
Fall 2011
Prof. Hyesoon Kim

Thanks to Prof. Loh & Prof. Prvulovic !

•  Instructions are predicated
-> Depending on the predicate value the

instruction is valid or becomes a No-op.

(p) add R1 = R2 + R3

P R1 = R2 + R3
TRUE R1 <- R2 + R3

FALSE No op

 If (a == 0) {
 b = 1;
}
else {
 b = 0;

}

Set p

(p) b = 1

(!p) b = 0

5

(normal branch code)

C B

D

A
T N

 p1 = (cond)
 branch p1, TARGET

 mov b, 1
 jmp JOIN

TARGET:
 mov b, 0

A

B

C

B

C

D

A

(predicated code)

A

B

C

if (cond) {
 b = 0;
}
else {
 b = 1;
}

 p1 = (cond)
(!p1) mov b, 1

 (p1) mov b, 0

•  Eliminate branch mispredictions
– Convert control dependency to data

dependency
•  Increase compiler’s optimization

opportunities
– Trace scheduling, bigger basic blocks,

instruction re-ordering
– SIMD (Nvidia G80), vector processing

•  More machine resources
– Fetch more instructions
– Occupy useful resources (ROB, scheduler..)

•  ISA should support predicated execution
–  (ISA), predicate registers
– X86: c-move

•  In OOO, supporting predicated execution is
harder
– Three input sources
– Dependent instructions cannot be executed.

•  Conditional move
– The simplest form of predicated execution
– Works only for registers not for memory
– E.g.) CMOVA r16, r/m16 (move if CF=0 and

ZF-0)
•  Full predication support

– Only IA-64 (later lecture)

•  When to use predicated execution?
– Hard to predict?
– Short branches?
– Compiler optimization benefit?

•  Who should decide it?
•  Applicable to all branches?

– Loop, function calls, indirect branches …

•  Multiple-Issue (Superscalar), but in-order
–  Instructions executing in same cycle cannot

have RAW
– Limits on WAW

•  Code Transformations
– Code scheduling, loop unrolling, tree height

reduction, trace scheduling
•  VLIW

for (i=1000; i>0; i--)
 x[i] = x[i] + s; L.D F0,0(R1) ; F0 = array element

ADD.D F4,F0,F2 ; add scalar in F2
S.D F4,0(R1) ; store result
DADDUI R1,R1,#-8 ; decrement pointer

 ; 8 bytes (per DW)
BNE R1, R2, Loop ; branch R1 != R2

Loop:

Assume:
Single-Issue
FP ALU à Store +2 cycles
Load DW à FP ALU +1 cycle
Branch +1 cycle

L.D F0,0(R1)
stall
ADD.D F4,F0,F2
stall
stall
S.D F4,0(R1)
DADDUI R1,R1,#-8
stall
BNE R1, R2, Loop

Loop:

Assume:
FP ALU à Store +2 cycles
Load DW à FP ALU +1 cycle
Branch +1 cycle

L.D F0,0(R1)
stall
ADD.D F4,F0,F2
stall
stall
S.D F4,0(R1)
DADDUI R1,R1,#-8
stall
BNE R1, R2, Loop

Loop:

L.D F0,0(R1)
DADDUI R1,R1,#-8
ADD.D F4,F0,F2
stall
stall
S.D F4,0(R1)
BNE R1, R2, Loop

Loop:

hoist the add

A: R1 = R2 + R3
B: R4 = R1 – R5
C: R1 = LOAD 0[R7]
D: R2 = R1 + R6
E: R6 = R3 + R5
F: R5 = R6 – R4

A

B C

D E

F

A: R1 = R2 + R3
C’: R8 = LOAD 0[R7]
B: R4 = R1 – R5
E’: R9 = R3 + R5
D’: R2 = R8 + R6
F’: R5 = R9 – R4

A

B

C’

D’

E’

F’

B

Same functionality,
no stalls

A: R1 = R2 + R3
C: R1 = LOAD 0[R7]
B: R4 = R1 – R5
E: R6 = R3 + R5
D: R2 = R1 + R6
F: R5 = R6 – R4

A

B

C

D

E

F

•  Largely limited by architected registers
– weird interactions with register allocation …

could possibly cause more spills/fills
•  Code motion may be limited:

R1 = R2 + R3

BEQZ R9

R1 = LOAD 0[R6] R5 = R1 – R4

Need to allocate registers
differently

Causes unnecessary
execution of LOAD when
branch goes left
(AKA Dynamic Dead Code)

R8

R8

•  Register allocations: start with high-level
assignment. Using Psuedo registers.
– Psuedo registers à ISA register (# of registers

is bounded
•  Register spill/fill

– Not enough registers: “spill” to memory
– Need spilled contents: “fill” from memory

•  Want to minimize fills and spills

•  Place as many independent instructions in
sequence
–  “as many” à up to execution bandwidth

•  Don’t need 7 independent insts on a 3-wide
machine

– Avoid pipeline stalls
•  If compiler is really good, we should be

able to get high performance on an in-order
superscalar processor
–  In-order superscalar provides execution B/W,

compiler provides dependence scheduling

•  Compiler has “all the time in the world” to
analyze instructions
– Hardware must do it in < 1ns

•  Compiler can “see” a lot more
– Compiler can do complex inter-procedural

analysis, understand high-level behavior of
code and programming language

– Hardware can only see a small number of
instructions at a time: increase hardware
complexity

•  Compiler has limited access to dynamic
information
–  Profile-based information
–  Perhaps none at all, or not representative
–  Ex. Branch T in 1st ½ of program, NT in 2nd ½, looks

like 50-50 branch in profile
–  No program phase, control path

•  Compiler has to generate static code
–  Cannot react to dynamic events like data cache

misses

•  Trace
–  Sequence of instructions

•  Including branches
•  Not including loops

•  B1,B3,B4,B5,B7 is the most
 frequently executed path

–  Three traces in this path
•  B1,B3
•  B4
•  B5,B7

.

B2

B3

B4

B5

B1

B6

B7

B2

B3

B4

B5

B1

B6

B7

B2

B3

B4

B5

B1

B6
B7

Instructions are
reordered
inside the trace .

Add compensation
code, if needed

•  Basic Idea
–  Increase ILP along the important execution

path by removing constraints due to the
unimportant path.

Code motion
to increase
ILP

B2

B3

B1

R1<-R2+R3

R1<-R2+R3

B2

B3

B4

B1
Fix up code

•  Works on all code, not just loops
– Take an execution trace of the common case
– Schedule code as if it had no branches
– Check branch condition when convenient
–  If mispredicted, clean up the mess

•  How do we find the “common case”
– Program analysis or profiling

a=log(x);
if(b>0.01){
 c=a/b;
}else{
 c=0;
}
y=sin(c);

Suppose profile says
that b>0.01
90% of the time

a=log(x);
c=a/b;
y=sin(c);
if(b<=0.01)
 goto fixit;

fixit:
 c=0;
 y=0; // sin(0)

Now we have larger basic block
for our scheduling and optimizations

•  Assume the code for b > 0.01
accounts for 80% of the time

•  Optimized trace runs 15%
faster

•  But, fix-up code may cause the
remaining 20% of the time to
be even slower!

•  Assume fixup code is 30%
slower

By Amdahl’s Law:

Speedup = 1 / (0.2 + 0.8*0.85)
 = 1.176

 = + 17.6% performance

Speedup = 1 / (0.2*1.3 + 0.8*0.85)
 = 1.110

 Over 1/3 of the benefit removed!

•  Superblock removes problems associated
with side entrances

•  Superblock
– A trace which has no side entrances.
– Control may only enter from the top but may

leave at one or more exit points.
– Traces are identified using execution profile

information.
– Using tail duplication to eliminate side

entrances

A B

C

D

C’

D’

trace

superblock

•  Enlarge a block size
– Loop unrolling
– Loop peeling

•  Global code scheduling
•  Code bloat?

