

Fall 2011

Prof. Hyesoon Kim

Georgia college of
Tech Compputing

Thanks to Prof. Prvulovic and Prof. Loh

Review

- Control Hazard
- Data Hazard
- Data dependences
- RAW/WAR/WAW
- True/Anti/Output
- Memory dependences
- Memory disambiguation problem
- Architecture vs. microarchitecture

Register File Organization

- We need some physical structure to store the register values

Putting it all Together

top:
$\mathrm{R} 1=\mathrm{R} 2+\mathrm{R} 3$
$\mathrm{R} 2=\mathrm{R} 4-\mathrm{R} 1$
R1 = R3* R6
$\mathrm{R} 2=\mathrm{R} 1+\mathrm{R} 2$
R3 $=\mathrm{R} 1 \gg 1$
BNEZ R3, top

1. List all dependencies for 2 iterations
2. Show graph when all deps enforced
3. Show graph when only RAW enforced
4. Rename the registers for 2 iterations

Free pool:
X9, X11, X7, X2, X13, X4, X8, X12, X3, X5...

ARF	PRF
R1	X1
R2	X2
R3	X3
R4	X4
R5	X5
R6	X6
	X7
	X8
RAT	X9
R1 R1	X10
R2 R2	X11
R3 R3	X12
R4 R4	X13
R5 R5	X14
R6 R6	X15
	X16

Putting it all Together

$\mathrm{R} 1=\mathrm{R} 2+\mathrm{R} 3$
$\mathrm{R} 2=\mathrm{R} 4-\mathrm{R} 1$
$\mathrm{R} 1=\mathrm{R} 3 * \mathrm{R} 6$
$\mathrm{R} 2=\mathrm{R} 1+\mathrm{R} 2$
$\mathrm{R} 3=\mathrm{R} 1 \gg 1$
$\mathrm{BNEZ} \mathrm{R} 3, \mathrm{top}$
$\mathrm{R} 1=\mathrm{R} 2+\mathrm{R} 3$
$\mathrm{R} 2=\mathrm{R} 4-\mathrm{R} 1$
$\mathrm{R} 1=\mathrm{R} 3 * \mathrm{R} 6$
$\mathrm{R} 2=\mathrm{R} 1+\mathrm{R} 2$
$\mathrm{R} 3=\mathrm{R} 1 \gg 1$
BNEZ R 3, top

1. List all dependencies for 2 iterations

Putting it all Together

2. Show graph when all deps enforced

Putting it all Together

$R 1=R 2+R 3$
$R 2=R 4-R 1$
$R 1=R 3 * R 6$
$R Z=R 1+R 2$
Ris RN >> 1
BNE $R 8$, top
$R 1=R 2+R 3$
$R 2=R 4=R 1$
R1 = R 3^{*} R6
$R 2=R+R 2$
$R 3=R 1>1$
BNEZ R3, top
3. Show graph when only RAW enforced

Putting it all Together

$R 1=R 2+R 3 \quad X 9 \equiv R 2+R 3$
Free pool:
WAW - X9, X11, X7, X2, X13, X14, X8, X12, X3, X5...

ARF	PRF
R1	X1
R2	X2
R3	X3
R4	X4
R5	X5
R6	X6
	X7
RAT	X8
	X9
R1 $\times 12$	X10
R2 $\times 3$	X11
R3 $\times 5$	X12
R4 R4	X13
R5 R5	
R6 R6	X15
	X16

Even Physical Registers are Limited

- We keep using new physical registers
- What happens when we run out?
- There must be a way to "recycle"
- When can we recycle?
- When we have given its value to all instructions that use it as a source operand!
- This is not as easy as it sounds

Instruction Commit (leaving the pipe)

Architected register file contains the "official" processor state

When an instruction leaves the pipeline, it makes its result "official" by updating the ARF

The ARF now contains the correct value; update the RAT

T42 is no longer needed, return to the physical register free pool

Careful with the RAT Update!

Update ARF as usual
Deallocate physical register Don't touch the RAT! (Someone else is the most recent writer to R3)

At some point in the future, the newer writer of R3 exits

This instruction was the most recent writer, now update the RAT

Deallocate physical register

How?

