i

Fall 2011
Prof. Hyesoon Kim

Georgia Cadllege of
Tech | Computting

Exceptions - Basic

User program

-

\

System exception
handler

—>

\

« Exception = unprogrammed control flow
— System takes action to handle the exception

Georgia off

Tech

Compuiding

= I
Interrupts vs. Exceptions (traps)

 |nterrupts
— Cased by external events
» (network, keyboard, internal timer..)
— Asynchronous to program execution
— May be handled between instructions
— Simply suspend and resume user program

« Exceptions (Traps)
— Caused by internal events
« Exceptional conditions (overflow), Errors (parity), Page faults
— Synchronous to program execution
— Condition must be remedied by the handler

— Instruction may be retired and program continued or program may
be aborted.

Georgia College of
Tech | Compuitfing

= [0
Which Stages can Generate Exceptions ?

Fetch:

— Page fault on instruction fetch, misaligned memory
access, memory-protection violation

Decode:

— Undefined or illegal opcode
Execution stage:

— Arithmetic exception
Memory stage:

— Page fault of data fetch, misaligned memory access,
memory protection violation, memory error

Georgia Cdllege of
Tech | Compuitfing

»

= Bl
Q

* Which instructions can generate
exceptions?

« A: all

— (instruction fetch)

Georgia GCadllege of
Tegch ConppPUitine

Precise Exception

» Exceptions should be precise.

 Precise—> state of the machine is
preserved as if program executed up to the

exception cause instruction.

— All previous instructions

— All following instructions the
process state

— The exception cause instruction
been executed, depending on the definition of the
architecture and the cause of the exception.

Georgia College of
Tegch Compuitfing

Exceptions in the Pipeline

Ifetch Reg Reg

Load
Div Load
Div Load

Georgia College of
Tegch ConppPUitine

= R D
Commit, Exceptions

* What happens if a speculatively executed
instruction faults?

A A
' '
B . B ' Branch mispred
e A, B Commit !
C C ‘W
' ' '
D D X
' '
\E) Divide by Zero! . E Divide by Zero!
Outside world sees: A, B, fault! | Fault should never be seen! |
Should have been: A, B, C, D, fault

- R Georgia GCollege of
Tegch | Computing

i 772

a5

37 [
- =)

Treat Fault Like a Result

» Regular register results written to ROB until
— Instruction is oldest for in-order state update
— Instruction is known to be non-speculative

Do the same with faults!

— At exec, make note of any faults, but don’t
expose to outside world

— If the instruction gets to commit, then expose
the fault

Georgia GCadllege of
Tegch ConppPUitine

ExaI‘IIplg

ADD R3=R1+ R4

DIV R4 = R7 / R1

DE BE D

(COmmit)
. Resolved
ECF
—=GAB =4 e Ra .
e . Re—H >
B P3 — NS
Bt P - o
] P5 D =
Fault! s commi

Divide by zero —
rred until arch|

Other fault “never happened”...

Georgia A College of

