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•  Shared memory easy with no caches 
–  P1 writes, P2 can read 
–  Only one copy of data exists (in memory) 

•  Caches store their own copies of the data 
–  Those copies can easily get inconsistent 
–  Classic example: adding to a sum 

•  P1 loads allSum, adds its mySum, stores new allSum 
•  P1’s cache now has dirty data, but memory not updated 
•  P2 loads allSum from memory, adds its mySum, stores 

allSum 
•  P2’s cache also has dirty data 
•  Eventually P1 and P2’s cached data will go to memory 
•  Regardless of write-back order, the final value ends up wrong 



  

•  A memory system is coherent if 
1.  A read R from address X on processor P1 returns the 

value written by the most recent write W to X on P1 if 
no other processor has written to X between W and 
R. 

2.  If P1 writes to X and P2 reads X after a sufficient 
time, and there are no other writes to X in between, 
P2’s read returns the value written by P1’s write. 

3.  Writes to the same location are serialized: two writes 
to location X are seen in the same order by all 
processors. 



  

•  Property 1. preserves program order 
–  It says that in the absence of sharing, each processor behaves as 

a uniprocessor would 
•  Property 2. says that any write to an address 

must eventually be seen by all processors 
–  If P1 writes to X and P2 keeps reading X, 

P2 must eventually see the new value 
•  Property 3. preserves causality 

–  Suppose X starts at 0. Processor P1 increments X and processor 
P2 waits until X is 1 and then increments it to 2. Processor P3 
must eventually see that X becomes 2. 

–  If different processors could see writes in different order, P2 can 
see P1’s write and do its own write, while P3 first sees the write 
by P2 and then the write by P1. Now we have two processors that 
will forever disagree about the value of A. 
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•  Typically used for bus-based (SMP) multiprocessors 
–  Serialization on the bus used to maintain coherence property 3 

•  Two flavors 
–  Write-update (write broadcast) 

•  A write to shared data is broadcast to update all copies 
•  All subsequent reads will return the new written value 

(property 2) 
•  All see the writes in the order of broadcasts 

One bus == one order seen by all (property 3) 
–  Write-invalidate 

•  Write to shared data forces invalidation of all other cached 
copies 

•  Subsequent reads miss and fetch new value (property 2) 
•  Writes ordered by invalidations on the bus (property 3) 



  

•  A burst of writes by a processor to one addr 
–  Update: each sends an update 
–  Invalidate: possibly only the first invalidation is sent 

•  Writes to different words of a block 
–  Update: update sent for each word 
–  Invalidate: possibly only the first invalidation is sent 

•  Producer-consumer communication latency 
–  Update: producer sends an update, 

consumer reads new value from its cache 
–  Invalidate: producer invalidates consumer’s copy, 

consumer’s read misses and has to request the block 
•  Which is better depends on application 

–  But write-invalidate is simpler and implemented in most MP-
capable processors today 



  

•  State of block B in cache C can be 
–  Invalid: B is not cached in C 

•  To read or write, must make a request on the bus 
–  Modified: B is dirty in C 

•  has the block, no other cache has the block, 
and C must update memory when it displaces B 

•  Can read or write B without going to the bus 

–  Shared: B is clean in C 
•  C has the block, other caches have the block, 

and C need not update memory when it displaces B 
•  Can read B without going to bus 
•  To write, must send an upgrade request to the bus 
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My RD/WR: 
My action 

Someone else 
Also called “modified” 



  

•  Three states: 
–  Invalid 
– Shared (clean) 
– Modified (dirty) 



•  MSI protocol : cache block size is 4B 

– P1   LDB   mem[A] 
– P2   STB   mem[A] 
– P3   LDB    mem[A] 
– P1   STB    mem[A] 
– P2   STB    mem[A] 
– P3  LDB     mem[A]  
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•  Problem 
–  P1 has block B in M state 
–  P2 wants to read B, puts a RdReq on bus 
–  If P1 does nothing, memory will supply the data to P2 
–  What does P1 do? 

