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Abstract—We consider the problem of how to improve mem-
ory latency tolerance in massively multithreaded GPGPUs when
the thread-level parallelism of an application is not sufficient to
hide memory latency. One solution used in conventional CPU
systems is prefetching, both in hardware and software. However,
we show that straightforwardly applying such mechanisms to
GPGPU systems does not deliver the expected performance ben-
efits and can in fact hurt performance when not used judiciously.

This paper proposes new hardware and software prefetch-
ing mechanisms tailored to GPGPU systems, which we refer
to as many-thread aware prefetching (MT-prefetching) mecha-
nisms. Our software MT-prefetching mechanism, called inter-
thread prefetching, exploits the existence of common memory
access behavior among fine-grained threads. For hardware MT-
prefetching, we describe a scalable prefetcher training algo-
rithm along with a hardware-based inter-thread prefetching
mechanism.

In some cases, blindly applying prefetching degrades perfor-
mance. To reduce such negative effects, we propose an adaptive
prefetch throttling scheme, which permits automatic GPGPU
application- and hardware-specific adjustment. We show that
adaptation reduces the negative effects of prefetching and can
even improve performance. Overall, compared to the state-of-
the-art software and hardware prefetching, our MT-prefetching
improves performance on average by 16% (software pref.) / 15%
(hardware pref.) on our benchmarks.
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I. INTRODUCTION

Broadly speaking, multithreading, caches, and prefetch-

ing constitute the three basic techniques for hiding mem-

ory latency on conventional CPU systems. Of these, mod-

ern general-purpose GPU (GPGPU) systems employ just

two: massive fine-grained multithreading and caches (includ-

ing explicitly-programmed scratchpad/local-store memory).

Multithreading, in particular, is the primary technique, with

current GPGPU processors supporting ten to a hundred times

more threads than state-of-the-art CPU systems. Conse-

quently, when there is significant memory-level parallelism,

but insufficient amounts of thread-level parallelism and data

reuse, we expect poor performance on GPGPUs.

Thus, it is natural to consider prefetching for GPGPUs.

For example, NVIDIA’s Fermi architecture has non-binding

software prefetching instructions [23], and binding software

prefetching via ordinary load operations has been shown to

be effective [28].1 However, adding prefetching to GPGPUs

in a straightforward way does not necessarily improve per-

formance and may even hurt performance when not used

judiciously [34].

Helpful vs. harmful prefetches, and feedback-driven

mechanisms. Prefetching can be harmful in certain cases;

one of the reasons for this is explained here. Prefetch re-

quests can increase the total number of memory requests,

and thereby may increase the delay in servicing demand

memory requests. This problem is more severe in GPGPUs,

since the number of in-flight threads and memory requests

are much higher in typical GPGPU applications compared

to their CPU counterparts: if each of 100 threads generates

an additional prefetch request, there will suddenly be 100

outstanding memory requests. On the other hand, prefetching

can be helpful if the memory system can accommodate addi-

tional memory requests without increasing demand request

service time. Hence, we need a mechanism to decide when

prefetching is useful and when it is harmful.

There are several recently proposed feedback-driven hard-

ware prefetching mechanisms [8, 9, 16, 31]. However, none

directly apply to GPGPUs. First, these mechanisms mainly

control the aggressiveness of speculative prefetch requests,

such as prefetch degree and distance, based on accuracy

and timeliness of prefetching. In GPGPU applications, the

accuracy of prefetching can easily be 100%, since memory

access patterns in current GPGPU applications are usually

regular. Moreover, late prefetch requests in GPGPUs are not

as harmful as they are in CPUs since memory latency can

be partially hidden by switching to other threads. Hence,

we need new feedback mechanisms that specifically target

GPGPU architectures. Second, prior feedback mechanisms

apply mostly to hardware, with relatively little work on

feedback mechanisms for software prefetching. In practice,

software-based prefetching mechanisms require feedback at

run-time to throttle excessive prefetch requests. These obser-

vations motivate our proposal for a new class of software and

hardware prefetching mechanisms for GPGPUs. We refer to

this new class as many-thread aware (MT) prefetching.

1Binding prefetching changes architectural state but non-binding prefetch-
ing does not [17, 20].
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Our contributions.We claim the following contributions.

1) We propose new GPGPU-specific software and hard-

ware prefetching mechanisms, which we refer to as

inter-thread prefetching. In inter-thread prefetching, a

thread prefetches data for other threads rather than for

itself.

2) We enhance the hardware prefetcher training algo-

rithms so that they scale to a large number of threads.

3) To enhance the robustness of these mechanisms, we

develop a new prefetch throttling mechanism that dy-

namically adjusts the level of prefetching to avoid

performance degradation.

Although we focus on GPGPU applications in this pa-

per, our contributions can be applied to other many-thread

architectures and SIMT (single-instruction, multiple-thread)

applications.

II. BACKGROUND

A. Execution Model

The GPGPU system we model follows NVIDIA’s CUDA

programming model [25]. In the CUDA model, each core

is assigned a certain number of thread blocks, a group of

threads that should be executed concurrently. Each thread

block consists of several warps, which are much smaller

groups of threads. A warp is the smallest unit of hardware

execution. A core executes instructions from a warp in an

SIMT (Single-Instruction Multiple-Thread) fashion. In SIMT

execution, a single instruction is fetched for each warp, and

all the threads in the warp execute the same instruction in

lockstep, except when there is control divergence. Threads

and blocks are part of the CUDA programming model, but a

warp is an aspect of the microarchitectural design.