- Scoreboard
- Tomasulo's algorithm
- ROB
- History buffer
- Check point (HPS)

Scoreboard

- Before writing, it sets busy
- After finishing it sets ready
- Keep track of registers are ready or not
- Keep track of functional unit states

Limitations of Scoreboard

- No register renaming
- Detect WAR and WAW but it cannot not eliminate them.
- Solutions for WAR:
- Stall writeback until registers have been read
- Read registers only during Read Operands stage
- Solution for WAW:
- Detect hazard and stall issue of new instruction until other instruction completes

Implementing Dynamic Scheduling

- Tomasulo's Algorithm
- Used in IBM 360/91 (in the 60s)
- Tracks when operands are available to satisfy data dependences
- Removes name dependences
through register renaming
- Very similar to what is used today
- Almost all modern high-performance processors use a derivative of Tomasulo's... much of the terminology survives to today.

Tomasulo's Algorithm: The Picture

Three Stages of Tomasulo Algorithm

1. Issue-get instruction from Instruction Queue

If reservation station free (no structural hazard), control issues instr \& sends operands (renames registers).
2. Execution-operate on operands (EX)

When both operands ready then execute; if not ready, watch Common Data Bus for result
3. Write result-finish execution (WB)

Write on Common Data Bus to all awaiting units; mark reservation station available

- Normal data bus: data + destination ("go to" bus)
- Common data bus: data + source ("come from" bus)
- 64 bits of data +4 bits of Functional Unit source address
- Write if matches expected Functional Unit (produces result)
- Does the broadcast

Issue (1)

- Get next instruction from instruction queue.
- Find a free reservation station for it (if none are free, stall until one is)
- Read operands that are in the registers
- If the operand is not in the register, find which reservation station will produce it
- In effect, this step renames registers (reservation station IDs are "temporary" names)

Issue (2)

Instruction Buffers	
0.	$\mathrm{F} 2=\mathrm{F} 4+\mathrm{F} 1$
1.	$F 1=F 2 / F 3$
2.	$F 4=F 1-F 2$
3.	$F 1=F 2+F 3$

To-Do list (from last slide): Get next inst from IB's Find free reservation station Read operands from RF Record source of other operands Update source mapping (RAT)

	Reg File
F1	3.141593
F2	-1.00000
F3	2.718282
F4	0.707107

Adder
FP-Cmplx

Execute (1)

- Monitor results as they are produced
- Put a result into all reservation stations waiting for it (missing source operand)
- When all operands available for an instruction, it is ready (we can actually execute it)
- Several ready instrs for one functional unit?
- Pick one.
- Except for load/store Load/Store must be done in the proper order to avoid hazards through memory (more loads/stores this in a later lecture)

Execute (2)

1. $F 1=F 2 / F 3$
2. $\mathrm{F} 4=\mathrm{F} 1-\mathrm{F} 2$
3. $\mathrm{F} 1=\mathrm{F} 2+\mathrm{F} 3$
$\mathrm{F} 2=\mathrm{F} 4+\mathrm{F} 1$
(α) 3.8487

To-Do list (from last slide): Monitor results from ALUs Capture matching operands Compete for ALUs

Adder
FP-Cmplx

Execute (3) More than one ready inst for the same unit

Common heuristic: oldest first

You can do whatever: it only affects performance, not correctness

$$
\begin{aligned}
& \mathrm{F} 2=\mathrm{F} 4+\mathrm{F} 1 \\
& \text { (} \alpha \text {) } 3.8487
\end{aligned}
$$

3. $\mathrm{F} 1=\mathrm{F} 2+\mathrm{F} 3$
4. $\mathrm{F} 4=\mathrm{F} 3-\mathrm{F} 2$
5. $F 1=F 2 / F 3$
6. $\mathrm{F} 2=\mathrm{F} 4+\mathrm{F} 1$

Write Result (1)

- When result is computed, make it available on the "common data bus" (CDB), where waiting reservation stations can pick it up
- Stores write to memory
- Result stored in the register file
- This step frees the reservation station
- For our register renaming, this recycles the temporary name (future instructions can again find the value in the actual register, until it is renamed again)

Write Result (2)

0. $\mathrm{F} 2=\mathrm{F} 4+\mathrm{F} 1$
1. $\mathrm{F} 1=\mathrm{F} 2 / \mathrm{F} 3$
2. $\mathrm{F} 4=\mathrm{F} 1-\mathrm{F} 2$
3. $\mathrm{F} 1=\mathrm{F} 2+\mathrm{F} 3$

Reg File

F1	3.141593
F2	-1.00000
F3	2.718282
F4	0.707107
	RAT
F1	χ
F2	α
F3	0
F4	β

To-Do list (from last slide):
Broadcast on CDB
Writeback to RF
Update Mapping
Free reservation station

Only update RAT (and RF) if RAT still contains your mapping!