•  Solution 1: abort/retry 
–  P1 cancels P2’s request, issues a write back 
–  P2 later retries RdReq and gets data from memory 
–  Too slow (two memory latencies to move data from P1 to P2) 

•  Solution 2: intervention 
–  P1 indicates it will supply the data (“intervention” bus signal) 
–  Memory sees that, does not supply the data, and waits for P1’s 

data 
–  P1 starts sending the data on the bus, memory is updated 
–  P2 snoops the transfer during the write-back and gets the block 



  

•  Intervention works if some cache has data in M 
state 
–  Nobody else has the correct data, clear who supplies 

the data 
•  What if a cache has requested data in S state 

–  There might be others who have it, who should supply 
the data? 

–  Solution 1: let memory supply the data 
–  Solution 2: whoever wins arbitration supplies the data 
–  Solution 3: A separate state similar to S that indicates 

there are maybe others who have the block in S state, 
but if anybody asks for the data we should supply it 
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•  New state: exclusive 
– data is clean 
– but I have the only copy (except memory) 

•  Benefit: bandwidth reduction  
– No broadcasting from Eà M because I have 

copy  



•  M: Modified (dirty, unique) 
–  I have the only copy, and it’s dirty (memory is 

stale) 
•  O: Owned (dirty, shared) 

–  I have the most up-to-date copy, others may have 
copies, too, but I am responsible for sourcing data 

•  E: Exclusive (clean, unique) 
–  I have the only copy (clean) 

•  S: Shared (clean, shared) 
– Everyone has a clean copy (incl. memory) 

•  I: Invalid 
  



  

•  Typically in distributed shared memory 
•  For every local memory block, 

local directory has an entry 
•  Directory entry indicates 

– Who has cached copies of the block 
–  In what state do they have the block 



  

•  Each entry has 
– One dirty bit (1 if there is a dirty cached copy) 
– A presence vector (1 bit for each node) 

Tells which nodes may have cached copies 
•  All misses sent to block’s home 
•  Directory performs needed coherence 

actions 
•  Eventually, directory responds with data 
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•  Processor Pk has a read miss on block B, 
sends request to home node of the block 

•  Directory controller 
– Finds entry for B, checks D bit 
–  If D=0 

•  Read memory and send data back, set P[k] 
–  If D=1 

•  Request block from processor whose P bit is 1 
•  When block arrives, update memory, clear D bit, 

send block to Pk and set P[k] 



  

•  Network controller connected to each bus 
–  A proxy for remote caches and memories 

•  Requests for remote addresses forwarded to home, 
responses from home placed on the bus 

•  Requests from home placed on the bus, 
cache responses sent back to home node 

•  Each cache still has its own coherence state 
–  Directory is there just to avoid broadcasts 

and order accesses to each location 
•  Simplest scheme: 

If access A1 to block B still not fully processed by directory 
when A2 arrives, A2 waits in a queue until A1 is done 



  

•  Another “C” for cache misses 
– Still have Compulsory, Capacity, Conflict 
– Now have Coherence, too 

•  We had it in our cache and it was invalidated 

•  Two sources for coherence misses 
– True sharing 

•  Different processors access the same data 
– False sharing 

•  Different processors access different data, 
but they happen to be in the same block 



•  X and Y are in the same cache block, P1 
and P2 are read/write X & Y   

  

time P1 P2 Cache hit,miss ?  
/Coherence state (P1, P2) [M,S,I] 

1 Read X Miss (S, X) 
2 Read X Miss (S,S) 
3 Write X Hit (M, I) 
4 Read X Miss (S, S) 

time P1 P2 Cache hit,miss ? (P1,P2) 
1 Read X  Miss (S,X) 
2 Read Y Miss (S,S) 
3 Write X  Hit (M, I) 
4 Read Y Miss (S,S)  

True Sharing 

False Sharing 



•  A program is profiled. Total execution time of 
func(A) is 15% and func(B) is 85%. Func(B) is 
dependent on func(A) and only func(b) can be 
completely parallelizable. If there are infinite 
machines, what will be the speedup? 

•  What are the benefits of hyperblock over trace 
scheduling and limitations?  

  



•  Speedup = 1/((1-f)+f/n) = 1/((1-f))= 1/0.15 = 
6.66 

•  Control-path is included in the hyperblock:  
– Less code duplications  

  