B. GPGPU Architecture and the Memory System
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Figure 1. An overview of the baseline GPGPU architecture.

1) System Architecture: Figure 1 shows the block diagram

of our baseline GPGPU architecture, which is similar to

NVIDIA’s 8800GT [24]. The basic design consists of sev-

eral cores and an off-chip DRAM with memory controllers

located inside the chip. Each core has SIMD execution units,

a software-managed cache (shared memory), a memory-

request queue (MRQ), and other units. The processor has an

in-order scheduler; it executes instructions from one warp,

switching to another warp if source operands are not ready.

A warp may continue to execute new instructions in the pres-

ence of multiple prior outstanding memory requests, provided

that these instructions do not depend on the prior requests.

2) Request Merging in the Memory System: The memory

system may merge different memory requests at various

levels in the hardware, as shown in Figure 2. First, each

core maintains its own MRQ. New requests that overlap with

existing MRQ requests will be merged with the existing re-

quest. This type of merging is intra-core merging. Secondly,

requests from different cores are buffered in the memory-

request buffer of the DRAM controller as they are being

served. If a core generates a request that overlaps with a

request already in the memory-request buffer, the new request

is merged with the old request. This type of merging is inter-

core merging.
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Figure 2. Memory-request merging.

C. Prefetching

1) Software Prefetching: There are currently two software

prefetching mechanisms for GPGPUs.

Prefetching into registers. Ryoo et al. [28] describe a reg-

ister prefetching mechanism for GPGPU applications. Their

scheme is the same as binding prefetching as used in CPUs.

This mechanism does not require any special prefetching

instructions and also applies to GPGPUs that do not have a

hardware managed cache. However, since it increases register

usage,2 it might decrease the number of threads that may be

active, thereby reducing thread-level parallelism [34].

Prefetching into cache. NVIDIA’s recently introduced

Fermi architecture supports software prefetching via two

explicit prefetch instructions. These instructions prefetch a

cache block from either global or local memory into either

the L1 or L2 cache.

2) Hardware Prefetching: Since there is no publicly avail-

able information about hardware prefetchers in GPGPUs, we

assume that current GPGPUs do not include any hardware

prefetchers. In this section, we briefly review some of the

hardware prefetchers that have been proposed instead for

CPUs.

Stream prefetchers.A stream prefetcher monitors a mem-

ory region (e.g., a few cache blocks) and detects the direction

2Even if data is prefetched from the global memory and stored in a shared
memory, registers must be used before storing the data in the shared memory.
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of access [15, 26]. Once a constant access direction is de-

tected, the stream prefetcher launches prefetch requests in the

direction of access.

Stride prefetchers. A stride prefetcher tracks the address

delta between two accesses by the same PC or between two

accesses that are within the same memory region [4, 11]. If

a constant delta is detected, the prefetcher launches prefetch

requests using this delta.

GHB prefetchers. A global history buffer prefetcher

stores recent miss addresses in an n-entry FIFO table, called

the global history buffer (GHB) [14, 21]. Each entry stores a

miss address and a link pointer to another entry in the table.

Using this pointer, a GHB prefetcher can detect stream, stride,

and even irregular repeating memory address patterns.

3) Prefetching Configuration: We characterize the “ag-

gressiveness” of a prefetcher (whether in software or hard-

ware) by two parameters: the prefetch distance and the

prefetch degree. The prefetch distance specifies how advance

prefetch requests can be generated from the current demand

request that triggered prefetching. The prefetch degree deter-

mines how many requests can be initiated by one prefetch

trigger.

III. PREFETCHING MECHANISMS FOR GPGPUS

This section describes our many-thread aware prefetching

(MT-prefetching) schemes, which includes both hardware

and software mechanisms. To support these schemes, we

augment each core of the GPGPUs with a prefetch cache and

a prefetch engine. The prefetch cache holds the prefetched

blocks from memory and the prefetch engine is responsible

for throttling prefetch requests (see Section V).

A. Software Prefetching

We refer to our software prefetching mechanism as many-

thread aware software prefetching (MT-SWP). MT-SWP con-

sists of two components: conventional stride prefetching and

a newly proposed inter-thread prefetching (IP).

1) Stride Prefetching: This mechanism is the same as the

traditional stride prefetching mechanism. The prefetch cache

stores any prefetched blocks.

2) Inter-thread Prefetching (IP): One of the main differ-

ences between GPGPU applications and traditional applica-

tions is that GPGPU applications have a significantly higher

number of threads. As a result, the execution length of each

thread is often very short. Figure 3 shows a snippet of sequen-

tial code with prefetch instructions and the equivalent CUDA

code without prefetch instructions. In the CUDA code, since

the loop iterations are parallelized and each thread executes

only one (or very few) iteration(s) of the sequential loop, there

are no (or very few) opportunities to insert prefetch requests

for subsequent iterations (if any) of the loop executed by

the thread. Even if there are opportunities to insert prefetch

requests, the coverage of such requests will be very low for

this type of benchmark.

// there are 100 threads 

__global__ void KernelFunction(…) { 

  int tid = blockDim.x * blockIdx.x + threadIdx.x; 

  int varA = aa[tid]; 

  int varB = bb[tid]; 

  C[tid] = varA + varB; 

} 

for (ii = 0; ii < 100; ++ii) { 

 prefetch(A[ii+1]); 

 prefetch(B[ii+1]); 

 C[ii] = A[ii] + B[ii]; 

} 

Figure 3. An example sequential loop (left) and the corresponding CUDA
code (right).

