
Fall 2011
Prof. Hyesoon Kim

Thanks to Prof. Loh & Prof. Prvulovic

•  I/O performance (bandwidth, latency)
–  Bandwidth improving, but not as fast as CPU
–  Latency improving very slowly
–  Consequently, by Amdahl’s Law:

fraction of time spent on I/O increasing
•  Other factors just as important

–  Reliability, Availability, Dependability
•  Storage devices very diverse

–  Magnetic disks, tapes, CDs, DVDs, flash
–  Different advantages/disadvantages and uses

•  Traditionally, two kinds of busses
– CPU-Memory bus (fast, short)
–  I/O bus (can be slower and longer)

•  Now: mezzanine buses (PCI)
– Pretty fast and relatively short
– Can connect fast devices directly
– Can connect to longer, slower I/O busses

•  Data transfers over a bus: transactions

•  Devices connect to ports or
system bus:
–  Allows devices to

communicate w/CPU
–  Typically shared by multiple

devices

•  Two ways of communicating
with CPU:
–  Ports (programmed I/O)
–  Direct-Memory Access

(DMA)

•  Device port – 4 registers
– Status indicates device busy, data ready,

error
– Control indicates command to perform
– Data-in read by host to get input from

device
– Data-out written by CPU to device

•  Controller receives commands from
bus, translates into actions, reads/writes
data onto bus

•  CPU:
– Busy-wait until status = idle
– Set command register, data-out (output)
– Set status = command-ready

•  Controller: set status = busy

•  Controller:
– Reads command register, performs

command
– Places data in data-in (input)
– Change state to idle or error

•  Avoids busy waiting
•  Device interrupts CPU when I/O

operation completes
•  On interrupt:

– Determine which device caused interrupt
–  If last command to device was input

operation, retrieve data from register
–  Initiate next operation for device

•  Ports (“programmed I/O”)
–  Fine for small amounts of data, low-speed
–  Too expensive for large data transfers!

•  Solution: Direct Memory Access (DMA)
–  Allows devices to transfer data w/o subjecting the

CPU to a heavy overhead
–  CPU initiate the transaction (send command)
–  DMA interrupts CPU when entire transfer

complete
–  DMA can lead to a cache coherence problem

•  Split transactions
–  Traditionally, bus stays occupied

between request and response on a read
–  Now, get bus, send request, free bus

(when response ready, get bus, send response, free
bus)

•  Bus mastering
–  Which devices can initiate transfers on the bus
–  CPU can always be the master
–  But we can also allow other devices to be masters
–  With multiple masters, need arbitration

•  Devices typically accessible to CPU
through control and data registers

•  These registers can be either
–  Memory mapped

•  Some physical memory addresses
actually map to I/O device registers

•  Read/write through LS/ST
•  Most RISC processors support only this kind of I/O mapping

–  Be in a separate I/O address space
•  Read/write through special IN/OUT instrs
•  Used in x86, but even in x86 PCs some I/O is memory

mapped

•  Quality of delivered service that justifies us
relying on the system to provide that
service
– Delivered service is the actual behavior
– Each module has an ideal specified behavior

•  Faults, Errors, Failures
– Failure: actual deviates from specified

behavior
– Error: defect that results in failure
– Fault: cause of error

11

•  A programming mistake is a fault
–  An add function that works fine, except when we try

5+3, in which case it returns 7 instead of 8
–  It is a latent error until activated

•  An activated fault becomes effective error
–  We call our add and it returns 7 for 5+3

•  Failure when error results in deviation in behavior
–  E.g. we schedule a meeting for the 7th instead of 8th

–  An effective error need not result in a failure
(if we never use the result of this add, no failure)

12

•  System can be in one of two states
–  Service Accomplishment
–  Service Interruption

•  Reliability
–  Measure of continuous service accomplishment
–  Typically, Mean Time To Failure (MTTF)

•  Availability
–  Service accomplishment as a fraction of overall time
–  Also looks at Mean Time To Repair (MTTR)

•  MTTR is the average duration of service interruption
–  Availability=MTTF/(MTTF+MTTR)

13

•  Hardware Faults
–  Hardware devices fail to perform as designed

•  Design Faults
–  Faults in software and some faults in HW
–  E.g. the Pentium FDIV bug was a design fault

•  Operation Faults
–  Operator and user mistakes

•  Environmental Faults
–  Fire, power failure, sabotage, etc.

