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•  Shared counter/sum update example 
– Use a mutex variable for mutual exclusion 
– Only one processor can own the mutex 

•  Many processors may call lock(), but 
only one will succeed (others block) 

•  The winner updates the shared sum, 
then calls unlock() to release the mutex 

•  Now one of the others gets it, etc. 

– But how do we implement a mutex? 
•  As a shared variable (1 – owned, 0 –free) 



  

•  Releasing a mutex is easy 
– Just set it to 0 

•  Acquiring a mutex is not so easy 
– Easy to spin waiting for it to become 0 
– But when it does, others will see it, too 
– Need a way to atomically 

see that the mutex is 0 and set it to 1 



  

•  Atomic exchange instruction 
–  E.g., EXCH R1,78(R2) will swap content of register R1 

and mem location at address 78+R2 
–  To acquire a mutex, 1 in R1 and EXCH 

•  Then look at R1 and see whether mutex acquired 
•  If R1 is 1, mutex was owned by somebody else 

and we will need to try again later 
•  If R1 is 0, mutex was free and we set it to 1, 

which means we have acquired the mutex 

•  Other atomic read-and-update instructions 
–  E.g., Test-and-Set 



  

•  Atomic instructions OK, but specialized 
–  E.g., SWAP can not atomically inc a counter 

•  Idea: provide a pair of linked instructions 
•  A load-linked (LL) instruction 

–  Like a normal load, but also remembers the value in a 
special “link” register 

•  A store-conditional (SC) instruction 
–  Like a normal store, but fails if its value is not the same 

as that in the link register 
–  Returns 1 if successful, 0 on failure 

•  Writes by other processors snooped 
–  If value matches link register, clear link register 



  

swap:  mov  R3, R4 
 ll  R2,0(R1) 
 sc  R3,0(R1)  
 beqz  R3,swap 
 mov  R4,R2 

Atomic Exchange 

Swap R4 w/ 0(R1) 



  

•  MSI protocol :  

– P1   SWAP “1”  mem[A]   
– P2   SWAP “1”  mem[A] 
– P3   SWAP “1”  mem[A] 
– P2   SWAP “1”  mem[A] 
– P3   SWAP “1”  mem[A] 
– P2   SWAP “1”  mem[A] 

P1 P2 P3 

M X X 

I M X 

I I M 

I M I 

I I M 

I M I 

Acquire a lock 

So many invalidations!! 



  

•  A simple swap (or test-and-set) works 
– But causes a lot of invalidations 

•  Every write sends an invalidation 
•  Most writes redundant (swap 1 with 1) 

•  More efficient: test-and-swap 
– Read, do swap only if 0 

•  Read of 0 does not guarantee success (not atomic) 
•  But if 1 we have little chance of success 

– Write only when good chance we will succeed 



  

try:  mov  R3,#1 
 ll  R2,0(R1) 
 sc  R3,0(R1) 
 bnez  R2,try  
 beqz  R3,try 

try:  mov  R3,#1 
 ll  R2,0(R1) 
 bnez  R2,try 
 sc  R3,0(R1) 
 beqz  R3,try 



  

swap:  mov  R3, R4 
 ll  R2,0(R1) 
 sc  R3,0(R1)  
 beqz  R3,swap 
 mov  R4,R2 

Atomic Exchange 

upd:  ll  R2,0(R1) 
 add  R3,R2,R4 
 sc  R3,0(R1)  
 beqz  R3,upd 

Atomic Add to Shared Variable 

t&s:  mov  R3,1 
 ll  R2,0(R1) 
 sc  R3,0(R1) 
 bnez  R2,t&s 
 beqz  R3,t&s 

Atomic Test&Set 

Swap R4 w/ 0(R1) Test if 0(R1) is zero, set to one 



  

•  Contention even with test-and-test-and-set 
–  Every write goes to many, many spinning procs 
–  Making everybody test less often reduces contention 

for high-contention locks but hurts for low-contention 
locks 

–  Solution: exponential back-off 
•  If we have waited for a long time, lock is probably high-

contention 
•  Every time we check and fail, double the time between checks 

–  Fast low-contention locks (checks frequent at first) 
–  Scalable high-contention locks (checks infrequent in long waits) 

–  Special hardware support 



  

•  All must arrive before any can leave 
– Used between different parallel sections 

•  Uses two shared variables 
– A counter that counts how many have arrived 

•  atomically dec a counter 
– A flag that is set when the last processor 

arrives 



Acquire lock 
While (node) {  

If (node->data > 10)  
node->data = new_data;  
node = node->next  

} 
Release lock 

  

P1 

P2 

P3 



A group of load and store instructions to 
execute in an atomic way.  

