Fall 2011
Prof. Hyesoon Kim

Georgia Cadllege of
Tech Computing

Thanks to Prof. Loh & Prof. Prvulovic !

PREDICATED EXECUTION

Georgia GCadllege of
Tegch ConppPUitine

Predicated Instructions

 |nstructions are predicated

-> Depending on the predicate value the
iInstruction is valid or becomes a No-op.

(p) add R1 =R2 + R3

TRUE R1<-R2 + R3
FALSE No op

Georgia GCadllege of
Tegch ConppPUitine

lif-conversion
If (a==0){
b =1; Setp
]
else { > (p) b =1
b=0;

Georgia of
Tech Compuiing

Branch Prediction vs. Predicd
Execution

(normal branch code) (predicated code)

A
A
if (cond) { T/ \\’:‘
b=0; B
} C B
else { \/ C
b=1; D 5
} A
p1 = (cond) A
5 brantc);h1p1,TARGET) p,] — (Cond)
mov b,
| impsoin i ('p1) mov b, 1
TARGET:
mov b, 0 (p1) mov b, 0

Georgia of
Tech Compuiing

= B
Benefit of Predicated Execution
* Eliminate branch mispredictions
— Convert control dependency to data
dependency

* Increase compiler’'s optimization
opportunities

— Trace scheduling, bigger basic blocks,
iInstruction re-ordering

— SIMD (Nvidia G80), vector processing

Georgia College of
Tegch Compuitfing

Limitations

* More machine resources
— Fetch more instructions
— Occupy useful resources (ROB, scheduler..)

* |SA should support predicated execution
— (ISA), predicate registers
— X86: c-move

* In OOQO, supporting predicated execution is
harder

— Three input sources

— Dependent instructions cannof be executed.
Tegch m‘@

C-move

» Conditional move
— The simplest form of predicated execution
— Works only for registers not for memory
— E.g.) CMOVA r16, r/m16 (move if CF=0 and
ZF-0)
* Full predication support
— Only |1A-64 (later lecture)

Georgia College of
Tegch Compuitfing

Think think think... (Research

* When to use predicated execution?
— Hard to predict?
— Short branches?
— Compiler optimization benefit?

 Who should decide it?

* Applicable to all branches?
— Loop, function calls, indirect branches ...

Georgia College of
Tech Compuiing

STATIC INSTRUCTION
SCHEDULING

Georgia @@Ulogo
Tgh Coempurting

= [
Data-Dependence Stalls w/o OO0

* Multiple-Issue (Superscalar), but in-order

nstructions executing in same cycle cannot
nave RAW

_imits on WAW

Georgia College of
Tegch Compuitfing

Solutions: Static Exploitation of ILP

 Code Transformations

— Code scheduling, loop unrolling, tree height
reduction, trace scheduling

* VLIW

Georgia College of
Tegch ConppPUitine

»

Simple Loop Example

for (i=1000; i>0; i--)
X[i] = x[i] + s;

L

Assume:
Single-Issue

FP ALU - Store
Load DW - FP ALU

Branch

+2 cycles

Loop: L.D

FO#('“)
ADD.D F4\,QO,F2
SD F4N(R1)
DADDUI T',m #-8

BNE R1, R2, Loop

Loop: L.D

stall

+1 cycle stall
+1 CyC|e Sta”
S.D

; FO = array element
; add scalar in F2
; store result
; decrement pointer
; 8 bytes (per DW)
; branch R1 1= R2

FO,0(R1)

ADD.D F4,FO,F2

F4,0(R1)

DADDUI R1,R1,#-8

stall
BNE

R1, R2, Loop

Georgia College of
Tech | Compuitfing

Scheduled Loop Body

Assume: Loop: LD FO0,0(R1)
FPALU > Store +2 cycles stall >
Load DW - FP ALU +1 cycle ADD.D F4.E0F2

