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•  Flynn’s Taxonomy of Parallel Machines 
– How many Instruction streams? 
– How many Data streams? 

•  SISD: Single I Stream, Single D Stream 
– A uniprocessor 

•  SIMD: Single I, Multiple D Streams 
– Each “processor” works on its own data 
– But all execute the same instrs in lockstep 
– E.g. a vector processor or MMX, CUDA  



  

•  MISD: Multiple I, Single D Stream 
– Not used much 
– Stream processors are closest to MISD 

•  MIMD: Multiple I, Multiple D Streams 
– Each processor executes its own instructions 

and operates on its own data 
– This is your typical off-the-shelf multiprocessor 

(made using a bunch of “normal” processors) 
–  Includes multi-core processors 



  

SISD  
Single Instruction, 

Singe Data  

SIMD  
Single Instruction, 

Multiple Data  

MISD  
Multiple Instruction, 

Single Data  

MIMD  
Multiple Instruction, 

Multiple Data  



  

ILP limits 
reached? 

•  Why do we need multiprocessors? 
–  Uniprocessor speed keeps improving 
–  But there are things that need even more speed 

•  Wait for a few years for Moore’s law to catch up? 
•  Or use multiple processors and do it now? 

•  Multiprocessor software problem 
–  Most code is sequential (for uniprocessors) 

•  MUCH easier to write and debug 

–  Correct parallel code very, very difficult to write 
•  Efficient and correct is even harder 
•  Debugging even more difficult (Heisenbugs) 



  

Centralized Shared Memory Distributed Memory 



  

•  Also “Symmetric Multiprocessors” (SMP) 
•  “Uniform Memory Access” (UMA) 

–  All memory locations have similar latencies 
–  Data sharing through memory reads/writes 
–  P1 can write data to a physical address A, 

P2 can then read physical address A to get that data 

•  Problem: Memory Contention 
–  All processor share the one memory 
–  Memory bandwidth becomes bottleneck 
–  Used only for smaller machines 

•  Most often 2,4, or 8 processors 



  

•  Two kinds 
–  Distributed Shared-Memory (DSM) 

•  All processors can address all memory locations 
•  Data sharing like in SMP 
•  Also called NUMA (non-uniform memory access) 
•  Latencies of different memory locations can differ 

(local access faster than remote access) 
–  Message-Passing 

•  A processor can directly address only local memory 
•  To communicate with other processors, 

must explicitly send/receive messages 
•  Also called multicomputers or clusters 

•  Most accesses local, so less memory contention 
(can scale to well over 1000 processors) 



  

•  A cluster of computers 
–  Each with its own processor and memory 
–  An interconnect to pass messages between them 
–  Producer-Consumer Scenario: 

•  P1 produces data D, uses a SEND to send it to P2 
•  The network routes the message to P2 
•  P2 then calls a RECEIVE to get the message 

–  Two types of send primitives 
•  Synchronous: P1 stops until P2 confirms receipt of message 
•  Asynchronous: P1 sends its message and continues 

–  Standard libraries for message passing: 
Most common is MPI – Message Passing Interface 
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•  Calculating the sum of array elements 
#define ASIZE 1024 

#define NUMPROC 4 

double myArray[ASIZE/NUMPROC]; 

double mySum=0; 

for(int i=0;i<ASIZE/NUMPROC;i++) 

  mySum+=myArray[i]; 

if(myPID=0){ 

  for(int p=1;p<NUMPROC;p++){ 

    int pSum; 

    recv(p,pSum); 
    mySum+=pSum; 

  } 

  printf(“Sum: %lf\n”,mySum); 

}else 

  send(0,mySum); 

Must manually split the array 

“Master” processor adds up 
partial sums and prints the result 

“Slave” processors send their 
partial results to master 



  

•  Pros 
–  Simpler and cheaper hardware 
–  Explicit communication makes programmers aware of 

costly (communication) operations 
•  Cons 

–  Explicit communication is painful to program 
–  Requires manual optimization 

•  If you want a variable to be local and accessible via LD/ST, 
you must declare it as such 

•  If other processes need to read or write this variable, you must 
explicitly code the needed sends and receives to do this 



  

•  Metrics for Communication Performance 
– Communication Bandwidth 
– Communication Latency 

•  Sender overhead + transfer time + receiver 
overhead 

– Communication latency hiding 
•  Characterizing Applications 

– Communication to Computation Ratio 
•  Work done vs. bytes sent over network 
•  Example: 146 bytes per 1000 instructions 



  

11 
14 

1 10 20 5 6 8 

39 50 

25 



  

