1 if line has data, 0 if line empty)

•  We also say the cache line is valid or invalid

– A tag to identify which block is in the line
(if line is valid)

dex Index TAG

Block offset

TAG TAG

= =
HIT

YES

YES Data
Logic

 Synthesis lecture series: microarchitecture

•  Need a free line to insert new block
– Which block should we kick out?

•  Several strategies
– Random (randomly selected line)
– FIFO (line that has been in cache the longest)
– LRU (least recently used line)
– LRU Approximations (Pseudo LRU)

•  Have LRU counter for each line in a set
•  When line accessed

– Get old value X of its counter
– Set its counter to max value
– For every other line in the set

•  If counter larger than X, decrement it

•  When replacement needed
– Select line whose counter is 0

•  Here is a series of address
references given as word
address:
1,4,8,5,20,17,19,56,9,11,4,4
3,5,6,9,17. Assuming a
direct-mapped cache with 16
one-word blocks that is
initially empty, label each
reference in the list as a hit
or miss and show the final
contents of the cache.

1%16 =1
4%16 = 4
8%16 =8
5%16 =5
20%16 = 4
17%16 = 1
19%16 =3
56%16 = 8
9%16 =9
11%16 =11
4%16 = 4
43 % 16 = 11
5%16 = 5 Hit
6%16 = 6
9%16 = 9 Hit
17%16 =1 Hit

0

1 1 17

2

3 19

4 4 20 4

5 5

6 6

7

8 8 56

9 9

10

11 11 43

12

13

14

15

•  Do we allocate cache lines on a write?
–  Write-allocate

•  A write miss brings block into cache
–  No-write-allocate

•  A write miss leaves cache as it was
–  Pros and cons?

•  Depends on temporal locality

•  Do we update memory on writes?
–  Write-through

•  Memory immediately updated on each write
–  Write-back

•  Memory updated when line replaced

PROC CACHE MEM

PROC CACHE MEM

Write-through

Write-back

replacement

•  Need a Dirty bit for each line (stored in the
Tag!)
– A dirty line has more recent data than memory

•  Line starts as clean (not dirty)
•  Line becomes dirty on first write to it

– Memory not updated yet, cache has the only
up-to-date copy of data for a dirty line

•  Replacing a dirty line
– Must write data back to memory (write-back)

•  Any information related to cache other than
data is stored in the tag storage.

•  Not only tag bits, information for
replacement, dirty bits (if we need), valid bit

(in the future, cache coherence state
information)

•  Offset: Byte offset in block
•  Index: Which set in the cache is the block

located
•  Tag: need to match address tag in cache
•  Set: Group of blocks corresponding to

same index

MSB LSB

Offset Index TAG

Data
address

•  Miss rate
– Fraction of memory accesses that miss in

cache
– Hit rate = 1 – miss rate

•  Average memory access time
 AMAT = hit time + miss rate * miss penalty

•  Memory stall cycles
 CPUtime = CycleTime x (CyclesExec + CyclesMemoryStall)

CyclesMemoryStall = CacheMisses x (MissLatencyTotal – MissLatencyOverlapped)

•  AMAT = hit time + miss rate * miss penalty
– Reduce miss penalty
– Reduce miss rate
– Reduce hit time

•  CyclesMemoryStall = CacheMisses x
(MissLatencyTotal – MissLatencyOverlapped)
–  Increase overlapped miss latency
–  Increase memory level parallelism

•  Memory latency = 100 cycles
•  16KB cache, 3 cycle latency, 85% hit rate
•  What’s the baseline AMAT?
 = 3+100*0.15 = 18
•  What’s the best way to reduce latency?

–  Smaller 8KB cache: 1 cycle latency, 75% hit rate
= 1+ 100*0.25 = 26
–  Larger 32KB cache: 4 cycle latency, 90% hit rate
 = 4 + 100*0.1 = 14

•  Multilevel caches
– Very Fast, small Level 1 (L1) cache
– Fast, not so small Level 2 (L2) cache
– May also have slower, large L3 cache, etc.