Branch +1 cycle stall
stall
S.D F4,0(R1)

hoistthe add __ pADDUIRT,R1,4-8
stall >
BNE R1, R2, Loop

Loop: L.D FO,0(R1)
DADDUIR1,R1,#-8
ADD.D F4,FO,F2
stall
stall
S.D F4,0(R1)
BNE R1, R2, Loop

Georgia College of
Tegch ConppPUitine

i

Scheduling for Multiple-Ilssue

A:R1T=R2+R3 (A A:R1=R2+R3
B:R4=R1-R5 | C’: R8 = LOAD O[R7]
C:R1=LOAD QO[R7} B C B: R4 =R1-R5
D: R2=R1 + R6 E:R9=R3+R5
E: R6=R3+R5 D:R2=R8+R6 (A (C
F: R5 = R6 — R4 F:R5=R9-R4 |

(E 'B

i &

A:R1=R2+R3 P i
C: R1 =40AD O[RZ
B: R4 -
E:- R6 Same functionality,
D R?2 = | no stalls
F: R5 =] X,

D Georgia GCadllege of
Tegch ConppPUitine

=
Interaction with RegAlloc and Branches

» Largely limited by architected registers

— weird interactions with register allocation ...
could possibly cause more spills/fills

« Code motion may be limited:

R#=R2+R3 ,
8 Need to allocate registers
BEQZ R9 differently
/\ Causes unnecessary
execution of LOAD when
branch goes left
RS = zg —R4 @= LOAD 0O[R6] (AKA Dynamic Dead Code)

Georgia College of
Tegch Compuitfing

.
Sidetrack: Register Spilis/Fills

* Register allocations: start with high-level
assignment. Using Psuedo registers.

— Psuedo reqisters - ISA register (# of registers
IS bounded

* Register spill/ill
— Not enough registers: “spill” to memory
— Need spilled contents: “fill” from memory

« Want to minimize fills and spills

Georgia College of
Tegch Compuitfing

Goal of MultiHssue Scheduling

* Place as many independent instructions Iin
sequence

—“as many” - up to execution bandwidth

* Don’t need 7 independent insts on a 3-wide
machine

— Avoid pipeline stalls

* If compiler is really good, we should be
able to get high performance on an in-order
superscalar processor

— In-order superscalar provides execution B/\W,
compiler provides dependence scheduling

Georgia GCadllege of
Tegch Compuiing

Why this Should Work

« Compiler has “all the time in the world” to
analyze instructions

— Hardware mustdo itin < 1ns

« Compiler can “see” a lot more

— Compiler can do complex inter-procedural
analysis, understand high-level behavior of
code and programming language

— Hardware can only see a small number of
iInstructions at a time: increase hardware
complexity

Georgia GCadllege of
Tegch Compuiing

Why this Might not Work

« Compiler has limited access to dynamic
information
— Profile-based information
— Perhaps none at all, or not representative

— Ex. Branch T in 18t %2 of program, NT in 2" %2, looks
like 50-50 branch in profile

— No program phase, control path

« Compiler has to generate static code

— Cannot react to dynamic events like data cache
misses

Georgia College of
Tegch Compuitfing

Trace

Trace

— Sequence of instructions
 Including branches
* Not including loops

B1,B3,B4,B5,B7 is the most

frequently executed path
— Three traces in this path
 B1,B3
- B4
- B5,B7

B1
B3
B2 I
B4
|
B5
B6
B7

Georgia College of
Tech | Compuitfing

=

7=
l ¥
$4

Trace Selection & Trace Compation

B1
B3
B2 W
B4
|
B5
B6
B7

Add compensation
code, if needed

J

[\\\X _____ |

BT |
. Instructions are
B3 | | reordered

“"—— inside the trace .
Vaniai '£____—\\

Georgia College of
Tegch ConppPUitine

Trace Scheduling

 Basic Idea

— Increase ILP along the important execution
path by removing constraints due to the
unimportant path.

Code motion A N
B1 to increase | B1 | R1<-R2+R3
N ILP Fix up code |
| B3 |
B3 | R1<-R2+R3 e — ,,f'
B2 | ‘:
— /.