A

B

D

trace

C

50% 50%

A

B

D

A

B

C

trace

E

E E

A

B

D

Hyperblock

C

50% 50%

A

B

(p) C

(!p) D

Inst A
Inst B

(p) Inst C
(!p) inst D

Inst A
Inst B
Inst E

(p) Inst C
(p) Inst D

Inst E

E

E

•  Hyperblock scheduling
– Combine basic blocks from multiple paths of

control (using if-conversion)
– For programs without heavily biased branches,

hyperblocks provide a more flexible framework

•  Transforms an M-iteration loop into
a loop with M/N iterations
– We say that the loop has been unrolled N

times
for(i=0;i<100;i+=4){
 a[i]*=2;
 a[i+1]*=2;
 a[i+2]*=2;
 a[i+3]*=2;
}

for(i=0;i<100;i++)
 a[i]*=2;

Some compilers can do this (gcc -funroll-loops)
Or you can do it manually (above)

for(i=0;i<100;i++)
 prod*=a[i];

for(i=0;i<100;i+=2){
 prod*=a[i];
 prod*=a[i+1];
}

Loop: LD F0,0(R1)
 MUL F7,F7,F0
 ADD R1,R1,8
 BNE R1,R2,Loop

Loop: LD F0,0(R1)
 LD F1,8(R1)
 MUL F7,F7,F0
 MUL F7,F7,F1
 ADD R1,R1,16
 BNE R1,R2,Loop

Unroll

•  Need a lot of unrolling to hide load latency
•  Muls also slow and critical

•  Instruction pipelining:
–  Each stage performs different operation on a different

instruction
•  Stage 4 writes back instruction i
•  Stage 3 does memory access for instruction i+1
•  Stage 2 executes instruction i+2
•  Stage 1 decodes instruction i+3
•  Stage 0 fetches instruction i+4

•  Software pipelining:
–  Each instruction in the loop body executes operations

from different logical iterations of the loop

for(i=0;i<100;i++)
 sum+=a[i]*b[i];

•  We want to
– Load a[i] and b[i], then after some time
– Do the multiply, then after some time
– Do the add to sum

•  Software pipeline “stages”
– Stage 1: Loads
– Stage 2: Multiply
– Stage 3: Add to sum

for(i=0;i<100;i++)
 sum+=a[i]*b[i];

Assume:
LOAD – 3 CPI
MUL – 3 CPI
ADD – 1 CPI

for(i=0;i<100;i++)
{
 a0 = a[i]; b0 = b[i];
 prod = a0 * b0;
 sum += prod
}

for(i=0;i<100;i++)
 sum+=a[i]*b[i];

Assume:
LOAD – 3 CPI
MUL – 3 CPI
ADD – 1 CPI

for(i=0;i<100;i+=2)
{
 a0 = a[i]; b0 = b[i];
 a1 = a[i+1]; b1 = b[i+1];
 prod0 = a0 * b0;
 prod1 = a1 * b1;
 sum += prod0
 sum += prod1
}

for(i=0;i<100;i++)
 sum+=a[i]*b[i];

Assume:
LOAD – 3 CPI
MUL – 3 CPI
ADD – 1 CPI

for(i=0;i<100;i+=2)
{
 a0 = a[i]; b0 = b[i];
 a1 = a[i+1]; b1 = b[i+1];
 prod0 = a0 * b0;
 prod1 = a1 * b1;
 sum += prod0
 sum += prod1
}

for(i=0;i<100;i++)
 sum+=a[i]*b[i];

p2=a[0]*b[0];
a1=a[1];b1=b[1];
for(i=2;i<100;i++){
 sum+=p2;
 p2=a1*b1;
 a1=a[i];b1=b[i];
}
sum+=p2;
sum+=a1*b1;

Start-up: Stages 1-2 for iter 0
 Stage 1 for iter 1

Pipeline: Stage 3 for iter i-2,
 Stage 2 for iter i-1,
 Stage 1 for

iter i
Finish-up: Stage 2 for it 98,

 Stages 2 and 3 for iter 99

Assume:
LOAD – 3 CPI
MUL – 3 CPI
ADD – 1 CPI

prolog

kernel

epilog

ST

LD

ADD

ADD

MUL

ST

LD

ADD

ADD

MUL

ST

LD

ADD

ADD

MUL

ST

LD

ADD

ADD

MUL

ST

LD

ADD

ADD

MUL

ST

LD

ADD

ADD

MUL

ST

LD

ADD

ADD

MUL

Cycle N N+1 N+2 N+3 N+4

Original code pipelined code

iter i

iter i-1

iter i-2

iter i-3

iter i-4

LOOP LD F0, 0 (R1)
 ADD F4, F0, F2

 SD F4, 0 (R1)
 DADDUI R1, R1, #-8

 BNE R1, R2, LOOP

Show a software-pipelined version of this loop. Assume that you have

infinite number of registers. Include start-up and clean-up code.

