
Fall 2011 
Prof. Hyesoon Kim  

Thanks to Prof. Loh & Prof. Prvulovic ! 



  



•  Instructions are predicated  
-> Depending on the predicate value the 

instruction is valid or becomes a No-op.  
 
(p) add R1 = R2 + R3  
 

  

P R1 = R2 + R3  
TRUE  R1 <- R2 + R3  

FALSE  No op  



   If ( a == 0 ) {  
 b = 1;  
}  
else { 
 b = 0; 

} 

  

Set p  
 
(p) b = 1  
 
(!p) b = 0  



5 

(normal branch code) 

C B 

D 

A 
T N

        p1 = (cond) 
        branch p1, TARGET 

       mov b, 1  
       jmp JOIN 

TARGET: 
         mov b, 0 

A 

B 

C 

B 
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(predicated code)  

A 

B 

C 

if (cond) { 
      b = 0; 
} 
else { 
      b = 1; 
} 

         p1 = (cond) 
(!p1) mov  b, 1 
 
 (p1) mov  b, 0 



•  Eliminate branch mispredictions 
– Convert control dependency to data 

dependency 
•  Increase compiler’s optimization 

opportunities 
– Trace scheduling, bigger basic blocks, 

instruction re-ordering  
– SIMD (Nvidia G80), vector processing  

  



•  More machine resources  
– Fetch more instructions 
– Occupy useful resources (ROB, scheduler..)  

•  ISA should support predicated execution 
–  (ISA), predicate registers 
– X86: c-move  

•  In OOO, supporting predicated execution is 
harder  
– Three input sources 
– Dependent instructions cannot be executed. 

  



•  Conditional move  
– The simplest form of predicated execution 
– Works only for registers not for memory  
– E.g.) CMOVA r16, r/m16 (move if CF=0 and 

ZF-0)  
•  Full predication support   

– Only IA-64 (later lecture) 

  



•  When to use predicated execution? 
– Hard to predict?  
– Short branches?  
– Compiler optimization benefit?  

•  Who should decide it?  
•  Applicable to all branches? 

– Loop, function calls, indirect branches …  

  



  



  

•  Multiple-Issue (Superscalar), but in-order 
–  Instructions executing in same cycle cannot 

have RAW 
– Limits on WAW 



  

•  Code Transformations 
– Code scheduling, loop unrolling, tree height 

reduction, trace scheduling 
•  VLIW 



  

for (i=1000; i>0; i--) 
    x[i] = x[i] + s; L.D  F0,0(R1)  ; F0 = array element 

ADD.D  F4,F0,F2   ; add scalar in F2 
S.D  F4,0(R1)  ; store result 
DADDUI R1,R1,#-8   ; decrement pointer 

   ; 8 bytes (per DW) 
BNE  R1, R2, Loop  ; branch R1 != R2 

Loop: 

Assume: 
Single-Issue 
FP ALU à Store            +2 cycles 
Load DW à FP ALU      +1 cycle 
Branch                           +1 cycle 

L.D  F0,0(R1)  
stall 
ADD.D  F4,F0,F2 
stall 
stall 
S.D  F4,0(R1)  
DADDUI R1,R1,#-8 
stall 
BNE  R1, R2, Loop 

Loop: 



  

Assume: 
FP ALU à Store        +2 cycles 
Load DW à FP ALU  +1 cycle 
Branch                        +1 cycle 

L.D  F0,0(R1)  
stall 
ADD.D  F4,F0,F2 
stall 
stall 
S.D  F4,0(R1)  
DADDUI R1,R1,#-8 
stall 
BNE  R1, R2, Loop 

Loop: 

L.D  F0,0(R1)  
DADDUI R1,R1,#-8 
ADD.D  F4,F0,F2 
stall 
stall 
S.D  F4,0(R1)  
BNE  R1, R2, Loop 

Loop: 

hoist the add 



  