Alternatively, each thread could prefetch for threads in

other warps, instead of prefetching for itself. Figure 4 shows

an example in which a given thread prefetches for the corre-

sponding thread in the next thread warp. Threads T0, T1, and

T2 in Warp 0 generate prefetch requests for T32, T33, and

T34 in Warp 1. The thread IDs can be used to prefetch data

for other thread warps. This mechanism is called inter-thread

prefetching (IP).

__global__ void KernelFunction(…) { 

 int tid = blockDim.x * blockIdx.x + threadIdx.x; 

 // a warp consists of 32 threads 

 int next_warp_id = tid + 32; 

 

  prefetch(A[next_warp_id]); 

 prefetch(B[next_warp_id]); 

  int varA = aa[tid]; 

  int varB = bb[tid]; 

  C[tid] = varA + varB; 

} 

(a) Prefetch code example

0 64 128 Mem addr 

T0      T1     T2 T32    T33   T34 T64   T65   T66 

Prefetch Request 
Prefetch Request 

(b) An example of inter-thread prefetching with memory addresses shown

Figure 4. Inter-thread prefetching example.

IP may not be useful in two cases. The first case is when

demand requests corresponding to prefetch requests have al-

ready been generated. This can happen because warps are not

executed in strict sequential order. For example, when T32

generates a prefetch request for T64, T64 might have already

issued the demand request corresponding to the prefetch

request generated by T32. These prefetch requests are usu-

ally merged in the memory system since the corresponding

demand requests are likely to still be in the memory system.

The second case is when the warp that is prefetching is

the last warp of a thread block and the target warp (i.e.

thread block to which the target warp belongs) has been

assigned to a different core. Unless inter-core merging occurs

in the DRAM controller, these prefetch requests are useless.

This problem is similar to the out-of-array-bounds problem

encountered when prefetching in CPU systems. Nevertheless,

we find that the benefits of IP far outweigh its negative effects.
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B. Hardware Prefetching

We refer to our hardware prefetching mechanism as

the many-thread aware hardware prefetcher (MT-HWP).

MT-HWP has (1) enhanced prefetcher training algorithms

that provide improved scalability over previously proposed

stream/stride prefetchers and (2) a hardware-based inter-

thread prefetching (IP) mechanism.

1) Scalable Hardware Prefetcher Training: Current

GPGPU applications exhibit largely regular memory access

patterns, so one might expect traditional stream or stride

perfetchers to work well. However, because the number of

threads is often in the hundreds, traditional training mecha-

nisms do not scale.

Here, we describe extensions to the traditional training

policies, for program counter (PC) based stride prefetch-

ers [4, 11], that can overcome this limitation. This basic idea

can be extended to other types of prefetchers as well.
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Figure 5. An example of memory address with/without warp interleaving
(left: accesses by warps, right: accesses seen by a hardware prefetcher).

• Per warp training: Stream and stride detectors must be

trained on a per-warp basis, similar to those in simulta-

neous multithreading architectures. This aspect is criti-

cal since many requests from different warps can easily

confuse pattern detectors. Figure 5 shows an example.

Here, a strong stride behavior within each warp exists,

but due to warp interleaving, a hardware prefetcher only

sees a random pattern. Even though stream prefetchers

are trained by memory address regions, finding the pat-

tern of the direction of accesses might be difficult. In our

MT-HWP, stride information trained per warp is stored

in a per warp stride (PWS) table, which is similar to the

prefetch table in traditional stride/stream prefetchers.

• Stride promotion: Since memory access patterns are

fairly regular in GPGPU applications, we observe that

when a fewwarps have the same access stride for a given

PC, all warps will often have the same stride for the

PC. Based on this observation, when at least three PWS

entries for the same PC have the same stride, we promote

the PC stride combination to the global stride (GS) table.

By promoting strides, yet-to-be-trained warps can use

the entry in the GS table to issue prefetch requests imme-

diately without accessing the PWS table. Promotion also

helps to minimize the space requirement for the PWS

table. If stride distances among warps are not the same,

the stride information cannot be promoted and stays in

the PWS table. In our design, both PWS and GS tables

use a LRU replacement policy.

2) Inter-thread Prefetching in Hardware: We propose a

hardware-based inter-thread prefetching (IP) mechanism, in

addition to our software-based IP scheme (Section III-A).

The key idea behind hardware IP is that when an application

exhibits a strided memory access pattern across threads at the

same PC, one thread generates prefetch requests for another

thread. This information is stored in a separate table called an

IP table. We train the IP table until three accesses from the

same PC and different warps have the same stride; thereafter,

the prefetcher issues prefetch requests from the table entry.

3) Implementation: Figure 6 shows the overall design of

the MT-HWP, which consists of the three tables discussed

earlier: PWS, GS, and IP tables. The IP and GS tables are

indexed in parallel with a PC address. When there are hits

in both tables, we give a higher priority to the GS table

because strides within a warp are much more common than

strides across warps. Furthermore, the GS table contains only

promoted strides, which means an entry in the GS table has

been trained for a longer period than strides in the IP table. If

there are no hits in any table, then the PWS table is indexed

in the next cycle. However, if any of the tables have a hit, the

prefetcher generates a request.

IV. UNDERSTANDING USEFUL VS. HARMFUL

PREFETCHING IN GPGPU

In practice, overly aggressive prefetching can have a nega-

tive effect on performance. In this section, we explain when

prefetching is useful, neutral (has no effect), and harmful,

using a simple analytical model.