Georgia Cdllege of
Tech | Compuitfing

i 772

a5

37 [
- o)

Trace Scheduling

* Works on all code, not just loops
— Take an execution trace of the common case
— Schedule code as if it had no branches
— Check branch condition when convenient
— If mispredicted, clean up the mess

* How do we find the "common case”
— Program analysis or profiling

Georgia GCadllege of
Tegch ConppPUitine

Trace Scheduling Example

a=log (x) ; a=log(x) ; fixit:
i1f (b>0.01) { c=a/b; c=0;
c=a/b; y=sin(c); y=0; // sin(0)
lelse{ [N) if(b<=0.01)
c=0; goto fixit;
}
y=sin(c); Now we have larger basic block

_ for our scheduling and optimizations
Suppose profile says

that b>0.01
90% of the time

Georgia GCadllege of
Tegch ConppPUitine

e

Pay Attention to Cost of Fixing

« Assume the code for b > 0.01
accounts for 80% of the time

« Optimized trace runs 15%
faster

By Amdahl’s Law:

Speedup =1/(0.2 +0.8%0.85)
=1.176

=+ 17.6% performance

But, fix-up code may cause the
remaining 20% of the time to
be even slower!

Assume fixup code is 30%
slower

Speedup = 1/(0.2*1.3 + 0.8*0.85)
= 1.110

Over 1/3 of the benefit removed!

Georgia College of
Tegch Compuitfing

Superblocks

* Superblock removes problems associated
with side entrances

» Superblock
— A trace which has no side entrances.

— Control may only enter from the top but may
leave at one or more exit points.

— Traces are identified using execution profile
information.

— Using tail duplication to eliminate side
entrances

Georgia GCadllege of
Tegch Compuiing

_ . = BE &=
Example of tail duplication.

——————————————————————————

|

: e et trace
A i i B

= superblock
C A B
D .| D

e e e e e e e e e e = =

Georgia GCadllege of
Tegch ConppPUitine

Superblock

* Enlarge a block size
— Loop unrolling
— Loop peeling

* Global code scheduling
* Code bloat?

Georgia College of
Tegch Compuitfing

Hyperblock Formation

A trace trace
| |
A A
B ° B
D
50‘V \50‘% C
E
D C E
E

Georgia GCadllege of
Tegch ConppPUitine

Hyperblock Formation & Scheduling

e

Hyperblock

- o oy,

N

—— e = o o = = =

- o oy,

Inst A
Inst B

i (p) Inst C :
| (Ip)instD |

Inst A
Inst B
Inst E

i (p) Inst C i
'l (p) InstD .

Inst E

Georgia College of
Tech

Computing

Hyperblock

* Hyperblock scheduling

— Combine basic blocks from multiple paths of
control (using if-conversion)

— For programs without heavily biased branches,
hyperblocks provide a more flexible framework

Georgia College of
Tegch Compuitfing

OTHER COMPILER
TECHNIQUES

Georgia @@Ulcgo
Tgh Coempurting

D= IR
Loop Unrolling

* Transforms an M-iteration loop into
a loop with M/N iterations

— We say that the loop has been unrolled N

times
for (i=0;i<100;i+=4) {
. - . 11 *=2 -
for (i=0;i<100;i++) [:::; afi]*=2;
1] *=2; af[i+l]*=2;
alilm=2s a[i+2]*=2;
a[i+3]*=2;

{ Some compilers can do this (gcc -funroll-loops)

Or you can do it manually (above)

Georgia GCadllege of
Tegch ConppPUitine

= I
Unrolling Often Not Enough

for (1=071<10071++) > prod*=ali];

prod*=a[1]; prod*=a[i+l];
}
Loop: 1D F0,0(Rl)'f:j Loop: LD FO,0(R1)
MUL F7,F7,F0 LD F1,8(R1)]
ADD R1,R1,8 MUL 1?7,}.-"7,}.-"0>
BNE R1l,R2,Loop MUL F7,F7,F1

