
Fall 2011
Prof. Hyesoon Kim

•  Exception = unprogrammed control flow
– System takes action to handle the exception

System exception
handler

User program

•  Interrupts
–  Cased by external events

•  (network, keyboard, internal timer..)
–  Asynchronous to program execution
–  May be handled between instructions
–  Simply suspend and resume user program

•  Exceptions (Traps)
–  Caused by internal events

•  Exceptional conditions (overflow), Errors (parity), Page faults
–  Synchronous to program execution
–  Condition must be remedied by the handler
–  Instruction may be retired and program continued or program may

be aborted.

•  Fetch:
–  Page fault on instruction fetch, misaligned memory

access, memory-protection violation
•  Decode:

–  Undefined or illegal opcode
•  Execution stage:

–  Arithmetic exception
•  Memory stage:

–  Page fault of data fetch, misaligned memory access,
memory protection violation, memory error

•  Which instructions can generate
exceptions?

•  A: all
–  (instruction fetch)

•  Exceptions should be precise.
•  Preciseà state of the machine is

preserved as if program executed up to the
exception cause instruction.
–  All previous instructions have been executed.
–  All following instructions have not been modified the

process state
–  The exception cause instruction may or may not have

been executed, depending on the definition of the
architecture and the cause of the exception.

Reg A
LU

DMem Ifetch Reg

Div
Div

Load

Load

Load
Div Load

Load
Exception

•  What happens if a speculatively executed
instruction faults?

A

B

C

D

E

A, B Commit

Divide by Zero!

Outside world sees: A, B, fault!

Should have been: A, B, C, D, fault!

A

B

C

D

E Divide by Zero!

Branch mispred

W

X

Fault should never be seen!

•  Regular register results written to ROB until
–  Instruction is oldest for in-order state update
–  Instruction is known to be non-speculative

•  Do the same with faults!
– At exec, make note of any faults, but don’t

expose to outside world
–  If the instruction gets to commit, then expose

the fault

Fault deferred until architecturally correct point.
Other fault “never happened”…

A

B

C

D

E LOAD R6 = 0[R7]

LOAD P1

LOAD R1 = 0[R2]

ADD R3 = R1 + R4

SUB R1 = R5 – R6

DIV R4 = R7 / R1

ADD P2

SUB P3

DIV P4

LOAD P5

imm

P1

R5

R7

imm

R2

R4

R6

P3

R7

E C F

X

X X
X

X

Miss

X X

Fault!

X X

Divide by zero

Resolved

X
X

(commit)

X

(3 commits)

Now raise fault Flush rest of ROB,
Start fetching
Fault handler