•  Calculating the sum of array elements 
#define ASIZE 1024 

#define NUMPROC 4 

shared double array[ASIZE]; 

shared double allSum=0; 

shared mutex sumLock; 

double mySum=0; 

for(int i=myPID*ASIZE/NUMPROC;i<(myPID+1)*ASIZE/NUMPROC;i++) 

  mySum+=array[i]; 

lock(sumLock); 

allSum+=mySum; 

unlock(sumLock); 

if(myPID=0) 

  printf(“Sum: %lf\n”,allSum); 

Array is shared 

Each processor adds its partial 
sums to the final result 

“Master” processor 
prints the result 

Each processor sums up 
“its” part of the array 



  

•  Pros 
–  Communication happens automatically 
–  More natural way of programming 

•  Easier to write correct programs and gradually optimize them 

–  No need to manually distribute data 
(but can help if you do) 

•  Cons 
–  Needs more hardware support 
–  Easy to write correct, but inefficient programs 

(remote accesses look the same as local ones) 



  



  

•  One approach: add sockets to your MOBO 
– minimal changes to existing CPUs 
– power delivery, heat removal and I/O not too 

bad since each chip has own set of pins and 
cooling 

CPU0 

CPU1 

CPU2 

CPU3 

Pictures found from google images 



  

•  Simple SMP on the same chip 

Intel “Smithfield” Block Diagram AMD Dual-Core Athlon FX 

Pictures found from google images 



  

•  Resources can be 
shared between 
CPUs 
– ex. IBM Power 5 

CPU0 CPU1 

L2 cache shared between 
both CPUs (no need to 

keep two copies coherent) 

L3 cache is also shared (only tags 
are on-chip; data are off-chip) 



  



  

•  Cheaper than mobo-based SMP 
–  all/most interface logic integrated on to main chip 

(fewer total chips, single CPU socket, single interface 
to main memory) 

–  less power than mobo-based SMP as well 
(communication on-die is more power-efficient than 
chip-to-chip communication) 

•  Performance 
–  on-chip communication is faster 

•  Efficiency 
–  potentially better use of hardware resources than 

trying to make wider/more OOO single-threaded CPU 



  

•  2x CPUs not necessarily equal to 2x 
performance 

•  2x CPUs à ½ power for each 
– maybe a little better than ½ if resources can be 

shared 
•  Back-of-the-Envelope calculation: 

– 3.8 GHz CPU at 100W 
– Dual-core: 50W per CPU 
–  P ∝ V3:    Vorig

3/VCMP
3 = 100W/50W  à  VCMP = 0.8 Vorig 

–  f ∝ V:   fCMP = 3.0GHz 

Benefit of SMP: Full power 
budget per socket! 



•  So what’s better? 
– One 3.8 GHz CPU? 
– Or a dual-core running at 3.0 GHz? 

•  Depends on workloads 
–  If you have one program to run, the 3.8GHz 

CPU will run it in 79% of the time 
–  If you have two programs to run, then: 

•  3.8GHz CPU: 79% for one, or 158% for both 
•  Dual 3.0GHz CPU: 100% for both in parallel 

  



•  Dual Core: total power 200W frequency: 
2GHz 

•  With the same power budget if we have 4 
cores, what should be the frequency of 
each core?  

•  Assume that the power is equally 
distributed 

  

P ∝ V3:    
Vdual

3/Vquad
3 = 100W/50W  à  Vquad = 0.8 Vdual 

 
 
f ∝ V:   fquad = 1.6GHz 



  

•  Single thread in superscalar execution:  
dependences cause most of stalls 

•  Idea: when one thread stalled, other can go 
•  Different granularities of multithreading 

– Coarse MT: can change thread every few 
cycles 

– Fine MT: can change thread every cycle 
– Simultaneous Multithreading (SMT) 

•  Instrs from different threads even in the same cycle 
•  AKA Hyperthreading 



  

•  Uni-Processor: 4-6 wide, lucky if you get 1-2 IPC 
–  poor utilization 

•  SMP: 2-4 CPUs, but need independent tasks 
–  else poor utilization as well 

•  SMT: Idea is to use a single large uni-processor 
as a multi-processor 



  

Regular CPU 

CMP 

2x HW Cost 

SMT (4 threads) 

Approx 1x HW Cost 



•  For an N-way (N threads) SMT, we need: 
–  Ability to fetch from N threads 
–  N sets of architectural registers (including PCs) 
–  N rename tables (RATs) 
–  N virtual memory spaces 
–  Front-end: branch predictor?: no, RAS? :yes 

•  But we don’t need to replicate the entire OOO 
execution engine (schedulers, execution units, 
bypass networks, ROBs, etc.) 

29 



•  Multiplex the Fetch Logic 

I$ 
PC0 
PC1 
PC2 

cycle % N 

fetch Decode, etc. 

