Fall 2011
Prof. Hyesoon Kim

Georgia Cadllege of
Tech Computing

Thanks to Prof. Loh & Prof. Prvulovic

PARALLEL PROGRAMMING &
HARDWARE
IMPLEMENTATION

Georgia College of
Tegch ConppPUitine

Lock Example (Review)

Synchronization

» Shared counter/sum update example
— Use a mutex variable for mutual exclusion

— Only one processor can own the mutex

« Many processors may call lock(), but
only one will succeed (others block)

* The winner updates the shared sum,
then calls unlock() to release the mutex

 Now one of the others gets it, etc.

— But how do we implement a mutex?
« As a shared variable (1 — owned, 0 —free)

Georgia GCadllege of
Tegch Compuiing

Locking

* Releasing a mutex is easy
—Justsetitto 0

* Acquiring a mutex is not so easy
— Easy to spin waiting for it to become 0
— But when it does, others will see it, too

— Need a way to atomically
see that the mutex is O and set it to 1

Georgia GCadllege of
Tegch ConppPUitine

Atomic Read-Update Instructions

* Atomic exchange instruction
— E.g., EXCH R1,78(R2) will swap content of register R1
and mem location at address 78+R2

— To acquire a mutex, 1 in R1 and EXCH
 Then look at R1 and see whether mutex acquired

* If R1is 1, mutex was owned by somebody else
and we will need to try again later

* If R1is 0, mutex was free and we set it to 1,
which means we have acquired the mutex

« Other atomic read-and-update instructions
— E.g., Test-and-Set

Georgia College of
Tegch Compuitfing

LL & SC Instructions

« Atomic instructions OK, but specialized
— E.g., SWAP can not atomically inc a counter

|dea: provide a pair of linked instructions
A load-linked (LL) instruction

— Like a normal load, but also remembers the value in a
special “link” register
A store-conditional (SC) instruction

— Like a normal store, but fails if its value is not the same
as that in the link register

— Returns 1 if successful, 0 on failure
Writes by other processors snooped
— If value matches link register, clear link register

Georgia College of
Tegch Compuitfing

Using LL & SC

Swap R4 w/ 0(R1)

Atomic Exchange

swap:

mov
11
sc
beqgz
mov

R3, R4
R2,0 (R1)
R3,0(R1)
R3, swap
R4 ,R2

= Bl

Georgia GCadllege of
Tegch ConppPUitine

Simple Swap’s problem

 MSI protocol :

Acquire a lock
- P1 SWAP “1" mem
- P2 SWAP “1" mem
- P3 SWAP “1” mem
- P2 SWAP “1" mem
—P3 SWAP “1" mem
- P2 SWAP “1" mem

222>

So many invalidations!!

Y=

%

g:: !
- o)

Implementing Locks

* A simple swap (or test-and-set) works

— But causes a lot of invalidations
* Every write sends an invalidation
* Most writes redundant (swap 1 with 1)

* More efficient: test-and-swap
— Read, do swap only if 0

* Read of 0 does not guarantee success (not atomic)
« But if 1 we have little chance of success

— Write only when good chance we will succeed

Georgia GCadllege of
Tegch ConppPUitine

= I
Example: Test and Test and Set

try:

mov
11

sc
bnez

beqz

R3,#1
R2,0 (R1)
R3,0(R1)
R2,try
R3, try

—

try:

mov R3,#1

11 R2,0(R1)
bnez R2,try
sc R3,0(R1)

beqgz R3, try

Georgia College of
Tegch ConppPUitine

= EE D
Using LL & SC

Swap R4 w/ O(R1) Test if O(R1) is zero, set to one

Atomic Exchange Atomic Test&Set
swap: mov R3, R4 tés: mov R3,1
11 R2,0(R1) 11 R2,0(R1)
sc R3,0(R1) sc R3,0(R1)
beqz R3,swap bnez R2,té&s
mov R4 ,R2 begqz R3,té&s

Atomic Add to Shared Variable

upd: 11 R2,0(R1)
add R3,R2,R4
sc R3,0(R1)

begqz R3,upd

Georgia GCadllege of
Tegch ConppPUitine

= it
Large-Scale Systems: Locks

» Contention even with test-and-test-and-set
— Every write goes to many, many spinning procs

— Making everybody test less often reduces contention
for high-contention locks but hurts for low-contention
locks

— Solution: exponential back-off

« If we have waited for a long time, lock is probably high-
contention

« Every time we check and fail, double the time between checks
— Fast low-contention locks (checks frequent at first)
— Scalable high-contention locks (checks infrequent in long waits)

— Special hardware support

-

Georgia College of
Tegch Compuitfing

Barrier Synchronization

» All must arrive before any can leave
— Used between different parallel sections

» Uses two shared variables
— A counter that counts how many have arrived
 atomically dec a counter

— A flag that is set when the last processor
arrives

Georgia College of
Tegch Compuitfing

P —
D £ 7
AR

Over uslng locks

P1

Acquire lock

While (node) {

P2 If (node->data > 10)
node->data = new_data;
node = node->next

% % P3 J
Release lock

Georgia Coaollege of
Tegc Compuitfing

o =

-

Bis !
- i 3

Transactional Memory

A group of load and store instructions to

execute in an atomic way.