A. Useful or Neutral (No-effect) Prefetch Requests

The principal memory latency tolerance mechanism in a

GPGPU is multithreading. Thus, if a sufficient number of

warps and/or enough computation exist, memory latency can

be easily hidden. To aid our understanding of the utility of

prefetching, we define a new term, the minimum tolerable

average memory latency (MTAML ).MTAML is the minimum

average number of cycles per memory request that does not

lead to stalls. This value is essentially proportional to the

amount of computation between memory requests and the

number of active warps:

MTAML =
#comp inst

#mem inst
× (#warps − 1) (1)

#comp inst: number of non-memory warp-instructions,

#mem inst: number of memory warp-instructions,

#warps: number of active warps (warps that are concurrently running on a core)

That is, as the amount of computation per memory instruction

increases, MTAML also increases, meaning it is easier to

hide memory latency. Similarly, if there are many warps,
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Figure 6. Many-thread aware hardware prefetcher (MT-HWP).

we can easily hide memory latency, and MTAML again in-

creases. Furthermore, if the average memory latency is below

MTAML, we do not expect any benefit from prefetching.

When there is prefetching, a prefetch cache hit will have

the same latency as other computational instructions. Given

the probability of a prefetch cache hit, we can compute

MTAML under prefetching as follows:

MTAML pref =
#comp new

#memory new
× (#warps − 1) (2)

#comp new = #comp inst + Prob(pref hit) × (#mem inst) (3)

#memory new = (1 − Prob(pref hit)) × (#mem inst) (4)

Prob(pref hit): probability of the prefetch cache hit

That is, increasing the prefetch hit probability reduces the

number of instructions that have to be tolerated (denomi-

nator), thereby increasing the effective MTAML. Note that

#memory new does not include prefetch instructions, be-

causeMTAML is calculated for demand memory instructions

only.
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Figure 7. Minimum tolerable average memory latency vs. # of active warps.

We now explain how MTAML can help distinguish when

prefetching has an overall beneficial (useful), harmful, or no-

effect.

Consider a hypothetical computation for which the mea-

sured average latency of a memory operation for a varying

number of warps is as shown by the curve AVG Latency in

Figure 7. As we increase the number of in-flight memory

instructions, the average memory latency also increases due

to an increase in delay and contention in the memory system.

Now, suppose we add prefetching; then, the measured average

memory latency ignoring successfully prefetched memory

operations will follow the curve AVG Latency (PREF). In

this hypothetical example, the latency has actually increased

with prefetching for the reasons outlined in Section IV-B. The

question is whether this increase has any impact on the actual

execution time.

MTAML helps answer this question. We differentiate the

following 3 cases.

1) AVG Latency < MTAML and AVG Latency (PREF)

< MTAML pref : multithreading is effective and

prefetching has no effect. Even without prefetching,

the application can tolerate memory latency therefore

prefetching does not provide any additional benefit.

2) AVG Latency > MTAML: there is at least some

potential for prefetching to be beneficial, provided

AVG Latency (PREF) is less than MTAML pref . In

this case, without prefetching, the application cannot

tolerate memory latency (i.e., MTAML is less than

AVG Latency), but with prefetching MTAML pref

becomes greater than AVG Latency (PREF), so the

application can tolerate memory latency.

3) Remaining cases: prefetching might be useful or harm-

ful. The application cannot completely tolerate memory

latency with and without prefetching. However, this

does not mean that all prefetch instructions are harmful

because we are considering only the average case in

this example.

However, distinguishing these cases is a somewhat subtle

and perhaps non-obvious process because 1) the number

of warps varies depending on input sizes and 2) the same

static prefetch instruction can be harmful/useful/no-effect

depending on the number of warps. Thus, this provides the

motivation for our adaptive scheme in Section V.

B. Harmful Prefetch Requests

The key reason prefetch requests may hurt performance is

due to the potential increase in delay in servicing memory

requests. The reasons for such delays are numerous, includ-

ing (a) queuing delay, (b) DRAM row-buffer conflicts, (c)

wasting of off-chip bandwidth by early prefetches (prefetched

block is evicted before it is used), and (d) wasting of off-chip

bandwidth by inaccurate prefetches. The first three reasons
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may still harm performance even when prefetch accuracy is

near 100%.

We observe these cases in our experiments. Figure 8 shows

the average memory latency with prefetching, normalized to

the no-prefetching case (The detailed methodology and mem-

ory policies are discussed in Section VI). A circle on top of

each bar displays the prefetch accuracy. The average memory

latency increases significantly with software prefetching, just

as in our hypothetical example. In some cases, it is more

than three times the average latency without prefetching.

Moreover, this average latency can still be more than two

times the average without prefetching even when the accuracy

of prefetching is close to 100%, as in the case of the stream

benchmark. Thus, we need metrics other than accuracy to

detect harmful prefetch requests.
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Figure 8. Normalized memory latency (bar) and prefetch accuracy (circle).

V. ADAPTIVE PREFETCH THROTTLING

We would like to eliminate the instances of prefetching

that yield negative effects while retaining the beneficial cases.

Thus, we propose a prefetch throttling mechanism for MT-

prefetching. Figure 9 shows the overall design of our throt-

tling framework.
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Figure 9. Adaptive prefetch throttling framework.

A. Metrics

Our ultimate throttling mechanism is based on the consid-

eration of two metrics, early eviction rate and merge ratio.

The early eviction rate is the number of items (cache

blocks) evicted from the prefetch cache before their first use,

divided by the number of useful prefetches, as shown in Eq. 5.