•  Why does this help?
– Miss in L1 cache can hit in L2 cache, etc.

AMAT = HitTimeL1+MissRateL1MissPenaltyL1
MissPenaltyL1= HitTimeL2+MissRateL2MissPenaltyL2

MissPenaltyL2= HitTimeL3+MissRateL3MissPenaltyL3

•  Memory latency = 100 cycles
•  16KB L1 cache, 3 cycle latency, 85% hit

rate
•  Use two levels of caching

–  Smaller 8KB cache: 1 cycle latency, 75% hit rate
–  Larger 128KB cache: 6 cycle latency, 60% hit rate

•  Exclusion Property
–  If block is in L1 cache, it is never in L2 cache
–  Saves some L2 space

•  Inclusion Property
–  If block A is in L1 cache, it must also be in L2 cache

•  Early Restart & Critical Word First
–  Block transfer takes time (bus too narrow)
–  Give data to loads before entire block arrive

•  Early restart
–  When needed word arrives, let processor use it
–  Then continue block transfer to fill cache line

•  Critical Word First
–  Transfer loaded word first, then the rest of block

(with wrap-around to get the entire block)
–  Use with early restart to let processor go ASAP

•  Increase Load Miss Priority
– Loads can have dependent instructions
–  If a load misses and a store needs to go to

memory, let the load miss go first
– Need a write buffer to remember stores

•  Merging Write Buffer
–  If multiple write misses to the same block,

combine them in the write buffer
– Use block-write instead of a many small writes

•  The “3 Cs”
– Compulsory: have to have these

•  Miss the first time each block is accessed

– Capacity: due to limited cache capacity
•  Would not have them if cache size was infinite

– Conflict: due to limited associativity
•  Would not have them if cache was fully associative

•  Victim Caches
– Recently kicked-out blocks kept in small cache
–  If we miss on those blocks, can get them fast
– Why does it work: conflict misses

•  Misses that we have in our N-way set-assoc cache,
but would not have if the cache was fully
associative

– Example: direct-mapped L1 cache and
a 16-line fully associative victim cache

•  Larger blocks
– Helps if there is more spatial locality

•  Larger caches
– Fewer capacity misses, but longer hit latency!

•  Higher associativity
– Fewer conflict misses, but longer hit latency!

– … need to work through AMAT equations to
figure out which is better

•  Pseudo Associative Caches
– Similar to way prediction
– Start with direct mapped cache
–  If miss on “primary” entry, try another entry
– Results in varying access time

•  Compiler optimizations
– Loop interchange
– Blocking (e.g., tiled matrix multiplication)

•  For loops over multi-dimensional arrays
– Example: matrices (2-dim arrays)

•  Change order of iteration to match layout
– Gets better spatial locality
– Layout in C: last index changes first

for(j=0;j<10000;j++)
 for(i=0;i<40000;i++)
 c[i][j]=a[i][j]+b[i][j];

for(i=0;i<40000;i++)
 for(j=0;j<10000;j++)
 c[i][j]=a[i][j]+b[i][j];

a[i][j] and a[i+1][j]
are 10000 elements apart

a[i][j] and a[i][j+1]
are next to each other

Reduce the working set size.
To make the code fit into the cache
Example
1D case
 for (k = 0; k < N; k++)

for (j=0; j<M; j++)
if (B[j] == a[k]) sum[k]++;

If one element in B is 4B and the total cache size is 1KB.
1KB/4B = 256 elements; So
for (j=0; j<M/256; j++)
 for (k = 0; k < N; k++)

 for (l = 0; l< 256; l++)
 if (B[j*256+l] == a[k]) sum[k]++;

•  Improving cache performance
– Cache block sizes?
– Cache write polices?
– Multi-level caches
–  Inclusion/exclusion property
– Write buffers
– Pseudo associativity cache, way predictor
– Victim caches
– Early restart & Critical words first

