
Fall 2011
Prof. Hyesoon Kim

Thanks to Prof. Loh & Prof. Prvulovic

11
14

1 10 20 5 6 8

39 50

25

•  Shared counter/sum update example
– Use a mutex variable for mutual exclusion
– Only one processor can own the mutex

•  Many processors may call lock(), but
only one will succeed (others block)

•  The winner updates the shared sum,
then calls unlock() to release the mutex

•  Now one of the others gets it, etc.

– But how do we implement a mutex?
•  As a shared variable (1 – owned, 0 –free)

•  Releasing a mutex is easy
– Just set it to 0

•  Acquiring a mutex is not so easy
– Easy to spin waiting for it to become 0
– But when it does, others will see it, too
– Need a way to atomically

see that the mutex is 0 and set it to 1

•  Atomic exchange instruction
–  E.g., EXCH R1,78(R2) will swap content of register R1

and mem location at address 78+R2
–  To acquire a mutex, 1 in R1 and EXCH

•  Then look at R1 and see whether mutex acquired
•  If R1 is 1, mutex was owned by somebody else

and we will need to try again later
•  If R1 is 0, mutex was free and we set it to 1,

which means we have acquired the mutex

•  Other atomic read-and-update instructions
–  E.g., Test-and-Set

•  Atomic instructions OK, but specialized
–  E.g., SWAP can not atomically inc a counter

•  Idea: provide a pair of linked instructions
•  A load-linked (LL) instruction

–  Like a normal load, but also remembers the value in a
special “link” register

•  A store-conditional (SC) instruction
–  Like a normal store, but fails if its value is not the same

as that in the link register
–  Returns 1 if successful, 0 on failure

•  Writes by other processors snooped
–  If value matches link register, clear link register

swap: mov R3, R4
 ll R2,0(R1)
 sc R3,0(R1)
 beqz R3,swap
 mov R4,R2

Atomic Exchange

Swap R4 w/ 0(R1)

•  MSI protocol :

– P1 SWAP “1” mem[A]
– P2 SWAP “1” mem[A]
– P3 SWAP “1” mem[A]
– P2 SWAP “1” mem[A]
– P3 SWAP “1” mem[A]
– P2 SWAP “1” mem[A]

P1 P2 P3

M X X

I M X

I I M

I M I

I I M

I M I

Acquire a lock

So many invalidations!!

•  A simple swap (or test-and-set) works
– But causes a lot of invalidations

•  Every write sends an invalidation
•  Most writes redundant (swap 1 with 1)

•  More efficient: test-and-swap
– Read, do swap only if 0

•  Read of 0 does not guarantee success (not atomic)
•  But if 1 we have little chance of success

– Write only when good chance we will succeed

try: mov R3,#1
 ll R2,0(R1)
 sc R3,0(R1)
 bnez R2,try
 beqz R3,try

try: mov R3,#1
 ll R2,0(R1)
 bnez R2,try
 sc R3,0(R1)
 beqz R3,try

swap: mov R3, R4
 ll R2,0(R1)
 sc R3,0(R1)
 beqz R3,swap
 mov R4,R2

Atomic Exchange

upd: ll R2,0(R1)
 add R3,R2,R4
 sc R3,0(R1)
 beqz R3,upd

Atomic Add to Shared Variable

t&s: mov R3,1
 ll R2,0(R1)
 sc R3,0(R1)
 bnez R2,t&s
 beqz R3,t&s

Atomic Test&Set

Swap R4 w/ 0(R1) Test if 0(R1) is zero, set to one

•  Contention even with test-and-test-and-set
–  Every write goes to many, many spinning procs
–  Making everybody test less often reduces contention

for high-contention locks but hurts for low-contention
locks

–  Solution: exponential back-off
•  If we have waited for a long time, lock is probably high-

contention
•  Every time we check and fail, double the time between checks

–  Fast low-contention locks (checks frequent at first)
–  Scalable high-contention locks (checks infrequent in long waits)

–  Special hardware support

•  All must arrive before any can leave
– Used between different parallel sections

•  Uses two shared variables
– A counter that counts how many have arrived

•  atomically dec a counter
– A flag that is set when the last processor

arrives

Acquire lock
While (node) {

If (node->data > 10)
node->data = new_data;
node = node->next

}
Release lock

P1

P2

P3

A group of load and store instructions to
execute in an atomic way.