Metric(EarlyEviction) =
#EarlyEvictions

#UsefulPrefetches
(5)

The number of early evictions from the prefetch cache

and useful prefetches are measured in the same way as

in feedback-driven prefetch mechanisms [8, 9, 31]. We

choose this as a primary metric because the number of

early prefetches directly tells us about the degree of harmful

prefetches. These early evicted prefetches are always harm-

ful. They consume system bandwidth, delay other requests,

and evict useful blocks from the prefetch cache without

themselves being used.

The merge ratio is the number of intra-core merges that

occur divided by the total number of requests:

Metric(Merge) =
#IntraCoreMerging

#TotalRequest
(6)

To understand this metric, consider the following. With

prefetching enabled, it is possible for a demand request to

merge with the corresponding prefetch request and vice-

versa.3 Note that since the throttle engine is inside the core,

we count only intra-core merges (Figure 2a). Such merges

indicate that prefetch requests are late. However, in contrast

to CPU systems where late prefetches typically result in

pipeline stalls, merged requests usually do not cause pipeline

stalls, since such stalls can be avoided by switching to a

different warp if there are other ready warps. Thus, merging

in GPGPUs indicates a performance benefit rather than harm.

B. Training and Throttling Actions

Our adaptive throttling mechanism maintains the early

eviction rate and merge ratio, periodically updating them and

using them to adjust the degree of throttling.4

At the end of each period, we update the early eviction

rate and merge ratio based on the monitored values during

the period as well as the values from the previous period,

according to Eq. 7 and Eq. 8.

Current(EarlyEviction) = Monitored(EarlyEviction) (7)

Current(Merge) =
Previous(Merge) + Monitored(Merge)

2
(8)

Table I
THROTTLING HEURISTICS.

Condition
Action

Early Eviction Rate Merge

High - No Prefetch

Medium - Increase throttle (fewer prefetches)

Low High Decrease throttle (more prefetches)

Low Low No Prefetch

The throttling degree varies from 0 (0%: keep all

prefetches) to 5 (100%: no prefetch). We adjust this degree

using the current values of the two metrics according to the

heuristics in Table I. The early eviction rate is considered high

if it is greater than 0.02, low if it is less than 0.01, and medium

otherwise. The merge ratio is considered high if it is greater

than 15% and low otherwise.5 The prefetch engine in a core

can only throttle prefetch requests originating from that core.

Initially, the degree is set to a default value (we use ‘2’ in our

evaluation).

3Prefetch requests can be also merged with other prefetch requests.
4The length of a period is adjustable, and we use a period of 100,000 cycles

in our evaluations.
5The threshold values for high and low are decided via experimental eval-

uations. We do not show those experimental results due to space constraints.
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VI. METHODOLOGY

A. Simulator

Table II
THE BASELINE PROCESSOR CONFIGURATION.

Number of cores 14 cores with 8-wide SIMD execution

Front End
Fetch width: 1 warp-instruction/cycle,
4KB I-cache, stall on branch, 5 cycle decode

Execution core
Frequency: 900 MHz, in-order scheduling,
Latencies modeled according to the CUDA manual [25]
IMUL:16-cycle/warp, FDIV:32-cycle/warp, Others:4-cycle/warp

On-chip caches
Shared memory: 16KB sw-managed cache, 16 loads/2-cycle
Constant/Texture cache: 1-cycle latency, 16 loads/2-cycle
Prefetch cache: 16 KB, 8-way

DRAM

2 KB page, 16 banks, 8 channel, 57.6 GB/s bandwidth,
Demand has higher priority than prefetch requests
1.2 GHz memory frequency, 900 MHz bus frequency,
tCL=11, tRCD=11, tRP =13

Interconnection
20-cycle fixed latency,
at most 1 req. from every 2 cores per cycle

We use an in-house cycle-accurate, trace-driven simulator

for our simulations. The inputs to the simulator are traces

of GPGPU applications generated using GPUOcelot [7],

a binary translator framework for PTX. We use a base-

line processor/SM for our simulations based on NVIDIA’s

8800GT [24], whose configuration Table II summarizes. In

addition to modeling the multithreaded pipeline of the SMs,

the simulator models the memory hierarchy in considerable

detail. In particular, the simulator handles multiple in-flight

memory requests from the same warp (Section II-B).

B. Benchmarks

Table III shows the 14 memory-intensive benchmarks that

we evaluate, taken from CUDA SDK [22], Merge [18],

Rodinia [3], and Parboil [1] suites. We classify as memory-

intensive the benchmarks whose baseline CPI is 50% more

than the CPI with a perfect memory. We categorize the bench-

marks into three groups based on their characteristics. Stride-

type benchmarks show strong stride behavior, including mul-

tidimensional patterns. Mp-type benchmarks are massively

parallel benchmarks. They have a significantly high number

of threads, i.e., # warps * 32. Typically these threads do

not contain any loops, so the execution time of each thread

is very short. These benchmarks are good candidates for

inter-thread prefetching. Finally, uncoal-type benchmarks are

applications with dominant uncoalesced memory accesses.

We calculate the maximum number of thread blocks al-

lowed per SM, also shown in Table III, using the CUDA

occupancy calculator, which considers the shared memory

usage, register usage, and the number of threads per thread

block.

Table IV summarizes the CPI of non-memory-intensive

benchmarks from the suites we use.6 Since these benchmarks

are not memory intensive, hardware prefetching and even

perfect memory do not affect their performance significantly.

6Note that we omit the benchmarks that are not sufficiently long, for
example bandwidthTest and simplegl.