A: R1 = R2 + R3 
B: R4 = R1 – R5 
C: R1 = LOAD 0[R7] 
D: R2 = R1 + R6 
E: R6 = R3 + R5 
F: R5 = R6 – R4 

A 

B C 

D E 

F 

A: R1 = R2 + R3 
C’: R8 = LOAD 0[R7] 
B: R4 = R1 – R5 
E’: R9 = R3 + R5 
D’: R2 = R8 + R6 
F’: R5 = R9 – R4 

A 

B 

C’ 

D’ 

E’ 

F’ 

B 

Same functionality, 
no stalls 

A: R1 = R2 + R3 
C: R1 = LOAD 0[R7] 
B: R4 = R1 – R5 
E: R6 = R3 + R5 
D: R2 = R1 + R6 
F: R5 = R6 – R4 

A 

B 

C 

D 

E 

F 



  

•  Largely limited by architected registers 
– weird interactions with register allocation … 

could possibly cause more spills/fills 
•  Code motion may be limited: 

R1 = R2 + R3 
 

BEQZ R9 

R1 = LOAD 0[R6] R5 = R1 – R4 

Need to allocate registers 
differently 
 
Causes unnecessary 
execution of LOAD when 
branch goes left 
(AKA Dynamic Dead Code) 

R8 

R8 



•  Register allocations: start with high-level 
assignment. Using Psuedo registers.  
– Psuedo registers à ISA register (# of registers 

is bounded  
•  Register spill/fill  

– Not enough registers: “spill” to memory 
– Need spilled contents: “fill” from memory 

•  Want to minimize fills and spills 

  



  

•  Place as many independent instructions in 
sequence 
–  “as many” à up to execution bandwidth 

•  Don’t need 7 independent insts on a 3-wide 
machine 

– Avoid pipeline stalls 
•  If compiler is really good, we should be 

able to get high performance on an in-order 
superscalar processor 
–  In-order superscalar provides execution B/W, 

compiler provides dependence scheduling 



  

•  Compiler has “all the time in the world” to 
analyze instructions 
– Hardware must do it in < 1ns 

•  Compiler can “see” a lot more 
– Compiler can do complex inter-procedural 

analysis, understand high-level behavior of 
code and programming language 

– Hardware can only see a small number of 
instructions at a time: increase hardware 
complexity  



  

•  Compiler has limited access to dynamic 
information 
–  Profile-based information 
–  Perhaps none at all, or not representative 
–  Ex. Branch T in 1st ½ of program, NT in 2nd ½, looks 

like 50-50 branch in profile 
–  No program phase, control path 

•  Compiler has to generate static code 
–  Cannot react to dynamic events like data cache 

misses 
 



•  Trace 
–  Sequence of instructions 

•  Including branches 
•  Not including loops 

•  B1,B3,B4,B5,B7 is the most  
 frequently executed path 

–  Three traces in this path 
•  B1,B3 
•  B4 
•  B5,B7 

  

. 

     

B2 

B3 

B4 

B5 

B1 

B6 

B7 



B2 

B3 

B4 

B5 

B1 

B6 

B7 

B2 

B3 

B4 

B5 

B1 

B6 
B7 

Instructions are 
reordered 
inside the trace . 
 

Add compensation 
code, if needed 



•  Basic Idea 
–  Increase ILP along the important execution 

path by removing constraints due to the 
unimportant path. 

Code motion 
to increase  
ILP 

B2 

B3 

B1 

R1<-R2+R3 

R1<-R2+R3 

B2 

B3 

B4 

B1 
Fix up code 



  

•  Works on all code, not just loops 
– Take an execution trace of the common case 
– Schedule code as if it had no branches 
– Check branch condition when convenient 
–  If mispredicted, clean up the mess 

•  How do we find the “common case” 
– Program analysis or profiling 



  

a=log(x); 
if(b>0.01){ 
  c=a/b; 
}else{ 
  c=0; 
} 
y=sin(c); 

Suppose profile says 
that b>0.01 
90% of the time 

a=log(x); 
c=a/b; 
y=sin(c); 
if(b<=0.01) 
  goto fixit;  

fixit: 
  c=0; 
  y=0; // sin(0) 

Now we have larger basic block 
for our scheduling and optimizations 



  

•  Assume the code for b > 0.01 
accounts for 80% of the time 

•  Optimized trace runs 15% 
faster 

•  But, fix-up code may cause the 
remaining 20% of the time to 
be even slower! 