ADD R1,R1,16
BNE R1,R2,Loop

* Need a lot of unrolling to hide load latency
* Muls also slow and critical

Georgia GCadllege of
Tegch ConppPUitine

s
Software Pipelining: The Idea

* |nstruction pipelining:
— Each stage performs different operation on a different
Instruction
« Stage 4 writes back instruction |
Stage 3 does memory access for instruction i+1
Stage 2 executes instruction i+2
Stage 1 decodes instruction i+3
Stage 0 fetches instruction i+4

» Software pipelining:

— Each instruction in the loop body executes operations
from different logical iterations of the loop

Georgia College of
Tegch Compuitfing

Software Pipelining

for (i=0,;1<100;i++)
sum+=a[i]*b[1];
 We want to
— Load ali] and b[i], then after some time
— Do the multiply, then after some time
— Do the add to sum

« Software pipeline “stages”
— Stage 1: Loads
— Stage 2: Multiply
— Stage 3: Add to sum

Georgia College of
Tech | Compuitfing

= R D
Software Pipelining

for (i=0;i<100;i++)

Assume;
sumt+=a[i] *b[i]; LOAD — 3 CPI
MUL — 3 CPI
l ADD — 1 CPI

for (i=0,;i<100;i++)

{
a0 = a[i]; b0 = b[i];
prod = a0 * bO;
sum += prod

}

Georgia Cdllege of
Tech Compuiing

= EE .
Software Pipelining

for (i=0,;1<100;i++) Assume:
sum+=a[i]*b[1i]; LOAD - 3 CPI
MUL — 3 CPI

l ADD — 1 CPI

for (i=0,;1<100;i+=2)

{
a0 = a[i]; b0 = b[1i];
al = a[i+l]; bl = b[i+1l];
prod0 = a0 * bO;
prodl = al * bl;
sum += prodO0
sum += prodl

Georgia GCadllege of
Tegch ConppPUitine

= EE .
Software Pipelining

for (i=0,;1<100;i++) Assume:
sum+=a[i]*b[1i]; LOAD - 3 CPI
MUL — 3 CPI

l ADD — 1 CPI

for (i=0,;1<100;i+=2)

{
a0 = a[i]; b0 = b[1i];
al = a[i+l]; bl = b[i+1l];
prod0 = a0 * bO;
prodl = al * bl;
sum += prodO0
sum += prodl

Georgia GCadllege of
Tegch ConppPUitine

= R D
Software Pipelining

for (i=0;i<100;i++)

Assume:
sum+=a[i]*b[1i]; LOAD - 3 CPI
MUL - 3 CPI
l ADD -1 CPI

prolog

p2=a[0]*b[0] ; } Start-up: Stages 1-2 for iter O
al=a[1];bl=b[1];) _ Stage 1 for iter 1

for (i=2;i<100;i++){ | . . G
sum+=p2 ; Pipeline: Stage 3 for iter i-2,
p2=al*bl; > kernel Stage 2 for iter i-1,
al=a[i] ;bl=b[i]; Stage 1 for

} -~ ter | |

sum+=p2; Finish-up: Stage 2 for it 98,

sum+=al*bl;

epilog Stages 2 and 3 for iter 99

Georgia GCadllege of
Tegch Conmpuiding

Bl
Why?

Original code pipelined code

LD | iteri-4| ST sT ST ST ST
MUL | iteri-3| [VADDS "ADD| ADD * (650\”‘5‘ ADD
ADD | iteri-2| ADD ADD AP 596”‘ ADD | ADD
ADD | iteri-1| = MUL MUI 5; MUL | MUL | MUL

ST |iteri | [NED

BB\ b b | LD LD

Cycle N N+1 N+2 N+3 N+4

Geor Ia @@ﬂl.'o@ﬂ“
g Comnmpuiding

Question ‘

Assume:
LOOP LD FO, 0 (R1) LOAD — 3 CPI
ADD F4, FO, F2 MUL — 3 CP!I
SD F4, 0 (R1) ADD -1 CPI

DADDUI R1, R1, #-8
BNE R1, R2, LOOP

Show a software-pipelined version of this loop. Assume that you have
infinite number of registers. Include start-up and clean-up code.