VII. SOFTWARE PREFETCHING RESULTS

This section evaluates our proposed MT-SWP against pre-

viously proposed software prefetching mechanisms, which

are explained in Section II-C1. Note that stride is similar to

conventional stride prefetching and the prefetched block will

be stored in the prefetch cache. MT-SWP is the combination

of stride and IP prefetching. Only the stride-type benchmarks

contain register-based prefetching because the other evalu-

ated benchmarks (mp-type and uncoal-type) do not contain

any loops.

A. Non-adaptive GPGPU Prefetching

Figure 10 shows the speedup with different software

prefetching mechanisms over the baseline binary that does

not have any software prefetching. The results show that

stride prefetching always outperforms register prefetching ex-

cept in stream. The reason stride prefetching performs better

than register prefetching is because register prefetching uses

registers to store prefetched data, while stride prefetching

uses a prefetch cache. However, in the case of stream, the

instruction overhead due to prefetching (30% increase in

instruction count) and late prefetches (90% of prefetches are

late) offset the benefit of prefetching.

2.3  2.2 3.3  3.2 

0.6
0.8

1
1.2
1.4
1.6
1.8

2

stride-type mp-type uncoal-type

S
p

e
e
d

u
p

 

Register Stride IP Stride+IP

Figure 10. Performance of software GPGPU prefetching.

IP provides significant performance improvement for back-

prop, bfs, linear, and sepia, which are all mp-type and

uncoal-type benchmarks. However, it degrades performance

for ocean and cfd, for two reasons: 1) there are too many early

prefetches: the instructions that source prefetched blocks

are executed too late; and 2) there are too many redundant

prefetches: warps generate prefetch requests for already exe-

cuted warps.

Overall, static MT-SWP improves performance over stride

prefetching by 12% and over register prefetching by 28%.

B. Adaptive Software Prefetching

Figure 11 shows the speedup of MT-SWP with prefetch

throttling over the baseline. Throttling improves the perfor-

mance of several benchmarks by reducing the number of early

prefetches and bandwidth consumption, as shown in Fig-

ure 12. Prefetch throttling improves performance of stream,

cell, and cfd by 10%, 5%, and 12%, respectively over MT-

SWP (the bandwidth consumption for these three benchmarks

is also reduced). With MT-SWP only, these benchmarks have

7
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Table III
BENCHMARKS CHARACTERISTICS (BASE CPI: CPI OF BASE BINARY (CPI IS CALCULATED USING EQUATION IN [12]), PMEM CPI: CPI WITH

PERFECT MEMORY SYSTEM, DEL LOADS: NUMBER OF DELINQUENT LOADS) / (BLACK:BLACKSCHOLES, CONV:CONVOLUTIONSEPARABLE,
MERSENNE:MERSENNETWISTER, MONTE:MONTECARLO, SCALAR:SCALARPROD, STREAM:STREAMCLUSTER, OCEAN:OCEANFFT).

black conv mersenne monte pns scalar stream backprop cell ocean bfs cfd linear sepia

Suite sdk sdk sdk sdk parboil sdk rodinia rodinia rodinia sdk rodinia rodinia merge merge

# Total warps 1920 4128 128 2048 144 1024 2048 16384 21296 32768 2048 7272 8192 8192

# Blocks 480 688 32 256 18 128 128 2048 1331 16384 128 1212 1024 1024

Base CPI 8.86 7.98 7.09 13.69 18.87 19.25 18.93 21.47 8.81 62.63 102.02 29.01 408.9 149.46

PMEM CPI 4.15 4.21 4.99 5.36 5.25 4.19 4.21 4.16 4.19 4.19 4.19 4.37 4.18 4.19

# DEL Loads (Stride/IP) 3/0 1/0 2/0 1/0 1/1/ 2/0 2/5 0/5 0/1 0/1 4/3 0/36 0/27 0/2

Type stride stride stride stride stride stride stride mp mp mp uncoal uncoal uncoal uncoal

# Max blocks/core 3 2 2 2 1 2 1 2 1 8 1 1 2 3

Table IV
CHARACTERISTICS OF NON-MEMORY INTENSIVE BENCHMARKS (HWP CPI: CPI WITH HARDWARE PREFETCHER).

Benchmarks binomial dwthaar1d eigenvalue gaussian histogram leukocyte matrix mri-fhd mri-q nbody qusirandom sad

Suite sdk sdk sdk rodinia sdk rodinia sdk parboil parboil sdk sdk rodinia

Base CPI 4.29 4.6 4.73 6.36 6.29 4.23 5.14 4.36 4.31 4.72 4.12 5.28

PMEM CPI 4.27 4.37 4.72 4.18 5.17 4.2 4.14 4.26 4.23 4.54 4.12 4.17

HWP CPI 4.25 4.45 4.73 5.94 6.31 4.23 4.98 4.33 4.31 4.72 4.12 5.18

many early prefetches. These harmful prefetches are success-

fully detected and removed by the throttling mechanism.

Overall, MT-SWP with throttling provides 4% benefit over

MT-SWPwithout throttling, 16% benefit over stride prefetch-

ing (state-of-the-art software prefetching for GPGPUs), and

36% benefit over the baseline (no prefetching case).
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Figure 11. Performance of MT-SWP throttling.
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(b) Bandwidth consumption of MT-SWP throttling normalized to no-prefetching case

Figure 12. Early prefetches and bandwidth consumption of MT-SWP
throttling.

VIII. HARDWARE PREFETCHING RESULTS

In this section, we evaluate different hardware prefetchers,

including MT-HWP. Note that for all hardware prefetchers,

we use a prefetch distance of 1 and a prefetch degree of 1

as the default. Other distance configurations are evaluated in

Section IX.

A. Previously Proposed Hardware Prefetchers

We first evaluate hardware prefetchers that were previously

proposed for CPUs (Section II-C2). Table V summarizes the

configurations of the prefetchers we evaluated.

Table V
DESCRIPTION OF EVALUATED HARDWARE PREFETCHERS.

Prefetcher Description Configuration

Stride RPT Stride prefetcher [13] 1024-entry, 16 region bits

StridePC Stride prefetcher per PC [4, 11] 1024-entry

Stream Stream prefetcher [29] 512-entry

GHB AC/DC GHB prefetcher [14, 21]
1024-entry GHB, 12-bit CZone,
128-entry Index Table

As we argued in Section III-B1, all prefetchers should be

trained using the warp id for effective prefetching. However,

in this section, for each prefetcher, we evaluate both its naı̈ve

version (i.e., mechanism as it was proposed) and an enhanced

version that uses warp ids.

Figure 13 shows the speedup with hardware prefetchers

over the no prefetching case. Interestingly, in Figure 13a, the

naı̈ve versions show both positive and negative cases. For the

positive cases, even though the prefetchers are not trained by

warp id, the same warp is executed for a long enough period

to train the prefetcher. The negative cases (black and stream)

are due to poor training because of accesses from many warps

as discussed in Section III-B.

Across the different benchmarks, the performance of the

enhanced versions of the prefetchers is in general more stable

than that of the naı̈ve versions as shown in Figure 13b.

Also, not many positive or negative cases are seen; in other
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Figure 13. Performance of hardware prefetchers.

words, the enhanced versions of hardware prefetchers are

ineffective. This is because the effective sizes of prefetch

tables are reduced by the number of active warps. However,

StridePC prefetcher is an exception to the general ineffective-

ness of hardware prefetchers, providing 10%, 74%, 142%,

and 49% improvement for black, mersenne, monte, and pns,

respectively. This is due to its good prefetch accuracy and

coverage for these benchmarks, especially for mersenne and

monte (both accuracy and coverage are near 100%). StridePC

prefetcher degrades the performance of stream by 35% be-

cause of too many late prefetches (93%). GHB improves

performance of scalar and linear by 12% and 8%. However,

GHB’s low coverage (at most 10% in scalar) prevents further

performance improvement.

Thus, we can conclude that hardware prefetchers cannot be

successful for many-thread workloads without warp id index-

ing (to improve accuracy) and better utilization of reduced

effective prefetcher size (to provide scalability). Hence, the

rest of the paper uses GHB and StridePC prefetchers trained

with warp ids for comparisons.

B. Many-thread Aware Hardware Prefetcher (MT-HWP)

Since MT-HWP consists of multiple tables, we evaluate

different configurations of MT-HWP to show the benefit

resulting from each table. Note that the enhanced version of

StridePC prefetcher is essentially the same as the PWS table

only configuration. In our evaluations, we use 32-entry PWS

table, 8-entry GS table, and 8-entry IP table.

Figure 14 shows the performance improvement with differ-

ent MT-HWP configurations. While the PWS table provides

significant performance improvement for some benchmarks,

the GS table does not significantly add to the improvement

provided by the PWS table. However, the main benefit of the

GS table comes from its power efficiency and reduction of

the PWS table size. Once a trained stride is promoted to the

GS table, accesses from the same PC do not need to access

the PWS table unless the entry is evicted from the GS table.

Also, the GS table has a much smaller number of entries and

is indexed only by the PC address, whereas the PWS table

requires PC address and warp id. The GS table reduces the

number of PWS accesses by 97 % on average for the stride-

type benchmarks.

2.4 / 2.4 / 2.4 / 2.4 

0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

stride-type mp-type uncoal-type

S
p

e
e
d

u
p

 

GHB PWS PWS+GS PWS+IP PWS+GS+IP

Figure 14. Performance of MT-HWP vs. GHB.

Inter-thread prefetching significantly improves the perfor-

mance of backprop, bfs, cfd, and linear. However, IP does

not provide any performance improvement for the stride-

type benchmarks even though these benchmarks show stride

behavior between warps. Since PWS has higher priority than

IP, all prefetches are covered by PWS .

Table VI summarizes the hardware cost of MT-HWP.

Compared with other hardware prefetchers, even when using

fewer table entries, MT-HWP can be very effective. Since the

GS table stores all promoted strides, it can reduce training

time and also help tolerate the eviction of trained entries

from the PWS table. Overall, MT-HWP provides 15%, 24%,

and 25% improvement over PWS only (enhanced StridePC),

GHB, and the baseline (no-prefetching), respectively.

Table VI
HARDWARE COST OF MT-HWP.

Table Fields Total bits

PWS PC (4B), wid (1B), train (1b), last (4B), stride (20b) 93 bits

GS PC (4B), stride (20b) 52 bits

IP PC (4B), stride (20b), train (1b), 2-wid (2B), 2-addr (8B) 133 bits

Total 32 × 93 (PWS) + 8× 52 (GS) + 8 × 133 (IP) 557 Bytes

C. Prefetch Throttling for MT-HWP

In this section, we evaluate MT-HWP with prefetch throt-

tling along with the feedback-driven GHB [31] and the

StridePC prefetcher with throttling. Based on prefetch ac-

curacy, the feedback-driven GHB (GHB+F) can control the

prefetch degree. In other words, it can launch more prefetches

when its accuracy is higher than a certain threshold. The

StridePC with throttling reduces the number of generated

prefetches based on the lateness of the earlier generated

prefetches. The StridePC and MT-HWP mechanisms with

throttling are denoted as StridePC+T and MT-HWP+T, re-

spectively.

