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•  If memory takes a long time, start 
accessing earlier 

Load 

L1 L2 

Data 

DRAM 

Total Load-to-Use Latency 

Prefetch Data Load 

Much improved Load-to-Use Latency 

Somewhat improved Latency 

May cause resource 
contention due to 

extra cache/DRAM 
activity 



•  Three basic questions  
– What to prefetch? 
– When to prefetch? 
– Where to put?  

•  Two approaches  
– Software prefetching  

•  Compiler or programmer decides 

– Hardware prefetching 
•  Hardware decides  
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A 

C B 
R1 = [R2] 

R3 = R1+4 

(Cache missing 
instruction in red) 

A 

C B 
R3 = R1+4 

R1 = [R2] 

Hopefully the load miss 
is serviced by the time 
we get to the consumer 

R1 = R1- 1 R1 = R1- 1 

Reordering can 
mess up your 

code A 

C B 
R1 = [R2] 

R3 = R1+4 

R0 = [R2] 

Using a prefetch instruction 
(or load to $zero) can help 

to avoid problems with 
data dependencies 



  

•  Two flavors: register prefetch and cache prefetch 
•  Each flavor can be faulting or non-faulting 

–  If address bad, does it create exceptions? 

•  Faulting register prefetch is binding 
–  It is a normal load, address must be OK, uses register 

•  Not faulting cache prefetch is non-binding 
–  If address bad, becomes a NOP 
–  Does not affect register state 
–  Has more overhead (load still there), 

ISA change (prefetch instruction), 
complicates cache (prefetches and loads different) 



  

•  Predict future misses and get data into 
cache 
–  If access does happen, we have a hit now 

(or a partial miss, if data is on the way) 
–  If access does not happen, cache pollution 

(replaced other data with junk we don’t need) 
•  To avoid pollution, prefetch buffers 

– Pollution a big problem for small caches 
– Have a small separate buffer for prefetches 
– How big? 

•  Use 2nd level cache as a prefetch buffer.  



•  Review: 
– DRAM scheduling  
– Prefetch  

•  Outline 
– How to insert prefetch requests 
– Software prefetch mechanisms  
– Hardware prefetching algorithms   

  



•  Intrinsics  
– Programmers can insert “assembly like 

instructions” in a high level source code.  
– One intrinsic is usually translated into one 

assembly code 

  Data prefetch , VanderWiel & Lilja 



for ( i =0 ; i < N; i++)  
ip = ip+a[i]*b[i];  

  

No prefetching 

for ( i =0 ; i < N; i++) 
{  
fetch (&a[i+1]);  
fetch (&b[i+1]); 
ip = ip+a[i]*b[i];  
} 
Simple prefetching 
 

Cons: multiple requests for the same cache block 
No prefetching for a[0], b[0]  

Limitations?  

Data prefetch , VanderWiel & Lilja 



•  Benefit: one request for each cache block  
– Still missing a[0], b[0] 

  

for ( i =0 ; i < N; i+=4) {  
fetch (&a[i+4]);  
fetch (&b[i+4]); 
ip = ip+a[i]*b[i];  
ip = ip+a[i+1]*b[i+1];  
ip = ip+a[i+2]*b[i+2];  
ip = ip+a[i+3]*b[i+3];  
} 

Data prefetch , VanderWiel & Lilja 



  

fetch (&a[0]);  
fetch (&b[0]); 

for( i =0 ; i < N-4; i+=4) {  
fetch (&a[i+4]);  
fetch (&b[i+4]); 
ip = ip+a[i]*b[i];  
ip = ip+a[i+1]*b[i+1];  
ip = ip+a[i+2]*b[i+2];  
ip = ip+a[i+3]*b[i+3];  
} 
for (; i <n; i++) 

 ip= ip+a[i]*b[i] 

 

Data prefetch , VanderWiel & Lilja 



•  How early prefetch?  
–  One iteration is enough?  
–  Memory latency and amount of computation between 

memory accesses  
–  Prefetch distance (      ) 

–  l: the average memory latency (measured in cycle) 
–  s: the estimated cycle time of the shortest possible 

execution path through one loop iteration 

  Data prefetch , VanderWiel & Lilja 

⎥⎥

⎤
⎢⎢

⎡=
s
l

δ

δ



•  If L/C= 4 
–  We must prefetch 4 elements ahead 

•  Problem: Memory latency vary at run-time 
•  Why? And so?  

  

for( i =0 ; i < N-4; i+=4) {  
fetch (&a[i+16]);  
fetch (&b[i+16); 
ip = ip+a[i]*b[i];  
ip = ip+a[i+1]*b[i+1];  
ip = ip+a[i+2]*b[i+2];  
ip = ip+a[i+3]*b[i+3];  
} 

Loading an element 

Computation 

L 



for (i=1; i<N; i++) { 
listNode *p = listHead[i]; 
while(p){ 

   work(p->data); 
       p=p->next;  
       }  
} 

  Compiler-based prefetching for recursive data structures (Luk & Mowry, 96) 

ni ni+1 ni+2 ni+3 … 

Currently visiting  
Want to prefetch 

Loading a node 

L 

Work 

W 

If  L=3W?  



for (i=1; i<N; i++) { 
listNode *p = listHead[i]; 
while(p){ 
prefetch ((p->next->next-

>next) 
  work(p->data); 

        p=p->next;  
       }  
} 

  Compiler-based prefetching for recursive data structures (Luk & Mowry, 96) 

ni 

ni+1 

ni+2 

ni+3 

Prefetch ni+3 

W(ni) 

W(ni+1) 

W(nij2 

W(ni+3) 



•  # of useful prefetch: # of prefetched block 
that will be used by demand loads  

•  Accuracy = # of useful prefetch/total # of 
prefetch 

•  Coverage = # of useful prefetch/total # of 
cache misses  

•  Timeliness: How timely prefetch cache 
blocks  

 

  



•  Compiler or programmer need to insert 
– Usually limit to loops  

•  Prefetch instruction fetch/execution 
overhead  

•  Code expansion 
•  Static decision: Cache miss behavior 

needs to be predicted at static time 
– Cache sizes vary machine by machine 
– Today’s processors; cores share caches.  

  Data prefetch , VanderWiel & Lilja 



Please insert prefetch requests 
for (i = 0; i < reg->size; i++) { 

 if (reg->node[i].state & cond…)  
         …. 
} 
for (i = 0; i < reg->size; i++) { 

 PREFETCH(reg->node[i+D]) 
 if (reg->node[i].state & cond…)  

         …. 
} 

 

  

Lee et al. When prefetching works, When it doesn’t and why  



// pbeampp.c (mcf) 
for (i=2, next=0; i<=B && i<=basket_size; i++) {  

 arc = perm[i]->a;  
 red_cost = arc->cost - arc->tail->potential + arc->head->potential; ...  

} 
 
for (i=2, next=0; i<=B && i<=basket_size; i++) {  

 PREFETCH(perm[i+N]->a->cost);  
 PREFETCH(perm[i+N]->a->tail->potential);  
 PREFETCH(perm[i+N]->a->head->potential);  
 arc = perm[i]->a;  
 red_cost = arc->cost - arc->tail->potential + arc->head->potential; ...  

} 
 

  

Lee et al. When prefetching works, When it doesn’t and why  



for (ii = 0; ii < 8196; ii++) { 
 PREFETCH(a[ii+D]); 
 for (jj = 0; jj < 128; jj++){ 
 PREFETCH(b[ii+D]); 
 if (cond1)  
 c[ii] = a[ii]+b[jj]; 
 } 

} 
Definition of useful: A block is requested by demand later (anytime)  
Accuracy of A:  

 Coverage = (8196-100)*0.6/(8196)*0.6 
 Accuracy = (8196-100)*0.6/(8196-100) 