Tomasulo's Algorithm: Load/Store

- The reservation stations take care of dependences through registers.
- Dependences also possible through memory
- Loads and stores not reordered in original IBM 360
- We'll talk about how to do load-store reordering later

Reservation Station Components

Op: Operation to perform in the unit (e.g., + or -)
Vj, Vk: Value of Source operands

- Store buffers has V field, result to be stored

Qj, Qk: Reservation stations producing source registers (value to be written)

- Busy: Indicates reservation station or FU is busy

Register result status-Indicates which functional unit will write each register, if one exists. Blank when no pending instructions that will write that register.
A : Memory address calculation for a load or store

Detailed Example

Assume
R 2 is 100
R3 is 200
F 4 is 2.5

> Load: 2 cycles Add: 2 cycles Mult: 10 cycles
> Divide: 40 cycles

Reservation Stations

1. L.D
2. L.D
3. MUL.D

F6, 34(R2)
4. SUB.D
5. DIV.D
6. ADD.D

F2, 45(R3)
F0, F2, F4
F8, F2, F6
F10,F0,F6
F6, F8, F2
Is ExW

Detailed Example

Assume
R 2 is 100
R3 is 200
F 4 is 2.5

> Load: 2 cycles Add: 2 cycles Mult: 10 cycles
> Divide: 40 cycles

Reservation Stations

1. L.D
2. L.D
3. MUL.D

Busy Op			Vj	Vk	Qj	Qk	A
LD1	1	L.D					134
LD2							
AD1							
AD2							
AD3							
ML1							
ML2							
	F0	F2	F4	F8	F10		

Cycle: \square Register Status:

		LD1			\ldots
Georgia Tech Colloge of Gompuring					

Detailed Example

> Load: 2 cycles Add: 2 cycles Mult: 10 cycles
> Divide: 40 cycles

Assume
R 2 is 100
R3 is 200
F4 is 2.5

Reservation Stations

1. L.D
2. L.D
3. MUL.D

	Is ExW		
F6, 34(R2)	1	2	
F2, 45(R3)	2		
F0, F2, F4			
F8, F2, F6			
F10,F0,F6			
F6, F8, F2			

4. SUB.D
5. DIV.D
6. ADD.D

F6, F8, F2
\square

Register Status:

LD2	LD1			\ldots
GeorgiaTech Conlege of Gompuring				

Detailed Example

Assume
R 2 is 100

$$
\begin{gathered}
\text { Load: } 2 \text { cycles } \\
\text { Add: } 2 \text { cycles } \\
\text { Mult: } 10 \text { cycles } \\
\text { Divide: } 40 \text { cycles } \\
\hline
\end{gathered}
$$

R3 is 200
F4 is 2.5

Reservation Stations

1. L.D
2. L.D
3. MUL.D

4. SUB.D
5. DIV.D
6. ADD.D

\section*{$-1-2$}

Detailed Example

Assume
R 2 is 100

Load: 2 cycles Add: 2 cycles Mult: 10 cycles Divide: 40 cycles

R3 is 200
F 4 is 2.5

Reservation Stations

F6 is 0.5

1. L.D

	Is		
	ExW		
F6, 34(R2)	1	2	4
F2, 45(R3)	2	3	
F0, F2, F4	3		
F0,			
F8, F2, F6	4		
F10,F0,F6			
F6, F8, F2			

Busy Op			Vj	Vk	Qj	Qk	A
LD1	0						
LD2	1	L.D					245
AD1		SUB.D		0.5	LD2		
AD2							
AD3							
ML1	1	MUL.D		2.5	LD2		
ML2							

F0 F2 F4 F6 F8 F10 F12
Cycle: \square Register Status:

ML1	LD2		LP1	AD1			\ldots

Detailed Example

Assume
R 2 is 100
R3 is 200
F 4 is 2.5
F 6 is 0.5

Load: 2 cycles Add: 2 cycles Mult: 10 cycles
Divide: 40 cycles

1. L.D
2. L.D
3. MUL.D

	Is ExW		
	F6, 34(R2)	1	2

4. SUB.D
5. DIV.D

F6, F8, F2
F6, 34(R2)

$$
-1-1
$$

F0, F2, F4
6. ADD.D

F8, F2, F6
F10,F0,F6
\square Register Status:
Cycle

Reservation Stations

Busy Op			Vj	Vk	Qj	Qk	A
LD1	0						
LD2	0						
AD1	1	SUB.D	1.5	0.5			
AD2							
AD3							
ML1	1	MUL.D	1.5	2.5			
ML2	1	DIV.D		0.5	ML1		
	F0	0 F2	F4	F8	F10		

Detailed Example

Assume
R 2 is 100
R3 is 200
F 4 is 2.5

$$
\begin{aligned}
& \text { Load: } 2 \text { cycles } \\
& \text { Add: } 2 \text { cycles } \\
& \text { Mult: } 10 \text { cycles } \\
& \text { Divide: } 40 \text { cycles }
\end{aligned}
$$

Reservation Stations

1. L.D
2. L.D
3. MUL.D

F6, 34(R2)
Is ExW
4. SUB.D
5. DIV.D
6. ADD.D F2, 45(R3)
F0, F2, F4
F8, F2, F6 F10,F0,F6 F6, F8, F2

Detailed Example

Assume
R 2 is 100
R3 is 200
F4 is 2.5
F 6 is 0.5

F 8 is 1.0		Is ExW		
1. L.D	F6, 34(R2)	1	2	4
2. L.D	F2, 45(R3)	2	3	5
3. MUL.D	F0, F2, F4	3	6	
4. SUB.D	F8, F2, F6	4	6	8
5. DIV.D	F10,F0,F6	5		
6. ADD.D	F6, F8, F2	6		

Load: 2 cycles Add: 2 cycles Mult: 10 cycles
 Divide: 40 cycles

Reservation Stations

Busy Op			Vj	Vk	Qj	Qk	A
LD1	0						
LD2	0						
AD1	0						
AD2		ADD.D	1.0	2.5			
AD3							
ML1		MUL.D	1.5	2.5			
ML2	1	DIV.D		0.5	ML1		
F0 F2 F4 F6 F8 F10 F12							

Cycle: \square Register Status:

| ML1 | AD2 | ML2 | \ldots | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Georgia | | | | |
| Tech | Gollege of | | | |
| Gompring | | | | |

Detailed Example

Assume
R 2 is 100
R3 is 200
F4 is 2.5
F 6 is 0.5

F 8 is 1.0		Is ExW		
1. L.D	F6, 34(R2)	1	2	4
2. L.D	F2, 45(R3)	2	3	5
3. MUL.D	F0, F2, F4	3	6	
4. SUB.D	F8, F2, F6	4	6	8
5. DIV.D	F10,F0,F6	5		
6. ADD.D	F6, F8, F2	6	9	

Load: 2 cycles Add: 2 cycles Mult: 10 cycles
 Divide: 40 cycles

Reservation Stations

	usy	Op	Vj	Vk	Qj	Qk	A
LD1	0						
LD2	0						
AD1	0						
AD2		ADD.D	1.0	2.5			
AD3							
ML1		MUL.D	1.5	2.5			
ML2	1	DIV.D		0.5	ML1		
		0 F2	F4	F8	F10		

Cycle: \square Register Status:

| ML1 | AD2 | ML2 | \ldots | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| GeorgiaCollege of
 Tech
 Gompuring | | | | |

Detailed Example

Assume
R 2 is 100
R3 is 200
F 4 is 2.5
F 6 is 0.5

F 8 is 1.0		Is ExW		
1. L.D	F6, 34(R2)	1	2	4
2. L.D	F2, 45(R3)	2	3	5
3. MUL.D	F0, F2, F4	3	6	
4. SUB.D	F8, F2, F6	4	6	8
5. DIV.D	F10,F0,F6	5		
6. ADD.D	F6, F8, F2	6	9	1