Georgia College of
Tegch Compuitfing

Answer

Georgia Cadllege of
Tech | Computing

Function Inlining

« Sort of like “unrolling” a function

« Similar benefits to loop unrolling: c=max(a,b).
— Remove function call overhead

 CALL/RETN (and possible branch }C=max(a,b);
mispreds) max(a.b)

« Argument/ret-val passing, stack
allocation, and associated spills/fills |f (a>=p) return a;

of caller/callee-save regs else return b; main()
— Larger block of instructions for } {
scheduling e
— If-conversion is possible If (a>=Db) c=a;
. else c =b
« Similar problems
— Increase regqister pressure If (a>=Db) c=a;
— Primarily code bloat else ¢ =b;
}

Georgia College of
Tegch ConppPUitine

ﬁ Al i
x
5 i
rhn

- »

.
Tree Height Reduction

» Shorten critical path(s) using associativity

ADD R6,R2,R3 ADD R6,R2,R3
ADD R7,R6,R4 ADD R7,R4,R5
ADD R8,R7,R5 ADD R8,R7,R6
Not all Math
ok operations
¥ 11 12 are associative!
12 > N/
' 13
13
R8=((R2+R3) +R4) +R5 R8=(R2+R3) + (R4+R5)

Georgia College of
Tegch ConppPUitine

VLIW

Georgia Cadllege of
Tech | Computing

=
Parallelism/Dependencies Explicit

» Compiler can do analysis to find
iIndependent instructions

— Rather than having Tomasulo-like hardware to
detect such instructions

* Directly communicate this to the HW

R1=R2+ R4=R5"
R3 R7

R1=R2+ R4=R5"
R3 R7

Register Renaming,

Tomasulo’s Algorithm, etc...

4

Yup, they're independent

Georgia College of
Tegch ConppPUitine

Static Instruction Scheduling

11

13

RN v

Georgia College of
Te%h | Compudng

VLIW

* VLIW =Very Long Instruction Word

IntOp1 | IntOp2 | MemOp 1 Mem Op 2 FPOp 1 FP Op 2

* Everything is statically scheduled
— All hardware resources exposed to compiler
— Compiler must figure out what to do and when to do it
— Get rid of complex scheduling hardware
— More room for “useful” resources

« Examples:
— Texas Instruments DSP processors

— Transmeta’s processors
— Intel I1A-64 (EPIC)

Georgia GCadllege of
Tegch Compuiing

Why is VLIW good?

» Let the compiler do all of the hard work

— Expose functional units, bypasses, latencies,
etc.

— Compiler can do its best to schedule code well
— Compiler has plenty of time to do analysis
— Compiler has larger scope (view of the
program)
* Works extremely well on regular codes
— Media Processing, Scientific, DSP, etc.

« Can be energy-efficient
— Dynamic scheduling hardware is power-hungry

Georgia Cadllege of
Tech Compuiting

Why is VLIW hard?

« Latencies are not constant
— Statically scheduled assuming fixed latencies

* |rregular applications
— Dynamic data structures (pointers)
— “Common Case” changes when input changes

* Code can be very large

— Every resource exposed also means that
instructions are “verbose’,
with fields to tell each HW resource what to do

— Many, many “NOP” fields

 3wide VLIW machine - 6 wide VLIW
machine?

* Where is instruction parallelism?

