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Exceptions - Basic

User program
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System exception
handler
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« Exception = unprogrammed control flow
— System takes action to handle the exception
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Interrupts vs. Exceptions (traps)

 |nterrupts
— Cased by external events
» (network, keyboard, internal timer..)
— Asynchronous to program execution
— May be handled between instructions
— Simply suspend and resume user program

« Exceptions (Traps)
— Caused by internal events
« Exceptional conditions (overflow), Errors (parity), Page faults
— Synchronous to program execution
— Condition must be remedied by the handler

— Instruction may be retired and program continued or program may
be aborted.
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Which Stages can Generate Exceptions ?

Fetch:

— Page fault on instruction fetch, misaligned memory
access, memory-protection violation

Decode:

— Undefined or illegal opcode
Execution stage:

— Arithmetic exception
Memory stage:

— Page fault of data fetch, misaligned memory access,
memory protection violation, memory error
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* Which instructions can generate
exceptions?

« A: all

— (instruction fetch)
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Precise Exception

» Exceptions should be precise.

 Precise—> state of the machine is
preserved as if program executed up to the

exception cause instruction.

— All previous instructions

— All following instructions the
process state

— The exception cause instruction
been executed, depending on the definition of the
architecture and the cause of the exception.
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Exceptions in the Pipeline

Ifetch Reg Reg

Load
Div Load
Div Load
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Commit, Exceptions

* What happens if a speculatively executed
instruction faults?

A A
' '
B . B ' Branch mispred
e A, B Commit !
C C ‘W
' ' '
D D X
' '
\E ) Divide by Zero! . E Divide by Zero!
Outside world sees: A, B, fault! | Fault should never be seen! |
Should have been: A, B, C, D, fault
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Treat Fault Like a Result

» Regular register results written to ROB until
— Instruction is oldest for in-order state update
— Instruction is known to be non-speculative

Do the same with faults!

— At exec, make note of any faults, but don’t
expose to outside world

— If the instruction gets to commit, then expose
the fault
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ADD R3=R1+ R4

DIV R4 = R7 / R1

DE BE D

(COmmit)
. Resolved
ECF
—=GAB =4 e Ra .
e . Re—H >
B P3 — NS
Bt P - o
] P5 D =
Fault! s commi

Divide by zero —
rred until arch|

Other fault “never happened”...
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