Trying to avoid locks

Hardware transactional memory
Begin/End
Commit or Abort

Commits: All of the loads and stores appear to
have run atomically with respect to other
transactions

How? Keep a record (in a hardware or in a

i 55 of
memory) Gogrola culzgncr

E”ﬁl
-

Review Question

 MSI protocol : cache block size is 4B

—P1 LDB meml[A]
- P2 STB memlA]
—P3 LDB mem[A+1]
—P1 STB mem[A+2]
—P2 STB meml[A]
—P3 LDB mem[A+1]

- ! n
) ; Lo .

MEMORY CONSISTENCY

Georgia GCadllege of
Tegch ConppPUitine

iy 7

7

AR !
_ - 5

Memory Consistency

« Coherence is about order of accesses to the same
address

« Consistency is about order of accesses to different addrs

Program order Execution order
Proc 1 Proc 2 Proc 1 Proc 2
ST 1->D 1D F ——> ST D 1D D

Proc 2 can reorder

ST 1->F ILD D ST F 1D F
loads

* Possible outcomes on Proc 2 in program order
— (F,D) can be (0,0), (0,1), (1,1)
« Execution order can also give (1,0)

— EXxposes instruction reordering to programmer
— We need something that makes sense intuitively

Georgia College of
Tech | Compuitfing

.

i 77z

-

B !
- i 3

Memory Consistency

« But first: why would we want to write code like that?
— If we never actually need consistency, we don’t care if it isn’t there

« Example: flag synchronization
— Producer produces data and sets flag
— Consumer waits for flag to be 1, then reads data

Source Code Assembler Code
Proc 1 Proc 2 Proc 1 Prc.>—02
D=Vall; while (F==0); |:> ST D wait: LD F .
F=1 : Val2=D: ST F BEQZ F,wait

LD D

« Now we can have the following situation

— Proc 2 has cache miss on F, predicts the branch not taken, reads
D

— Proc 1 writes D, writes F

— Proc 2 gets F, checks, sees 1, verifies branch is correctly

P redicted Georgia College of

Tech | Compuitfing

e

-

Sequential Consistency (SC)

* The result of any execution should be the same
as if the accesses executed by each processor
were kept in order and the accesses among
different processors were arbitrarily interleaved

— The same interleaved order seen by everybody

P1

P2

|
/

P3

Memory

(Lamport)

Georgia College of
Tegch Compuitfing

Hardware support for SC

« Simple implementation

— A processor issues next access only when its previous
access is complete

— Write completion acknowledgement, invalidation
acknowledgment

— Sloooow!

* A better implementation

— Procc_essor issue_s accesses as It sees fit_, but de_tects
and fixes potential violations of sequential consistency

Georgia College of
Tegch Compuitfing

e

-

Relaxed Consistency Models

Lo

ad

Lo

ad

store

store

Lo

ad

Lo

ad

This LOAD
bypass

v

Program order

Sequential consistency

http://www.cs.uiuc.edu/class/sp08/cs533/

the two storés

Lo

ad

Lo

ad

store

store

v

Program order

Lo

ad

Lo

ad

Processor consistency (PC)
Loads are allowed to by pass stores

Georgia Cdllege of

Tec

h || Computing

Relaxed Consistency Models

* Two kinds of memory accesses
— Data accesses and synchronization accesses

* Synchronization accesses determine order
— Data accesses ordered by synchronization

— Any two of accesses to the same variable in two
different processes, such that at least one of the
accesses is a write, are always ordered by
synchronization operations

» Good performance even in simple

Implementation
— Sequential consistency for sync accesses

— Data accesses can be freely reordered
(except around sync accesses)

Georgia GCadllege of
Tegch Compuiing

-
Relaxed Consistency Models

« Data Races

— When data accesses to same var in different procs are
not ordered by sync

— Most programs are data-race-free
(so relaxed consistency models work well)
* There are many relaxed models

— Weak Consistency, Processor Consistency, Release
Consistency, Lazy Release Consistency

— All work just fine for data-race-free programs

— But when there are data races,
more relaxed models = weirder program behavior

Georgia College of
Tegch Compuitfing

Data Race?

» Two concurrent accesses to a shared
location, at least one of them for writing.

— BUGH
Thread 1 Thread 2

X++ \ T=Y
=2 =X

Georgia College of
Tegch ConppPUitine