•  Data alignment
 malloc

•  Use Hint bits:
 Indicate temporal locality
 Dead block

#define MAX_LAST_NAME_SIZE 16
typedef struct _TAGPHONE_BOOK_ENTRY {

char LastName[MAX_LAST_NAME_SIZE];
char FirstNAME[16]; char email[16]; char phone[10]; char cell[10]; char addr1[16];
char addr2[16]; char city[16]; char state[2]; char zip[5];
_TAGPHONE_BOOK_ENTRY *pNext;
} Phone BOOK
PhoneBook *FindName(char Last[], PhoneBook *pHead)
{
While (pHead != NULL) {
 if (stricmp (Last, pHead->LastName) == 0)
Return pHead;
pHead = pHead->pNext;
}
return NULL;
}

What are the problems and how to improve the cache locality?
In Software solutions

•  Among 127 B, only 20B
are used.

•  Cache block size is 64B
•  (1) Rearrange the data

structure (Put LastName &
Pointers nearby)

•  (2) Put all LastName
together and then put the
rest of them somewhere

127B

Last Name

Pointer

Last Name
 Pointer

Last Name

Last Name

Last Name

•  Small & Simple Caches are faster

•  Avoid address translation on cache hits
•  Software uses virtual addresses,

memory accessed using physical addresses
–  virtual memory

•  HW must translate virtual to physical
–  Normally the first thing we do
–  Caches accessed using physical address
–  Wait for translation before cache lookup

•  Idea: index cache using virtual address
–  Virtual index physical tag (later lecture)

•  Pipelined Caches
–  Improves bandwidth, but not latency
– Essential for L1 caches at high frequency

•  Even small caches have 2-3 cycle latency at N GHz
– Also used in many L2 caches

•  Trace Caches
– For instruction caches

•  Way Prediction
– Speeds up set-associative caches
– Predict which of N ways has our data,

fast access as direct-mapped cache
–  If mispredicted, access again as set-assoc cache

•  Idea: overlap miss latency with useful work
–  Also called “latency hiding”

•  Non-blocking (Lockup-free) caches
–  A blocking cache services one access at a time

•  While miss serviced, other accesses blocked (wait)
–  Non-blocking caches remove this limitation

•  While miss serviced, can process other requests

•  Prefetching
–  Predict what will be needed and get it ahead of time

•  Hit Under Miss
–  Allow cache hits while one miss in progress
–  But another miss has to wait

•  Miss Under Miss, Hit Under Multiple Misses
–  Allow hits and misses when other misses in progress
–  Memory system must allow multiple pending requests

•  MSHR (Miss Information/Status Holding Register):
Stores unresolved miss information for each miss that will
be handled concurrently.

•  Track address, data, and status for multiple outstanding
cache misses

•  Provide correct memory ordering, other information (e.g,
cache coherence)

•  Valid flag,
•  Write bits
•  # of entries: # of outstanding memory requests
•  aka MOB (Memory ordering buffer)

•  Cache block size 64B
•  Inst1: LD 0x0001
•  inst2: LD 0x0010
•  inst3: LD 0x0005
•  Cache hit: 2 cycles, cache miss: 30 cycles

-

0x0010
-

-

blocking cache: 30 + 2 + 2 + inst3 execution time
Non-blocking cache 30 + inst 3 execution time

Another question inst 1: cycle 1, inst 2: cycle 10, inst 3: cycle 15, when
Will inst 3 be ready?

Intel’s chip (Dunnington)16MB L3 cache XBox

•  Where an op should wait if there is data
dependence?
– Wait at the last latch in the ID stage. So

basically do not enter EX stage until all source
operands are ready.

•  N-stage deeper pipeline means?
– Pipelined structure (see FAQ in the

homepage)
•  Do we need pc addresses?