•  Assume fixup code is 30% 
slower 

By Amdahl’s Law: 
 
Speedup = 1 / ( 0.2 + 0.8*0.85) 
                = 1.176 
 

   = + 17.6% performance 

Speedup = 1 / ( 0.2*1.3 + 0.8*0.85) 
                = 1.110 
 
  Over 1/3 of the benefit removed! 



•  Superblock removes problems associated 
with side entrances 

•  Superblock 
– A trace which has no side entrances. 
– Control may only enter from the top but may 

leave at one or more exit points. 
– Traces are identified using execution profile 

information. 
– Using tail duplication to eliminate side 

entrances 

  



  

A B 

C 

D 

C’ 

D’ 

trace 

superblock 



•  Enlarge a block size  
– Loop unrolling  
– Loop peeling 

•  Global code scheduling  
•  Code bloat?  

  



  

A 

B 

D 

trace 

C 

50% 50% 

A 

B 

D 

A 

B 

C 

trace 

E 

E E 



  

A 

B 

D 

Hyperblock 

C 

50% 50% 

A 

B 

(p)  C 

(!p)  D 

Inst A 
Inst B 

(p) Inst C 
(!p) inst D 

Inst A 
Inst B 
Inst E  

(p) Inst C 
(p) Inst D 

Inst E  
 
 

E 

E 



•  Hyperblock scheduling 
– Combine basic blocks from multiple paths of 

control (using if-conversion) 
– For programs without heavily biased branches, 

hyperblocks provide a more flexible framework 

  



  



  

•  Transforms an M-iteration loop into 
a loop with M/N iterations 
– We say that the loop has been unrolled N 

times 
for(i=0;i<100;i+=4){ 
  a[i]*=2; 
  a[i+1]*=2; 
  a[i+2]*=2; 
  a[i+3]*=2; 
} 

for(i=0;i<100;i++) 
  a[i]*=2; 

Some compilers can do this (gcc -funroll-loops) 
Or you can do it manually (above) 



  

for(i=0;i<100;i++) 
  prod*=a[i]; 

for(i=0;i<100;i+=2){ 
  prod*=a[i]; 
  prod*=a[i+1]; 
} 

Loop: LD F0,0(R1) 
 MUL F7,F7,F0 
 ADD R1,R1,8 
 BNE R1,R2,Loop 

Loop: LD F0,0(R1) 
 LD F1,8(R1) 
 MUL F7,F7,F0 
 MUL F7,F7,F1 
 ADD R1,R1,16 
 BNE R1,R2,Loop 

Unroll 

•  Need a lot of unrolling to hide load latency 
•  Muls also slow and critical 



  

•  Instruction pipelining: 
–  Each stage performs different operation on a different 

instruction 
•  Stage 4 writes back instruction i 
•  Stage 3 does memory access for instruction i+1 
•  Stage 2 executes instruction i+2 
•  Stage 1 decodes instruction i+3 
•  Stage 0 fetches instruction i+4 

•  Software pipelining: 
–  Each instruction in the loop body executes operations 

from different logical iterations of the loop 



  

for(i=0;i<100;i++) 
  sum+=a[i]*b[i]; 

•  We want to 
– Load a[i] and b[i], then after some time 
– Do the multiply, then after some time 
– Do the add to sum 

•  Software pipeline “stages” 
– Stage 1: Loads 
– Stage 2: Multiply 
– Stage 3: Add to sum 



  

for(i=0;i<100;i++) 
  sum+=a[i]*b[i]; 

Assume: 
LOAD – 3 CPI 
MUL – 3 CPI 
ADD – 1 CPI 

for(i=0;i<100;i++) 
{ 
  a0 = a[i]; b0 = b[i]; 
  prod = a0 * b0; 
  sum += prod 
} 