Load: 2 cycles Add: 2 cycles Mult: 10 cycles
Divide: 40 cycles

Reservation Stations

	usy	Op	Vj	Vk	Qj	Qk	A
LD1	0						
LD2	0						
AD1	0						
AD2	0						
AD3							
ML1		MUL.D	1.5	2.5			
ML2	1	DIV.D		0.5	ML1		
F0 F2			F4	F8	F10		

Cycle: \square Register Status:

ML1					ML2		\ldots

Detailed Example

Assume
R 2 is 100
R3 is 200
F 4 is 2.5
F 6 is 0.5

F 8 is 1.0		Is ExW		
1. L.D	F6, 34(R2)	1	2	4
2. L.D	F2, 45(R3)	2	3	5
3. MUL.D	F0, F2, F4	3	6	16
4. SUB.D	F8, F2, F6	4	6	8
5. DIV.D	F10,F0,F6	5		
6. ADD.D	F6, F8, F2	6	9	1

Load: 2 cycles Add: 2 cycles Mult: 10 cycles
Divide: 40 cycles

Reservation Stations

	sy	Op	Vj	Vk	Qj	Qk	A
LD1	0						
LD2	0						
AD1	0						
AD2	0						
AD3							
ML1	0						
ML2	1	DIV.D	3.75	0.5			
F0 F2			F4	F8	F10		

Cycle:
16 Register Status:

					ML2	\ldots
Georgia						
Tech	College of					
Conpuring						

Detailed Example

Assume
R 2 is 100
R3 is 200
F 4 is 2.5
F 6 is 0.5

F 8 is 1.0		Is ExW		
1. L.D	F6, 34(R2)	1	2	4
2. L.D	F2, 45(R3)	2	3	5
3. MUL.D	F0, F2, F4	3	6	16
4. SUB.D	F8, F2, F6	4	6	8
5. DIV.D	F10,F0,F6	5	17	
6. ADD.D	F6, F8, F2	6	9	1

Load: 2 cycles Add: 2 cycles Mult: 10 cycles
Divide: 40 cycles

Reservation Stations

	sy	Op	Vj	Vk	Qj	Qk	A
LD1	0						
LD2	0						
AD1	0						
AD2	0						
AD3							
ML1	0						
ML2	1	DIV.D	3.75	0.5			
	F0 F2 F4 F6 F8 F10						

Cycle: \square Register Status:

Detailed Example

Assume
R 2 is 100
R3 is 200
F 4 is 2.5
F 6 is 0.5

F 8 is 1.0		Is ExW		
1. L.D	F6, 34(R2)	1	2	4
2. L.D	F2, 45(R3)	2	3	5
3. MUL.D	F0, F2, F4	3	6	16
4. SUB.D	F8, F2, F6	4	6	8
5. DIV.D	F10,F0,F6	5	17	
6. ADD.D	F6, F8, F2	6	9	1

Load: 2 cycles Add: 2 cycles Mult: 10 cycles
Divide: 40 cycles

Reservation Stations

	sy	Op	Vj	Vk	Qj	Qk	A
LD1	0						
LD2	0						
AD1	0						
AD2	0						
AD3							
ML1	0						
ML2	1	DIV.D	3.75	0.5			
F0 F2			F4	F8	F10		

Cycle: \square Register Status:

					ML2	\ldots
Georgia						
Tech	College of					
Conpuring						

Detailed Example

Assume
R 2 is 100
R3 is 200
F 4 is 2.5
F 6 is 0.5

F 8 is 1.0		Is ExW		
1. L.D	F6, 34(R2)	1	2	4
2. L.D	F2, 45(R3)	2	3	5
3. MUL.D	F0, F2, F4	3	6	16
4. SUB.D	F8, F2, F6	4	6	8
5. DIV.D	F10,F0,F6	5	17	7
6. ADD.D	F6, F8, F2	6	9	11

Load: 2 cycles Add: 2 cycles Mult: 10 cycles
Divide: 40 cycles

Reservation Stations

Busy Op			Vj	Vk	Qj	Qk	A
LD1	0						
LD2	0						
AD1	0						
AD2	0						
AD3							
ML1	0						
ML2	0	DIV.D	3.75	0.5			
	F0	F2	F4	F8	F10		

Cycle: \square Register Status:

