
Fall 2011
Prof. Hyesoon Kim

Thanks to Prof. Loh & Prof. Prvulovic

Reading: Data prefetch mechanisms, Steven P. Vanderwiel, David
J. Lilja, ACM Computing Surveys, Vol. 32 , Issue 2 (June 2000)

3

•  If memory takes a long time, start
accessing earlier

Load

L1 L2

Data

DRAM

Total Load-to-Use Latency

Prefetch Data Load

Much improved Load-to-Use Latency

Somewhat improved Latency

May cause resource
contention due to

extra cache/DRAM
activity

•  Three basic questions
– What to prefetch?
– When to prefetch?
– Where to put?

•  Two approaches
– Software prefetching

•  Compiler or programmer decides

– Hardware prefetching
•  Hardware decides

5

A

C B
R1 = [R2]

R3 = R1+4

(Cache missing
instruction in red)

A

C B
R3 = R1+4

R1 = [R2]

Hopefully the load miss
is serviced by the time
we get to the consumer

R1 = R1- 1 R1 = R1- 1

Reordering can
mess up your

code A

C B
R1 = [R2]

R3 = R1+4

R0 = [R2]

Using a prefetch instruction
(or load to $zero) can help

to avoid problems with
data dependencies

•  Two flavors: register prefetch and cache prefetch
•  Each flavor can be faulting or non-faulting

–  If address bad, does it create exceptions?

•  Faulting register prefetch is binding
–  It is a normal load, address must be OK, uses register

•  Not faulting cache prefetch is non-binding
–  If address bad, becomes a NOP
–  Does not affect register state
–  Has more overhead (load still there),

ISA change (prefetch instruction),
complicates cache (prefetches and loads different)

•  Predict future misses and get data into
cache
–  If access does happen, we have a hit now

(or a partial miss, if data is on the way)
–  If access does not happen, cache pollution

(replaced other data with junk we don’t need)
•  To avoid pollution, prefetch buffers

– Pollution a big problem for small caches
– Have a small separate buffer for prefetches
– How big?

•  Use 2nd level cache as a prefetch buffer.

•  Review:
– DRAM scheduling
– Prefetch

•  Outline
– How to insert prefetch requests
– Software prefetch mechanisms
– Hardware prefetching algorithms

•  Intrinsics
– Programmers can insert “assembly like

instructions” in a high level source code.
– One intrinsic is usually translated into one

assembly code

 Data prefetch , VanderWiel & Lilja

for (i =0 ; i < N; i++)
ip = ip+a[i]*b[i];

No prefetching

for (i =0 ; i < N; i++)
{
fetch (&a[i+1]);
fetch (&b[i+1]);
ip = ip+a[i]*b[i];
}
Simple prefetching

Cons: multiple requests for the same cache block
No prefetching for a[0], b[0]

Limitations?

Data prefetch , VanderWiel & Lilja

•  Benefit: one request for each cache block
– Still missing a[0], b[0]

for (i =0 ; i < N; i+=4) {
fetch (&a[i+4]);
fetch (&b[i+4]);
ip = ip+a[i]*b[i];
ip = ip+a[i+1]*b[i+1];
ip = ip+a[i+2]*b[i+2];
ip = ip+a[i+3]*b[i+3];
}

Data prefetch , VanderWiel & Lilja

fetch (&a[0]);
fetch (&b[0]);

for(i =0 ; i < N-4; i+=4) {
fetch (&a[i+4]);
fetch (&b[i+4]);
ip = ip+a[i]*b[i];
ip = ip+a[i+1]*b[i+1];
ip = ip+a[i+2]*b[i+2];
ip = ip+a[i+3]*b[i+3];
}
for (; i <n; i++)

 ip= ip+a[i]*b[i]

Data prefetch , VanderWiel & Lilja

•  How early prefetch?
–  One iteration is enough?
–  Memory latency and amount of computation between

memory accesses
–  Prefetch distance ()

–  l: the average memory latency (measured in cycle)
–  s: the estimated cycle time of the shortest possible

execution path through one loop iteration

 Data prefetch , VanderWiel & Lilja

⎥⎥

⎤
⎢⎢

⎡=
s
l

δ

δ

•  If L/C= 4
–  We must prefetch 4 elements ahead

•  Problem: Memory latency vary at run-time
•  Why? And so?

for(i =0 ; i < N-4; i+=4) {
fetch (&a[i+16]);
fetch (&b[i+16);
ip = ip+a[i]*b[i];
ip = ip+a[i+1]*b[i+1];
ip = ip+a[i+2]*b[i+2];
ip = ip+a[i+3]*b[i+3];
}

Loading an element

Computation

L

for (i=1; i<N; i++) {
listNode *p = listHead[i];
while(p){

 work(p->data);
 p=p->next;
 }
}

 Compiler-based prefetching for recursive data structures (Luk & Mowry, 96)

ni ni+1 ni+2 ni+3 …

Currently visiting
Want to prefetch

Loading a node

L

Work

W

If L=3W?

for (i=1; i<N; i++) {
listNode *p = listHead[i];
while(p){
prefetch ((p->next->next-

>next)
 work(p->data);

 p=p->next;
 }
}

 Compiler-based prefetching for recursive data structures (Luk & Mowry, 96)

ni

ni+1

ni+2

ni+3

Prefetch ni+3

W(ni)

W(ni+1)

W(nij2

W(ni+3)

•  # of useful prefetch: # of prefetched block
that will be used by demand loads

•  Accuracy = # of useful prefetch/total # of
prefetch

•  Coverage = # of useful prefetch/total # of
cache misses

•  Timeliness: How timely prefetch cache
blocks

•  Compiler or programmer need to insert
– Usually limit to loops

•  Prefetch instruction fetch/execution
overhead

•  Code expansion
•  Static decision: Cache miss behavior

needs to be predicted at static time
– Cache sizes vary machine by machine
– Today’s processors; cores share caches.

 Data prefetch , VanderWiel & Lilja

Please insert prefetch requests
for (i = 0; i < reg->size; i++) {

 if (reg->node[i].state & cond…)
 ….
}
for (i = 0; i < reg->size; i++) {

 PREFETCH(reg->node[i+D])
 if (reg->node[i].state & cond…)

 ….
}

Lee et al. When prefetching works, When it doesn’t and why

// pbeampp.c (mcf)
for (i=2, next=0; i<=B && i<=basket_size; i++) {

 arc = perm[i]->a;
 red_cost = arc->cost - arc->tail->potential + arc->head->potential; ...

}

for (i=2, next=0; i<=B && i<=basket_size; i++) {

 PREFETCH(perm[i+N]->a->cost);
 PREFETCH(perm[i+N]->a->tail->potential);
 PREFETCH(perm[i+N]->a->head->potential);
 arc = perm[i]->a;
 red_cost = arc->cost - arc->tail->potential + arc->head->potential; ...

}

Lee et al. When prefetching works, When it doesn’t and why

for (ii = 0; ii < 8196; ii++) {
 PREFETCH(a[ii+D]);
 for (jj = 0; jj < 128; jj++){
 PREFETCH(b[ii+D]);
 if (cond1)
 c[ii] = a[ii]+b[jj];
 }

}
Definition of useful: A block is requested by demand later (anytime)
Accuracy of A:

 Coverage = (8196-100)*0.6/(8196)*0.6
 Accuracy = (8196-100)*0.6/(8196-100)

Accuracy of B
 Coverage = (128-100)*0.6/(128)*0.6
 Accuracy = (128-100)*0.6/(128-100)

Cache size: 8KB
D = 100;
each instruction takes 1 cycle (when cache hit)
Data type: 2B, cache block size 8B
Memory latency: fixed 100.
The probability of satisfying cond1 = 65%,
Prefetch accuracy and coverage
Write-allocation policy

for (ii = 0; ii < 8196; ii++) {
 PREFETCH(a[ii+D]);
 for (jj = 0; jj < 128; jj++){
 PREFETCH(b[ii+D]);
 if (cond1)
 c[ii] = a[ii]+b[jj];
 }

}
•  How many useuless prefetch requests for A.

–  (8196)-100)*0.4+ 100 + (8196-100)*0.6*3/4 requests are useless

•  The cost of redundant requests are not so high. Why?
•  Requests will be merged in the MSHR: only additional instructions
•  But B?
•  8KB/2B: 4*1024 elements: 1024*4/3 ~= 1.5K à B can fit in the cache
•  128*8195 + (128-100)*0.4 + 100 + (128-100)*0.6*3/4 requests are

useless

Cache size: 8KB
D = 100;
each instruction takes 1 cycle (when cache hit)
Data type: 2B, cache block size 8B
Memory latency: fixed 100.
The probability of satisfying cond1 = 65%,
Prefetch accuracy and coverage
Write-allocation policy

23

DRAM

CPU

HW
Prefetcher

Hardware
monitors miss

traffic to DRAM

Depending on prefetch
algorithm/miss patterns,

prefetcher injects
additional memory

requests

Cannot be overly aggressive
since prefetches may contend

for memory bandwidth, and
may pollute the cache (evict

other useful cache lines)

•  Hardware prefetch address =

 = func(demand memory addresses, pc, memory value, old memory
address histories, etc..)