14

•  Transient Faults
–  Last for a limited time and are not recurring
–  An alpha particle can flip a bit in memory

but usually does not damage the memory HW
•  Intermittent Faults

–  Last for a limited time but are recurring
–  E.g. overclocked system works fine for a while, but

then crashes… then we reboot it and it does it again
•  Permanent Faults

–  Do not get corrected when time passes
–  E.g. the processor has a large round hole in

it because we wanted to see what’s inside…

15

•  Fault Avoidance
–  Prevent occurrence of faults by construction

•  Fault Tolerance
–  Prevent faults from becoming failures
–  Typically done through redundancy

•  Error Removal
–  Removing latent errors by verification

•  Error Forecasting
–  Estimate presence, creation, and consequences of

errors

16

•  Redundant Array of Independent Disks
– Several smaller disks play a role of one big

disk
•  Can improve performance

– Data spread among multiple disks
– Accesses to different disks go in parallel

•  Can improve reliability
– Data can be kept with some redundancy

17

•  Striping used to improve performance
– Data stored on disks in array so that

consecutive “stripes” of data are stored on
different disks

– Makes disks share the load, improving
•  Throughput: all disks can work in parallel
•  Latency: less queuing delay – a queue for each disk

•  No Redundancy
– Reliability actually lower than with single disk

(if any disk in array fails, we have a problem)

18

•  P - probability that a drive will die during one hour
–  For a single drive, MTTF = 1/P hours

•  For RAID 0 with two drives:
–  Probability that both drives survive an hour: (1-P)2

–  Probability of failure: 1-(1-P)2

–  MTTF is 1/(1-(1-P)2)
•  Say P=0.01, MTTF is

–  100 hours for single drive
–  50.25 hours for 2-drive RAID-0
–  25.38 hours for 4-drive RAID-0

19

•  Disk mirroring
–  Disks paired up, keep identical data
–  A write must update copies on both disks
–  A read can read any of the two copies

•  Improved performance and reliability
–  Can do more reads per unit time
–  If one disk fails, its mirror still has the data

•  If we have more than 2 disks (e.g. 8 disks)
–  “Striped mirrors” (RAID 1+0)

•  Pair disks for mirroring, striping across the 4 pairs
–  “Mirrored stripes” (RAID 0+1)

•  Do striping using 4 disks, then mirror that using the other 4

20

•  P - probability that a drive will die during
one hour
– For a single drive, MTTF = 1/P hours

•  For RAID 1 with two drives:
– Probability that both drives fail during one

hour: P2

– MTTF is 1/P2
•  Say P=0.01, MTTF is

– 100 hours for single drive
– 10,000 hours for 2-drive RAID-1
– 100,000,000 hours for 4-drive RAID-1

21

•  Given N bits {b1, b2, … bN}, the parity bit
will be the bit {0,1}.

 http://www.eecs.harvard.edu/~mdw/course/cs161/notes/raid.pdf

1110 0010 0010 1010

1110 0010 0010 1010

0100

Parity bits

•  Block-interleaved parity
–  One disk is a parity disk, keeps parity blocks
–  Parity block at position X is the parity for all blocks

whose position is X on any of the data disks
–  A read accesses only the data disk where the data is
–  A write must update the data block and its parity block
–  Can recover from an error on any one disk

•  Use parity and other data disks to restore lost data
–  Note that with N disks we have N-1 data disks and

only one parity disk, but can still recover when one
disk fails

–  But write performance worse than with one disk
(all writes must read and then write the parity disk)

23

24

•  Distributed block-interleaved parity
–  Like RAID 4, but parity blocks distributed to all disks
–  Read accesses only the data disk where the data is
–  A write must update the data block and its parity block

•  But now all disks share the parity update load

25

•  P - probability that a drive will die during one hour
–  For a single drive, MTTF = 1/P hours

•  For RAID 5 (and RAID 4) with 4 drives:
–  Probability that none of the four drives fails: (1-P)4

–  Probability that exactly one drive fails: 4*P* (1-P)3

–  Probability that 2 or more drives fail:
 1- [(1-P)4+4*P* (1-P)3]

•  Say P=0.01, MTTF is
–  100 hours for single drive
–  10,000 hours for 2-drive RAID-5 (same as RAID-1)
–  1,689 hours for 4-drive RAID-5

26

•  Two different (P and Q) check blocks
–  Each protection group has

•  N-2 data blocks
•  One parity block
•  Another check block (not the same as parity)

•  Can recover when two disks are lost
–  Think of P as the sum and Q as the product of D

blocks
–  If two blocks are missing, solve equations to get both

back
•  More space overhead (only N-2 of N are data)
•  More write overhead (must update both P and Q)

–  P and Q still distributed like in RAID 5

27

•  RAID-1: Mirroring
–  Just copy disks = 2x disks, ½ for checking

•  RAID-2: Add error-correcting checks
–  Interleave disk blocks with ECC codes (parity, XOR)
–  10 disks requires 4 check disks
–  Same performance as level 1

•  RAID-4: block-interleaved Striping data
–  Spread blocks across disks
–  Improves read performance, but impairs writes

•  RAID-5: block-interleaved distributed parity: Striping
data & check info
–  Removes bottleneck on check disks

•  RAID-6: striped disks with dual parity
–  Row-diagonal parity
–  Protects against two disk failures

•  Information redundancy
•  Parity codes: odd(even) parity code
•  Checksums
•  ECC (Error correction code)

•  Mean number of tasks in system = arrival
rate x mean response time

•  Server utilization = arrival rate x timeserver

•  Example
– A single disk 50 I/O requests per second. The

average time for a disk to service an I/O
request is 10 ms. What is the utilization of the
I/O system?

–  50/sec * 0.01 sec = 0.5