Trying to avoid locks
-  Hardware transactional memory
-  Begin/End
-  Commit or Abort
-  Commits: All of the loads and stores appear to

have run atomically with respect to other
transactions

-  How? Keep a record (in a hardware or in a
memory)

•  MSI protocol : cache block size is 4B

– P1 LDB mem[A]
– P2 STB mem[A]
– P3 LDB mem[A+1]
– P1 STB mem[A+2]
– P2 STB mem[A]
– P3 LDB mem[A+1]

P1 P2 P3

S X X

I M X

I S S

M I I

I M I

I S S

P1 P2 P3

S X X

I M X

I S S

M I I

I M I

I S S

•  Coherence is about order of accesses to the same
address

•  Consistency is about order of accesses to different addrs

•  Possible outcomes on Proc 2 in program order
–  (F,D) can be (0,0), (0,1), (1,1)

•  Execution order can also give (1,0)
–  Exposes instruction reordering to programmer
–  We need something that makes sense intuitively

Proc 1
ST 1->D
ST 1->F

Proc 2
LD F
LD D

Program order Execution order
Proc 1
ST D
ST F

Proc 2
LD D
LD F

Proc 2 can reorder
loads

•  But first: why would we want to write code like that?
–  If we never actually need consistency, we don’t care if it isn’t there

•  Example: flag synchronization
–  Producer produces data and sets flag
–  Consumer waits for flag to be 1, then reads data

•  Now we can have the following situation
–  Proc 2 has cache miss on F, predicts the branch not taken, reads

D
–  Proc 1 writes D, writes F
–  Proc 2 gets F, checks, sees 1, verifies branch is correctly

predicted

Proc 1
D=Val1;
F=1;

Proc 2
while(F==0);
Val2=D;

Source Code
Proc 1
ST D
ST F

Proc 2
wait: LD F

 BEQZ F,wait
 LD D

Assembler Code

•  The result of any execution should be the same
as if the accesses executed by each processor
were kept in order and the accesses among
different processors were arbitrarily interleaved
–  The same interleaved order seen by everybody

P1 P2 P3

Memory
(Lamport)

•  Simple implementation
–  A processor issues next access only when its previous

access is complete
–  Write completion acknowledgement, invalidation

acknowledgment
–  Sloooow!

•  A better implementation
–  Processor issues accesses as it sees fit, but detects

and fixes potential violations of sequential consistency

Load

Load

http://www.cs.uiuc.edu/class/sp08/cs533/

store

store

Load

Load

Sequential consistency

Program order

Load

Load

store

store

Load

Load

Processor consistency (PC)
Loads are allowed to by pass stores

Program order

This LOAD
bypass
the two stores

•  Two kinds of memory accesses
–  Data accesses and synchronization accesses

•  Synchronization accesses determine order
–  Data accesses ordered by synchronization
–  Any two of accesses to the same variable in two

different processes, such that at least one of the
accesses is a write, are always ordered by
synchronization operations

•  Good performance even in simple
implementation
–  Sequential consistency for sync accesses
–  Data accesses can be freely reordered

(except around sync accesses)

•  Data Races
–  When data accesses to same var in different procs are

not ordered by sync
–  Most programs are data-race-free

(so relaxed consistency models work well)
•  There are many relaxed models

–  Weak Consistency, Processor Consistency, Release
Consistency, Lazy Release Consistency

–  All work just fine for data-race-free programs
–  But when there are data races,

more relaxed models ⇒ weirder program behavior

26

 Thread 1 Thread 2
X++ T=Y
Z=2 T=X

•  Two concurrent accesses to a shared
location, at least one of them for writing.
– BUG!!