RS 

Can do simple round-robin between active 
threads, or favor some over the others 

based on how much each is stalling 
relative to the others 

30 



•  Thread #1’s R12 != Thread #2’s R12 
– separate name spaces 
– need to disambiguate 

RAT0 

RAT1 

Thread0 
Register # 

Thread1 
Register # 

PRF 

31 



•  No change needed 

Thread 0: 
 
Add R1 = R2 + R3 
Sub R4 = R1 – R5 
Xor R3 = R1 ^ R4 
Load R2 = 0[R3] 

Thread 1: 
 
Add R1 = R2 + R3 
Sub R4 = R1 – R5 
Xor R3 = R1 ^ R4 
Load R2 = 0[R3] 

Thread 0: 
 
Add T12 = T20 + T8 
Sub T19 = T12 – T16 
Xor T14 = T12 ^ T19 
Load T23 = 0[T14] 

Thread 1: 
 
Add T17 = T29 + T3 
Sub T5 = T17 – T2 
Xor T31 = T17 ^ T5 
Load T25 = 0[T31] 

Add T12 = T20 + T8 

Sub T19 = T12 – T16 

Xor T14 = T12 ^ T19 
Load T23 = 0[T14] 

Add T17 = T29 + T3 

Sub T5 = T17 – T2 

Xor T31 = T17 ^ T5 

Load T25 = 0[T31] 

Shared RS Entries 

After Renaming 

32 



•  Each process has own virtual address 
space 
– TLB must be thread-aware 

•  translate (thread-id,virtual page) à physical page 
– Virtual portion of caches must also be thread-

aware 
•  VIVT cache must now be (virtual addr, thread-id)-

indexed, (virtual addr, thread-id)-tagged 
•  Similar for VIPT cache 
•  No changes needed if using PIPT cache (like L2) 

33 



•  Register File Management 
– ARF/PRF organization 

•  need one ARF per thread 

•  Need to maintain interrupts, exceptions, 
faults on a per-thread basis 
–  like OOO needs to appear to outside world that 

it is in-order, SMT needs to appear as if it is 
actually N CPUs 

34 



•  When it works, it fills idle “issue slots” with 
work from other threads; throughput 
improves 

35 

•  But sometimes it can cause 
performance degradation! 

Time(                       )    <    Time(                        ) 
Finish one task, 

then do the other 
Do both at same 
time using SMT 



•  Cache thrashing 

I$ D$ 

Thread0 just fits in 
the Level-1 Caches 

Executes 
reasonably 
quickly due 

to high cache 
hit rates 

Context switch to Thread1 

I$ D$ 

Thread1 also fits 
nicely in the caches 

I$ D$ 

Caches were just big enough 
to hold one thread’s data, but 

not two thread’s worth 

L2 

Now both threads have 
significantly higher cache 

miss rates 
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•  Intel’s Nehalemn 
•  Each core is 2-way SMT 

  

http://www.intel.com/technology/product/
demos/turboboost/demo.htm?iid=tech_tb
+demo 



  



•  Texas C62xx, IA32 (SSE), AMD K6, 
CUDA, Xbox.. 

•  Early SIMD machines: e.g.) CM-2 (large 
distributed system) 
– Lack of vector register files and efficient 

transposition support in the memory system.  
– Lack of irregular indexed memory accesses 

•  Modern SIMD machines: 
–   SIMD engine is in the same die 

  



  

X0 X2 X1 X3 

Y0 Y2 Y1 Y3 

X0 OP Y0  X2 OP Y2  X1 OP Y1  X3 OP Y3  

OP OP OP OP 

Source 1  

Source 2  

Destination 

for (ii = 0; ii < 4; ii++)  
x[ii] = y[ii]+z[ii]; 
 

SIMD_ADD(X, Y, Z)  
 
 



•  New data type  
– 128-bit packed single-precision floating-point 

data type  

•  Packed/Scalar singe-precision floating-point instruction 
•  64-bit SIMD integer instruction 
•  State management instructions 
•  Cacheability control, prefetch, and memory ordering 

instructions  

  

127 96 95 64 63 32 31 0 



•  Add new data types  
•  Add more complex SIMD instructions  
•  Additional vector registers  
•  Additional cacheability-control and 

instruction-ordering instructions.  

  



for (i = 1; i < 12; i++) x[i] = j[i]+1; 
 
 for (i = 1; i < 12; i=i+4) 
{ 
     x[i] = j[i]+1; 
      x[i+1] = j[i+1]+1;        
      x[i+2] = j[i+2]+1; 
       x[i+3] = j[i+3]+1; 
} 

  

SSE ADD  



•  Which code can be vectorized? 
Case1: for (i = 0; i < 1024; i++) 
    C[i] = A[i]*B[i]; 
Case 2: for (i=0;i<1024;i++) 

 a[i] = a[i+k]-1;   k=3 
Case 3: for (i=0;i<1024;i++) 

 a[i] = a[i-k]-1;   k=3 
 

  



  



  