  

for(i=0;i<100;i++) 
  sum+=a[i]*b[i]; 

Assume: 
LOAD – 3 CPI 
MUL – 3 CPI 
ADD – 1 CPI 

for(i=0;i<100;i+=2) 
{ 
  a0 = a[i];   b0 = b[i]; 
  a1 = a[i+1]; b1 = b[i+1]; 
  prod0 = a0 * b0; 
  prod1 = a1 * b1; 
  sum += prod0 
  sum += prod1 
} 



  

for(i=0;i<100;i++) 
  sum+=a[i]*b[i]; 

Assume: 
LOAD – 3 CPI 
MUL – 3 CPI 
ADD – 1 CPI 

for(i=0;i<100;i+=2) 
{ 
  a0 = a[i];   b0 = b[i]; 
  a1 = a[i+1]; b1 = b[i+1]; 
  prod0 = a0 * b0; 
  prod1 = a1 * b1; 
  sum += prod0 
  sum += prod1 
} 



  

for(i=0;i<100;i++) 
  sum+=a[i]*b[i]; 

p2=a[0]*b[0]; 
a1=a[1];b1=b[1]; 
for(i=2;i<100;i++){ 
  sum+=p2; 
  p2=a1*b1; 
  a1=a[i];b1=b[i];  
}   
sum+=p2; 
sum+=a1*b1; 

Start-up:  Stages 1-2 for iter 0 
  Stage 1 for iter 1 

Pipeline:  Stage 3 for iter i-2, 
  Stage 2 for iter i-1, 
   Stage 1 for 

iter i 
Finish-up:  Stage 2 for it 98, 

  Stages 2 and 3 for iter  99 

Assume: 
LOAD – 3 CPI 
MUL – 3 CPI 
ADD – 1 CPI 

prolog  

kernel  

epilog 



  

ST 

LD 

ADD 

ADD 

MUL 

ST 

LD 

ADD 

ADD 

MUL 

ST 

LD 

ADD 

ADD 

MUL 

ST 

LD 

ADD 

ADD 

MUL 

ST 

LD 

ADD 

ADD 

MUL 

ST 

LD 

ADD 

ADD 

MUL 

ST 

LD 

ADD 

ADD 

MUL 

Cycle N N+1 N+2 N+3 N+4 

Original code  pipelined code  

iter i 

iter i-1 

iter i-2 

iter i-3 

iter i-4 



LOOP LD F0, 0 (R1) 
        ADD F4, F0, F2 

            SD F4, 0 (R1)  
        DADDUI R1, R1, #-8 

            BNE R1, R2, LOOP 
 
Show a software-pipelined version of this loop. Assume that you have 

infinite number of registers.  Include start-up and clean-up code.  
 

  

  

Assume: 
LOAD – 3 CPI 
MUL – 3 CPI 
ADD – 1 CPI 



LOOP LD F0, 0 (R1) 
      ADD F4, F0, F2 

            SD F4, 0 (R1)  
      DADDUI R1, R1, #-8 

            BNE R1, R2, LOOP 

 
 

  

  

Assume: 
LOAD – 3 CPI 
MUL – 3 CPI 
ADD – 1 CPI 

LOOP LD F0, 0 (R1) 
      ADD F4, F0, F2 

            SD F4, 0 (R1)  
       LD F0, -8 (R1) 
           ADD F4, F0, F2 
           SD F4, -8 (R1)  
           LD F0, -16 (R1) 
           ADD F4, F0, F2 
          SD F4, -16 (R1)  
          DADDUI R1, R1, #-24 
          BNE R1, R2, LOOP 

Step 1: unroll loop 3 times 
Step 2: choose one instruction per each loop  
(choose from a reverse order)  
 

LOOP  SD F4, 0(R1)  
             ADD F4, F0, F2 
             LD F0, -16(R1) 
             DADDUI R1, R1, -8 
             BNE R1, R2, LOOP 

Step 3: bring branch related code 



  

•  Sort of like “unrolling” a function 
•  Similar benefits to loop unrolling: 