Assume:
LOAD – 3 CPI
MUL – 3 CPI
ADD – 1 CPI

LOOP LD F0, 0 (R1)
 ADD F4, F0, F2

 SD F4, 0 (R1)
 DADDUI R1, R1, #-8

 BNE R1, R2, LOOP

Assume:
LOAD – 3 CPI
MUL – 3 CPI
ADD – 1 CPI

LOOP LD F0, 0 (R1)
 ADD F4, F0, F2

 SD F4, 0 (R1)
 LD F0, -8 (R1)
 ADD F4, F0, F2
 SD F4, -8 (R1)
 LD F0, -16 (R1)
 ADD F4, F0, F2
 SD F4, -16 (R1)
 DADDUI R1, R1, #-24
 BNE R1, R2, LOOP

Step 1: unroll loop 3 times
Step 2: choose one instruction per each loop
(choose from a reverse order)

LOOP SD F4, 0(R1)
 ADD F4, F0, F2
 LD F0, -16(R1)
 DADDUI R1, R1, -8
 BNE R1, R2, LOOP

Step 3: bring branch related code

•  Sort of like “unrolling” a function
•  Similar benefits to loop unrolling:

–  Remove function call overhead
•  CALL/RETN (and possible branch

mispreds)
•  Argument/ret-val passing, stack

allocation, and associated spills/fills
of caller/callee-save regs

–  Larger block of instructions for
scheduling

–  If-conversion is possible
•  Similar problems

–  Increase register pressure
–  Primarily code bloat

main()
{
…..
c=max(a,b);
….
c=max(a,b);
}
max(a,b)
{
If (a>=b) return a;
else return b;
}

main()
{
…..
If (a>=b) c=a;
else c =b
….
If (a>=b) c=a;
else c =b;
…
}

•  Shorten critical path(s) using associativity

ADD R6,R2,R3
ADD R7,R6,R4
ADD R8,R7,R5

I1

I2

I3

ADD R6,R2,R3
ADD R7,R4,R5
ADD R8,R7,R6

I1 I2

I3

R8=((R2+R3)+R4)+R5 R8=(R2+R3)+(R4+R5)

Not all Math
operations

are associative!

•  Compiler can do analysis to find
independent instructions
– Rather than having Tomasulo-like hardware to

detect such instructions
•  Directly communicate this to the HW

R1 = R2 +
R3

R4 = R5 *
R7

Register Renaming,
Tomasulo’s Algorithm, etc…

Yup, they’re independent

R1 = R2 +
R3

R4 = R5 *
R7

Compiler

I1 I2

I3

I5

I4

I1 I2

I3 I4

I5 NOP

•  VLIW = Very Long Instruction Word

•  Everything is statically scheduled
–  All hardware resources exposed to compiler
–  Compiler must figure out what to do and when to do it
–  Get rid of complex scheduling hardware
–  More room for “useful” resources

•  Examples:
–  Texas Instruments DSP processors
–  Transmeta’s processors
–  Intel IA-64 (EPIC)

Int Op 2 Mem Op 1 Mem Op 2 FP Op 1 FP Op 2 Int Op 1

•  Let the compiler do all of the hard work
– Expose functional units, bypasses, latencies,

etc.
– Compiler can do its best to schedule code well
– Compiler has plenty of time to do analysis
– Compiler has larger scope (view of the

program)
•  Works extremely well on regular codes

– Media Processing, Scientific, DSP, etc.
•  Can be energy-efficient

– Dynamic scheduling hardware is power-hungry

•  Latencies are not constant
–  Statically scheduled assuming fixed latencies

•  Irregular applications
–  Dynamic data structures (pointers)
–  “Common Case” changes when input changes

•  Code can be very large
–  Every resource exposed also means that

instructions are “verbose”,
with fields to tell each HW resource what to do

–  Many, many “NOP” fields

•  3wide VLIW machine à 6 wide VLIW
machine?

•  Where is instruction parallelism?