Accuracy of B  
 Coverage = (128-100)*0.6/(128)*0.6 
 Accuracy = (128-100)*0.6/(128-100) 
     

 
 
 
 

  

Cache size: 8KB 
D = 100; 
each instruction takes 1 cycle (when cache hit) 
Data type: 2B, cache block size 8B 
Memory latency: fixed 100.   
The probability of satisfying cond1 = 65%,   
Prefetch accuracy and coverage 
Write-allocation policy  
 



for (ii = 0; ii < 8196; ii++) { 
 PREFETCH(a[ii+D]); 
 for (jj = 0; jj < 128; jj++){ 
 PREFETCH(b[ii+D]); 
 if (cond1)  
 c[ii] = a[ii]+b[jj]; 
 } 

} 
•  How many useuless prefetch requests for A.  

–  (8196)-100)*0.4+ 100 + (8196-100)*0.6*3/4 requests are useless   

•  The cost of redundant requests are not so high. Why? 
•  Requests will be merged in the MSHR: only additional instructions  
•  But B? 
•  8KB/2B: 4*1024 elements: 1024*4/3 ~= 1.5K à B can fit in the cache 
•  128*8195 + (128-100)*0.4 + 100 + (128-100)*0.6*3/4 requests are 

useless  

     

 
 
 
 

  

Cache size: 8KB 
D = 100; 
each instruction takes 1 cycle (when cache hit) 
Data type: 2B, cache block size 8B 
Memory latency: fixed 100.   
The probability of satisfying cond1 = 65%,   
Prefetch accuracy and coverage 
Write-allocation policy  
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DRAM 

CPU 

HW 
Prefetcher 

Hardware 
monitors miss 

traffic to DRAM 

Depending on prefetch 
algorithm/miss patterns, 

prefetcher injects 
additional memory 

requests 

Cannot be overly aggressive 
since prefetches may contend 

for memory bandwidth, and 
may pollute the cache (evict 

other useful cache lines) 



  

•  Hardware prefetch address = 

   = func(demand memory addresses, pc, memory value, old memory 
address histories,  etc..) 

 
Different prefetchers have different algorithms  

 looking at only demand memory addresses? : stream, stride 
     looking at PC addresses or not  
     looking at memory values? Content based prefetching 

 old memory address histories? Markov prefetching 
 
 
  



•  Miss address streams  
– 1, 2, 3, 4 …. 
– Prefetch 5, 6, 7  
– Stream prefetch 

•  Miss address streams  
– 1,4,7,10,… 
– Prefetch 13,16,19,… 
– Stride prefetch 

  



•  Instructions are sequential.  
•  Easy to predict.  
•  First implemented 
•  Next line prefetcher ( one block ahead 

prefetcher) 
– Very simple, if a request for cache line X goes 

to DRAM, also request X+1 
•  FPM DRAM already will have the correct page open for the 

request for X, so X+1 will likely be available in the row buffer 
•  Can optimize by doing Next-Line-Unless-Crossing-A-Page-

Boundary prefetching 

  Data prefetch , VanderWiel & Lilja 



•  Jouppi ‘90 
•  K prefetched blocks à FIFO stream buffer  
•  As each buffer entry is referenced 

– Move it to cache 
– Prefetch a new block to stream buffer 
– Prefetcher buffer hit! à prefetch the next block 

•  Avoid cache pollution 

  Data prefetch , VanderWiel & Lilja 



•  Degree of prefetching 
– For one cache miss, how many do we 

prefetch? 
– E.g.) addr 0x01:  à 0x03, 0x04, 0x05, 0x06 

•  Prefetch distance 
– How far do we prefetch?  

  



  

Different prefetch degree for different memory hierarchy 
Initial distance to hide memory latency 



Source code level  
for ( ii = 0; ii < N; ii++)  
Sum +=b[ii];   
 
Memory addresses 
0x100 0x104 0x108 0x10b ….  
  

  

4 4 4 

PC effective address  

instruction tag previous address stride state 

-!