Different prefetchers have different algorithms

 looking at only demand memory addresses? : stream, stride
 looking at PC addresses or not
 looking at memory values? Content based prefetching

 old memory address histories? Markov prefetching

•  Miss address streams
– 1, 2, 3, 4 ….
– Prefetch 5, 6, 7
– Stream prefetch

•  Miss address streams
– 1,4,7,10,…
– Prefetch 13,16,19,…
– Stride prefetch

•  Instructions are sequential.
•  Easy to predict.
•  First implemented
•  Next line prefetcher (one block ahead

prefetcher)
– Very simple, if a request for cache line X goes

to DRAM, also request X+1
•  FPM DRAM already will have the correct page open for the

request for X, so X+1 will likely be available in the row buffer
•  Can optimize by doing Next-Line-Unless-Crossing-A-Page-

Boundary prefetching

 Data prefetch , VanderWiel & Lilja

•  Jouppi ‘90
•  K prefetched blocks à FIFO stream buffer
•  As each buffer entry is referenced

– Move it to cache
– Prefetch a new block to stream buffer
– Prefetcher buffer hit! à prefetch the next block

•  Avoid cache pollution

 Data prefetch , VanderWiel & Lilja

•  Degree of prefetching
– For one cache miss, how many do we

prefetch?
– E.g.) addr 0x01: à 0x03, 0x04, 0x05, 0x06

•  Prefetch distance
– How far do we prefetch?

Different prefetch degree for different memory hierarchy
Initial distance to hide memory latency

Source code level
for (ii = 0; ii < N; ii++)
Sum +=b[ii];

Memory addresses
0x100 0x104 0x108 0x10b ….

4 4 4

PC effective address

instruction tag previous address stride state

-!

+!

prefetch address

Per PC information

Chen-Baer ‘91

Organization of RPT

•  PC information can easily differentiate
different address streams

•  How soon can we know PC addresses?

•  Markov prefetching forms address correlations
–  Joseph and Grunwald (ISCA ‘97)

•  Uses global memory addresses as states in the Markov
graph

•  Correlation Table approximates Markov graph

B
C
B

A

B

C

Correlation Table
1st predict. 2nd predict.

 miss
address

A B C A B C B C . . .

A B

C

1

.5

Miss Address Stream

1
.5

Markov Graph

A

Slides from Nesbit’s HPCA04 talk

•  History based prefetching
– à required space for storing history
– How much space?
–  Is it still good with a large L2 cache?

•  What kind of data structures are good for
this type?
– Pointer, link list

•  Unified frame for different
prefetching scheme

•  Holds miss address history in
FIFO order

•  Linked lists within GHB
connect related addresses
–  Same static load
–  Same global miss address
–  Same global delta

Global History Buffer

miss addresses

Index Table

FI

Load PC

§  Linked list walk is short
compared with L2 miss
latency

§  Nesbit and smith ‘04

FO

Slides from Nesbit’s HPCA04 talk

•  Pointer prefetching scheme
•  Look at data of memory
•  Search for data which might be memory

addresses
– Cooksey et al. ‘02

36

x40373551

L2 DRAM … …

= = = = = = = =

[31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

x80011100

Generate Prefetch

Virtual Address Predictor

X80022220

22220 X800

11100 x800

Slide from Ebrahimi’s HPCA09 talk

•  Speculative
execution for
prefetching
–  High accuracy and

good coverage
–  No architectural

changes
– Multi-processors

•  SMT (later lecture)

Collins et al. MICRO 2001

for (i=1; i<N; i++) {
listNode *p = listHead[i];
while(p){
work(p->data);

 p=p->next;
 }
}
 original code

for (i=1; i<N; i++) {
listNode *p = listHead[i];
while(p){
p=p->next;

 }
}
 speculative execution code

•  S/W prefetching
– Explicit prefetching requests
– Prefetch distance, avoid requesting the same

cache block (loop unrolling)
•  H/W prefetching

– Observe cache miss address streams (stream,
stride, markov, GHB)

– Observe data in the load (content-directed
prefetching)

– Pre-execution

Runahead Execution Mutlu et al. HPCA 03

•  A technique to obtain the memory-level parallelism benefits of a large
instruction window

•  When the oldest instruction is an L2 miss:
–  Checkpoint architectural state and enter runahead mode

•  In runahead mode:
–  Instructions are speculatively pre-executed
–  The purpose of pre-execution is to generate prefetches
–  L2-miss dependent instructions are marked INV and dropped

•  Runahead mode ends when the original L2 miss returns
–  Checkpoint is restored and normal execution resumes

Compute

Compute

Load 1 Miss

Miss 1

Stall Compute

Load 2 Miss

Miss 2

Stall

Load 1 Miss

Runahead

Load 2 Miss Load 2 Hit

Miss 1

Miss 2

Compute

Load 1 Hit

Saved Cycles

Small Window:

Runahead:

Runahead Execution Mutlu etal. HPCA 03

•  Overhead of software prefetching
– Extra instructions
– Cache pollution
– Bandwidth consumption

•  Overhead of hardware prefetching
–  Transistors (can we use that space for cache ?)

– Cache pollution
– Bandwidth consumption

 Data prefetch , VanderWiel & Lilja