–  Remove function call overhead 
•  CALL/RETN (and possible branch 

mispreds) 
•  Argument/ret-val passing, stack 

allocation, and associated spills/fills 
of caller/callee-save regs 

–  Larger block of instructions for 
scheduling 

–  If-conversion is possible 
•  Similar problems 

–  Increase register pressure  
–  Primarily code bloat 

main() 
{   
…..  
c=max(a,b); 
…. 
c=max(a,b); 
} 
max(a,b)  
{ 
If (a>=b) return a; 
else return b;  
} 

main() 
{   
…..  
If (a>=b) c=a; 
else c =b 
…. 
If (a>=b) c=a; 
else c =b; 
… 
} 
 



  

•  Shorten critical path(s) using associativity 

ADD R6,R2,R3 
ADD R7,R6,R4 
ADD R8,R7,R5 

I1 

I2 

I3 

ADD R6,R2,R3 
ADD R7,R4,R5 
ADD R8,R7,R6 

I1 I2 

I3 

R8=((R2+R3)+R4)+R5 R8=(R2+R3)+(R4+R5) 

Not all Math 
operations 

are associative! 



  



•  Compiler can do analysis to find 
independent instructions 
– Rather than having Tomasulo-like hardware to 

detect such instructions 
•  Directly communicate this to the HW 

  

R1 = R2 + 
R3 

R4 = R5 * 
R7 

Register Renaming, 
Tomasulo’s Algorithm, etc… 

Yup, they’re independent 

R1 = R2 + 
R3 

R4 = R5 * 
R7 

Compiler 



  

I1 I2  

I3  

I5  

I4  

I1 I2  

I3  I4  

I5  NOP 



  

•  VLIW = Very Long Instruction Word 

•  Everything is statically scheduled 
–  All hardware resources exposed to compiler 
–  Compiler must figure out what to do and when to do it 
–  Get rid of complex scheduling hardware 
–  More room for “useful” resources 

•  Examples: 
–  Texas Instruments DSP processors 
–  Transmeta’s processors 
–  Intel IA-64 (EPIC) 

Int Op 2 Mem Op 1 Mem Op 2 FP Op 1 FP Op 2 Int Op 1 



  

•  Let the compiler do all of the hard work 
– Expose functional units, bypasses, latencies, 

etc. 
– Compiler can do its best to schedule code well 
– Compiler has plenty of time to do analysis 
– Compiler has larger scope (view of the 

program) 
•  Works extremely well on regular codes 

– Media Processing, Scientific, DSP, etc. 
•  Can be energy-efficient 

– Dynamic scheduling hardware is power-hungry 



  

•  Latencies are not constant 
–  Statically scheduled assuming fixed latencies 

•  Irregular applications 
–  Dynamic data structures (pointers) 
–  “Common Case” changes when input changes 

•  Code can be very large 
–  Every resource exposed also means that 

instructions are “verbose”, 
with fields to tell each HW resource what to do 

–  Many, many “NOP” fields 

•  3wide VLIW machine à 6 wide VLIW 
machine?  

•  Where is instruction parallelism?  



  

•  Goal: Keep the best of VLIW, fix problems 
– Keep HW simple and let the compiler do its job 
– Support to deal with non-constant latencies 
– Make instructions more compact 

•  The reality 
– Compiler still very good at regular codes 
– HW among the most complex ever built by 

Intel 
– Good news: compiler still improving 



  

•  Bundle == The “VLIW” Instruction 
– 5-bit template encoding 

•  also encodes “stops” 

– Three 41-bit instructions 

•  128 bits per bundle 
– average of 5.33 bytes per instruction 

•  x86 only needs 3 bytes on average 



  

•  Compiler assembles groups of instructions 
– No register data dependencies between insts 

in the same group 
•  Memory deps may exist 

– Compiler explicitly inserts “stops” to mark the 
end of a group 

– Group can be arbitrarily long 



  