Trying to avoid locks   
-  Hardware transactional memory  
-  Begin/End 
-  Commit or Abort  
-  Commits: All of the loads and stores appear to 

have run atomically with respect to other 
transactions 

-  How? Keep a record (in a hardware or in a 
memory) 

  



•  MSI protocol : cache block size is 4B 

– P1   LDB   mem[A] 
– P2   STB   mem[A] 
– P3   LDB    mem[A+1] 
– P1   STB    mem[A+2] 
– P2   STB    mem[A] 
– P3  LDB     mem[A+1]  

  

P1 P2 P3 

S X X 

I M X 

I S S 

M I I 

I M I 

I S S 

P1 P2 P3 

S X X 

I M X 

I S S 

M I I 

I M I 

I S S 



  



  

•  Coherence is about order of accesses to the same 
address 

•  Consistency is about order of accesses to different addrs 

•  Possible outcomes on Proc 2 in program order 
–  (F,D) can be (0,0), (0,1), (1,1) 

•  Execution order can also give (1,0) 
–  Exposes instruction reordering to programmer 
–  We need something that makes sense intuitively 

Proc 1 
ST 1->D 
ST 1->F 

Proc 2 
LD F 
LD D 

Program order Execution order 
Proc 1 
ST D 
ST F 

Proc 2 
LD D 
LD F 

Proc 2 can reorder 
loads 



  

•  But first: why would we want to write code like that? 
–  If we never actually need consistency, we don’t care if it isn’t there 

•  Example: flag synchronization 
–  Producer produces data and sets flag 
–  Consumer waits for flag to be 1, then reads data 

 

•  Now we can have the following situation 
–  Proc 2 has cache miss on F, predicts the branch not taken, reads 

D 
–  Proc 1 writes D, writes F 
–  Proc 2 gets F, checks, sees 1, verifies branch is correctly 

predicted 

Proc 1 
D=Val1; 
F=1; 

Proc 2 
while(F==0); 
Val2=D; 

Source Code 
Proc 1 
ST D 
ST F 

Proc 2 
wait:  LD F 

 BEQZ F,wait 
 LD D 

Assembler Code 



  

•  The result of any execution should be the same 
as if the accesses executed by each processor 
were kept in order and the accesses among 
different processors were arbitrarily interleaved 
–  The same interleaved order seen by everybody 

P1 P2 P3 

Memory 
(Lamport) 



•  Simple implementation 
–  A processor issues next access only when its previous 

access is complete 
–  Write completion acknowledgement, invalidation 

acknowledgment  
–  Sloooow! 

•  A better implementation 
–  Processor issues accesses as it sees fit, but detects 

and fixes potential violations of sequential consistency 

  



  

Load 

Load 

http://www.cs.uiuc.edu/class/sp08/cs533/ 

store 

store 

Load 

Load 

Sequential consistency 

Program order 

Load 

Load 

store 

store 

Load 

Load 

Processor consistency (PC) 
Loads are allowed to by pass stores  

Program order 

This LOAD 
bypass  
the two stores  



  

•  Two kinds of memory accesses 
–  Data accesses and synchronization accesses 

•  Synchronization accesses determine order 
–  Data accesses ordered by synchronization 
–  Any two of accesses to the same variable in two 

different processes, such that at least one of the 
accesses is a write, are always ordered by 
synchronization operations 

•  Good performance even in simple 
implementation 
–  Sequential consistency for sync accesses 
–  Data accesses can be freely reordered 

(except around sync accesses) 



  

•  Data Races 
–  When data accesses to same var in different procs are 

not ordered by sync 
–  Most programs are data-race-free 

(so relaxed consistency models work well) 
•  There are many relaxed models 

–  Weak Consistency, Processor Consistency, Release 
Consistency, Lazy Release Consistency 

–  All work just fine for data-race-free programs 
–  But when there are data races, 

more relaxed models ⇒ weirder program behavior 
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               Thread 1    Thread 2 
X++     T=Y 
Z=2     T=X 

•  Two concurrent accesses to a shared 
location, at least one of them for writing.  
– BUG!! 