Georgia GCadllege of
Tegch Compuiing

|
J

=)

= N |
Extreme Example: Intel 1A-64 (EPIC)

* Goal: Keep the best of VLIW, fix problems
— Keep HW simple and let the compiler do its job
— Support to deal with non-constant latencies
— Make instructions more compact

* The reality
— Compiler still very good at regular codes

— HW among the most complex ever built by
Intel

— Good news: compiler still improving

Georgia College of
Tegch Compuitfing

IA-64 Bundles

127 87 86 46 45 5 4 0
instruction slot 2 instruction slot 1 instruction slot 0 template
A1 41 41 5

« Bundle == The “VLIW” Instruction

— 5-bit template encoding
* also encodes “stops”

— Three 41-bit instructions

» 128 bits per bundle

— average of 5.33 bytes per instruction
» x86 only needs 3 bytes on average

Georgia College of
Tegch Compuitfing

I1A-64 Groups

« Compiler assembles groups of instructions

— No register data dependencies between insts
In the same group

 Memory deps may exist

— Compiler explicitly inserts “stops” to mark the
end of a group

— Group can be arbitrarily long

Georgia College of
Tegch Compuitfing

Question

A: R1=R2 +R3
B: R4 = R1-R5
C: R1 = LOAD 0[R7]
D: R2 =R1 + R6
E: R6 =R3 +R5
F: R5 = R6 — R4

EEEEEEEEEE

* Write 3-wide VLIW code
(1) All instruction has 1 CPI
(2) LD instruction has 2 CPI

Georgia College of
Tegch Compuitfing

. —
T
[P

Georgia Collegeof
Tech

. —
T
[P

Georgia College of i
Tech

Trace Scheduling

B1
B3
B2 W
B4
|
B5
B6
B7

B1 Inst 1 Inst 2
f i Inst 3 NOP
B3| | insta |NoOP
" __"ﬁ
(e w / Inst 5 NOP
\X Inst 6 Inst 7
BS |

Georgia College of
Tegch ConppPUitine

Hyperblock

/

A S S R S T T T G ——

e

Hyperblock

- o oy,

N

—— e = o o = = =

Inst A
Inst B
(p) Inst C
('p) inst D
Inst A
Inst B
Inst E
(p) Inst C
(p) Inst D
Inst E

Inst 1 Inst 2
(p) Inst3 | (p) inst 4
Inst 5 NOP

Inst 6 Inst 7

Georgia College of

Tech

Compuiding

Compiler Exceptions and " = Hil [
Speculation Support

* Advanced load may trigger exceptions that
may never happen in original code

» Solution: speculative load does not raise
exception, It just poisons its destination reg

* The check is where the original load was

— Check triggers a re-load if reg poisoned

— If the exception is really supposed to happen,
the (non-speculative) re-load will raise it

Georgia College of
Tech | Compuitfing

Data Speculation

* Why: want to schedule loads early
— Compiler puts load early
— Hardware starts the load early
— Loaded value arrives in time to be used

* Problem: Exceptions ? Memory
disambiguation problem ?

Georgia College of
Tegch Compuitfing

Data Speculation

* New instructions (e.g. |A-64)
— Speculative (Advance) load and Load check
— Hardware support for memory disambiguation problem.

* New HW
— Advance Load Addr Table (ALAT)
or Memory Conflict Buffer (MCB)
* How it works

— Speculative load puts data addr and dest reg into ALAT

— Store looks for its data addr in ALAT
and poisons the dest regs found in matching entries

— Check OK if register not poisoned
(if it is, recovery code loads data again)

Georgia College of
Tegch Compuitfing

Data Speculation Example

ST F2,100 (R3) LD.A F1,0(R1)
1D F1,0(R1) —> ST F2,100(R3)

ADD F2,F1,F3 CHK.A F1
ADD F2,F1l,F3

» Can also do control speculation

ILD.A F1,0(R1)

BEQ R1,R2,Error
yR<, BEQ R1,R2,Error
LD F1,0(R1) —> CHK.A F1

ADD F2,F1,F3 ADD F2,Fl,F3

Georgia GCadllege of
Tegch ConppPUitine

SIMD vs. VLIW

PE PE . PE
A A A
PE PE . PE

Georgia College of
Tegch ConppPUitine

Georgia Cdllege of
Tech Compuiing

Georgia Cdllege of
Tech Compuiing