•  Goal: Keep the best of VLIW, fix problems
– Keep HW simple and let the compiler do its job
– Support to deal with non-constant latencies
– Make instructions more compact

•  The reality
– Compiler still very good at regular codes
– HW among the most complex ever built by

Intel
– Good news: compiler still improving

•  Bundle == The “VLIW” Instruction
– 5-bit template encoding

•  also encodes “stops”

– Three 41-bit instructions

•  128 bits per bundle
– average of 5.33 bytes per instruction

•  x86 only needs 3 bytes on average

•  Compiler assembles groups of instructions
– No register data dependencies between insts

in the same group
•  Memory deps may exist

– Compiler explicitly inserts “stops” to mark the
end of a group

– Group can be arbitrarily long

A: R1 = R2 + R3
B: R4 = R1 – R5
C: R1 = LOAD 0[R7]
D: R2 = R1 + R6
E: R6 = R3 + R5
F: R5 = R6 – R4

•  Write 3-wide VLIW code
(1) All instruction has 1 CPI
(2) LD instruction has 2 CPI

D’: R2 = R8 + R6

A: R1 = R2 + R3
C’: R8 = LOAD 0[R7]
E’: R9 = R3 + R5

B: R4 = R1 – R5
D’: R2 = R8 + R6
F’: R5 = R9 – R4

A: R1 = R2 + R3
B: R4 = R1 – R5
C: R1 = LOAD 0[R7]
D: R2 = R1 + R6
E: R6 = R3 + R5
F: R5 = R6 – R4

A: R1 = R2 + R3 C’: R8 = LOAD 0[R7]

B: R4 = R1 – R5

E’: R9 = R3 + R5

F’: R5 = R9 – R4

A: R1 = R2 + R3 C’: R8 = LOAD 0[R7]

B: R4 = R1 – R5

E’: R9 = R3 + R5

D’: R2 = R8 + R6 F’: R5 = R9 – R4

B2

B3

B4

B5

B1

B6

B7

B2

B3

B4

B5

B1

B6
B7

 Inst 1 Inst 2

 Inst 3 NOP

 Inst 4 NOP

 Inst 5 NOP

 Inst 6 Inst 7

A

B

D

Hyperblock

C

50% 50%

A

B

(p) C

(!p) D

Inst A
Inst B

(p) Inst C
(!p) inst D

Inst A
Inst B
Inst E

(p) Inst C
(p) Inst D

Inst E

E

E

 Inst 1 Inst 2

 (p) Inst 3 (!p) inst 4

 Inst 5 NOP

 Inst 6 Inst 7

•  Advanced load may trigger exceptions that
may never happen in original code

•  Solution: speculative load does not raise
exception, it just poisons its destination reg

•  The check is where the original load was
– Check triggers a re-load if reg poisoned
–  If the exception is really supposed to happen,

the (non-speculative) re-load will raise it

•  Why: want to schedule loads early
– Compiler puts load early
– Hardware starts the load early
– Loaded value arrives in time to be used

•  Problem: Exceptions ? Memory
disambiguation problem ?

•  New instructions (e.g. IA-64)
–  Speculative (Advance) load and Load check
–  Hardware support for memory disambiguation problem.

•  New HW
–  Advance Load Addr Table (ALAT)

or Memory Conflict Buffer (MCB)
•  How it works

–  Speculative load puts data addr and dest reg into ALAT
–  Store looks for its data addr in ALAT

and poisons the dest regs found in matching entries
–  Check OK if register not poisoned

(if it is, recovery code loads data again)

ST F2,100(R3)
LD F1,0(R1)
ADD F2,F1,F3

LD.A F1,0(R1)
ST F2,100(R3)
CHK.A F1
ADD F2,F1,F3

•  Can also do control speculation

BEQ R1,R2,Error
LD F1,0(R1)
ADD F2,F1,F3

LD.A F1,0(R1)
BEQ R1,R2,Error
CHK.A F1
ADD F2,F1,F3

PE PE PE …

Α	
 Α	
 Α	

PE PE PE …

Α	
 Β	
 Α	

…

…

•  A program is profiled. Total execution time of
func(A) is 15% and func(B) is 85%. Func(B) is
dependent on func(A) and only func(b) can be
completely parallelizable. If there are infinite
machines, what will be the speedup?

•  What are the benefits of hyperblock over trace
scheduling and limitations?

•  Speedup = 1/((1-f)+f/n) = 1/((1-f))= 1/0.15 =
6.66

•  Control-path is included in the hyperblock:
– Less code duplications