A: R1 = R2 + R3 
B: R4 = R1 – R5 
C: R1 = LOAD 0[R7] 
D: R2 = R1 + R6 
E: R6 = R3 + R5 
F: R5 = R6 – R4 

•  Write 3-wide VLIW code 
(1) All instruction has 1 CPI  
(2) LD instruction has 2 CPI  



D’: R2 = R8 + R6 

  

A: R1 = R2 + R3 
C’: R8 = LOAD 0[R7] 
E’: R9 = R3 + R5 
 
B: R4 = R1 – R5 
D’: R2 = R8 + R6 
F’: R5 = R9 – R4 

A: R1 = R2 + R3 
B: R4 = R1 – R5 
C: R1 = LOAD 0[R7] 
D: R2 = R1 + R6 
E: R6 = R3 + R5 
F: R5 = R6 – R4 

A: R1 = R2 + R3 C’: R8 = LOAD 0[R7] 

B: R4 = R1 – R5 

E’: R9 = R3 + R5 

F’: R5 = R9 – R4 



  

A: R1 = R2 + R3 C’: R8 = LOAD 0[R7] 

B: R4 = R1 – R5 

E’: R9 = R3 + R5 

D’: R2 = R8 + R6 F’: R5 = R9 – R4 



  

B2 

B3 

B4 

B5 

B1 

B6 

B7 

B2 

B3 

B4 

B5 

B1 

B6 
B7 

   Inst 1    Inst 2 

   Inst  3 NOP 

   Inst 4 NOP 

   Inst  5 NOP 

   Inst 6    Inst 7 



  

A 

B 

D 

Hyperblock 

C 

50% 50% 

A 

B 

(p)  C 

(!p)  D 

Inst A 
Inst B 

(p) Inst C 
(!p) inst D 

Inst A 
Inst B 
Inst E  

(p) Inst C 
(p) Inst D 

Inst E  
 
 

E 

E 

   Inst 1    Inst 2 

  (p) Inst 3 (!p) inst 4  

   Inst  5 NOP 

   Inst 6    Inst 7 



  

•  Advanced load may trigger exceptions that 
may never happen in original code 

•  Solution: speculative load does not raise 
exception, it just poisons its destination reg 

•  The check is where the original load was 
– Check triggers a re-load if reg poisoned 
–  If the exception is really supposed to happen, 

the (non-speculative) re-load will raise it 



  

•  Why: want to schedule loads early 
– Compiler puts load early 
– Hardware starts the load early 
– Loaded value arrives in time to be used 

•  Problem: Exceptions ? Memory 
disambiguation problem ?  



  

•  New instructions (e.g. IA-64) 
–  Speculative (Advance) load and Load check 
–  Hardware support for memory disambiguation problem.  

•  New HW 
–  Advance Load Addr Table (ALAT) 

or Memory Conflict Buffer (MCB) 
•  How it works 

–  Speculative load puts data addr and dest reg into ALAT 
–  Store looks for its data addr in ALAT 

and poisons the dest regs found in matching entries 
–  Check OK if register not poisoned  

(if it is, recovery code loads data again) 



  

ST F2,100(R3) 
LD F1,0(R1) 
ADD F2,F1,F3 

LD.A F1,0(R1) 
ST F2,100(R3) 
CHK.A F1 
ADD F2,F1,F3 

•  Can also do control speculation 

BEQ R1,R2,Error 
LD F1,0(R1) 
ADD F2,F1,F3 

LD.A F1,0(R1) 
BEQ R1,R2,Error 
CHK.A F1 
ADD F2,F1,F3 



  

PE PE PE … 

Α	
 Α	
 Α	


PE PE PE … 

Α	
 Β	
 Α	


… 

… 



•  A program is profiled. Total execution time of 
func(A) is 15% and func(B) is 85%. Func(B) is 
dependent on func(A) and only func(b) can be 
completely parallelizable. If there are infinite 
machines, what will be the speedup? 

•  What are the benefits of hyperblock over trace 
scheduling and limitations?  

  



•  Speedup = 1/((1-f)+f/n) = 1/((1-f))= 1/0.15 = 
6.66 

•  Control-path is included in the hyperblock:  
– Less code duplications  

  