+!

prefetch address  

Per PC information 
 
Chen-Baer ‘91 

Organization of RPT 



•  PC information can easily differentiate 
different address streams 

•  How soon can we know PC addresses?  

  



•  Markov prefetching forms address correlations  
–  Joseph and Grunwald (ISCA ‘97) 

•  Uses global memory addresses as states in the Markov 
graph 

•  Correlation Table approximates Markov graph 

B 
C 
B 

A 

B 

C 

Correlation Table 
1st predict. 2nd predict. 

  miss  
address 

A  B  C  A  B  C  B  C . . . 

A B 

C 

1

.5 

Miss Address Stream 

1
.5 

Markov Graph 

A 

Slides from Nesbit’s HPCA04 talk 



•  History based prefetching 
– à required space for storing history 
– How much space? 
–  Is it still good with a large L2 cache?  

•  What kind of data structures are good for 
this type? 
– Pointer, link list 

  



•  Unified frame for different 
prefetching scheme 

•  Holds miss address history in 
FIFO order 

•  Linked lists within GHB 
connect related addresses 
–  Same static load 
–  Same global miss address 
–  Same global delta 

Global History Buffer 

miss addresses 

Index Table 

FI
 

Load PC 

§  Linked list walk is short 
compared with L2 miss 
latency 

§  Nesbit and smith ‘04 

FO
 

Slides from Nesbit’s HPCA04 talk 



•  Pointer prefetching scheme  
•  Look at data of memory  
•  Search for data which might be memory 

addresses  
– Cooksey et al. ‘02 
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x40373551 

L2 DRAM … … 

= = = = = = = = 

[ 31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] 

x80011100 

Generate Prefetch 
 

Virtual Address Predictor 

X80022220 

22220 X800 

11100 x800 

Slide from Ebrahimi’s HPCA09 talk 



•  Speculative 
execution for 
prefetching 
–  High accuracy and 

good coverage 
–  No architectural 

changes 
– Multi-processors  

•  SMT (later lecture)  

 

  
Collins et al. MICRO 2001 

for (i=1; i<N; i++) { 
listNode *p = listHead[i]; 
while(p){ 
work(p->data); 

        p=p->next;  
       }  
} 
  original code 

for (i=1; i<N; i++) { 
listNode *p = listHead[i]; 
while(p){ 
p=p->next;  

       }  
} 
 speculative execution code 



•  S/W prefetching 
– Explicit prefetching requests  
– Prefetch distance, avoid requesting the same 

cache block (loop unrolling) 
•  H/W prefetching 

– Observe cache miss address streams (stream, 
stride, markov, GHB) 

– Observe data in the load (content-directed 
prefetching) 

– Pre-execution 
  



Runahead Execution Mutlu et al. HPCA 03 

•  A technique to obtain the memory-level parallelism benefits of a large 
instruction window 

•  When the oldest instruction is an L2 miss: 
–  Checkpoint architectural state and enter runahead mode 

•  In runahead mode: 
–  Instructions are speculatively pre-executed  
–  The purpose of pre-execution is to generate prefetches 
–  L2-miss dependent instructions are marked INV and dropped 

•  Runahead mode ends when the original L2 miss returns 
–  Checkpoint is restored and normal execution resumes  



Compute 

Compute 

Load 1 Miss 

Miss 1 

Stall Compute 

Load 2 Miss 

Miss 2 

Stall 

Load 1 Miss 

Runahead 

Load 2 Miss Load 2 Hit 

Miss 1 

Miss 2 

Compute 

Load 1 Hit 

Saved Cycles 

Small Window: 

Runahead: 

Runahead Execution Mutlu etal. HPCA 03 



•  Overhead of software prefetching  
– Extra instructions  
– Cache pollution 
– Bandwidth consumption  

•  Overhead of hardware prefetching 
–  Transistors (can we use that space for cache ?) 

– Cache pollution 
– Bandwidth consumption 

  Data prefetch , VanderWiel & Lilja 