Figure 15 shows the speedup over the baseline (no prefetch

case) for mechanisms without and with feedback/throttling.

GHB+F significantly improves the performance of monte,
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Figure 15. Performance of MT-HWP throttling.

0.9

1

1.1

1.2

1.3

1.4

1.5

MT-HWP MT-HWP+T MT-SWP MT-SWP+T

S
p

e
e
d

u
p

 

1K 2K 4K 8K 16K 32K 64K 128K

Figure 16. Sensitivity to prefetch cache size (+T: Throttling).

scalar, cell, and linear, compared to GHB. Since its accuracy

for these benchmarks is fairly high (more than 50%), GHB+F

can generate more useful prefetch requests. However, its

benefit is still much lower than that of MT-HWP and MT-

HWP+T due to its low coverage. Compared to StridePC,

StridePC+T improves the performance of stream only. For

stream, StridePC+T reduces the number of late prefetches re-

sulting in a performance improvement of 40%. MT-HWP+T

improves the performance of stream by 46% over MT-HWP

for the same reason. MT-HWP+T also improves the perfor-

mance of linear by 5% over MT-HWP. For other benchmarks,

MT-HWP+T is unable to improve performance significantly

over MT-HWP because prefetching already brings about

enough positive effect on the performance.

Throttling MT-HWP eliminates the negative effects of MT-

HWP, especially in stream. cfd, linear, and sepia also get

some small performance improvement through throttling.

On average, MT-HWP with throttling provides a 22% and

15% improvement over GHB with feedback and StridePC

with throttling, respectively. Overall, adaptive MT-HWP pro-

vides a 29% performance improvement over the baseline.

IX. MICRO-ARCHITECTURE SENSITIVITY STUDY

A. Prefetch Cache Size

Figure 16 shows the speedup as we vary the size of the

prefetch cache from 1KB to 128KB for MT-HWP and MT-

SWP without and with throttling.

As cache size increases, the rate of early evictions de-

creases and performance increases. Unfortunately, with a

1KB prefetch cache, prefetching actually degrades perfor-

mance. However, with throttling, even with a 1KB prefetch

cache, both MT-HWP and MT-SWP provide performance

improvement.
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Figure 17. Sensitivity of MT-HWP to prefetch distance.

On the other hand, we also notice that the impact of

throttling decreases as the cache size increases. The throttling

mechanism throttles the number of prefetches based on the

eviction rate from the prefetch cache. As mentioned earlier,

the eviction rate decreases as the cache size increases; hence

at larger cache sizes there is less scope for throttling.

B. Prefetch Distance

Figure 17 shows the speedup for MT-HWP over the base-

line as its prefetch distance is varied from 1 (baseline) to

15. For most benchmarks, a prefetch distance of 1 shows

the best performance. This is not surprising because GPGPU

applications behave differently from CPU applications. The

main reason for using aggressive (large) prefetch distances

in CPU applications is to reduce late prefetches when the

computation in a loop is not sufficient to hide prefetch re-

quest latency. Because of the large number of in-flight warps

and the switching of execution among them, the number

of late prefetches is usually low for GPGPU applications.

By increasing the distance, many prefetches become early

because the prefetch cache is not able to hold all prefetched

blocks from many warps until they are needed. One exception

to this behavior is the stream benchmark. At a distance of

1, 93% of prefetches are late, but by increasing the ag-

gressiveness of prefetching, we see significant performance

improvement. However, the performance benefit decreases as

we continue to increase distance (after prefetch distance 5) as

more prefetches become early.

C. Number of Cores

In order to see whether prefetching continues to provide a

benefit as the number of cores increases, we conduct exper-

iments with the number of cores varying from 8 cores to 20

cores (baseline has 14 cores). Note that the DRAM bandwidth

was kept the same in all the experiments. As shown in Fig-

ure 18, the performance improvement decreases slightly as

the number of cores increases. For example, the performance

of MT-SWP decreases from 137% over no-prefetching for 8

cores to 131% over no-prefetching for 20 cores. The drop in

performance can be attributed to the increasing contention in

the interconnect and DRAM due to the increase in the number

of memory requests (active warps) in the system. However,

we expect that as the number of cores increase, the DRAM

bandwidth (and interconnect bandwidth) will also increase;
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Figure 18. Sensitivity to number of cores.

thus contention will not increase significantly and prefetching

will be viable even if the number of cores is increased.

X. RELATED WORK

We summarize prior work on prefetching for GPGPU ap-

plications and dynamic adaptation techniques for prefetching.

A. Prefetching for GPGPU Applications

Ryoo et al. [28] showed that prefetching into registers can

yield benefits through binding operations. Recently, Yang et

al. [34] proposed a compiler algorithm for register based

prefetching along with several other compiler optimizations

for GPGPU applications. Tarjan et al. [32] proposed the

“diverge on miss” mechanism for improving memory access

latency tolerance of SIMD cores with caches. Meng et al. [19]

proposed dynamic warp subdivision to reduce performance

degradation due to divergent warps in SIMD cores with

caches. Although prefetching is not the main component of

these two mechanisms, to some extent, both rely on the

prefetching effect provided by the early execution of some

threads in a warp to achieve performance improvement.

B. Dynamic Adaptation of Prefetching Policy

Adaptive prefetching has been studied by several re-

searchers. Much of prior work uses prefetching accuracy as

the main feedback metric. For example, Dahlgren et al. [5]

measured the prefetching accuracy and adjusted the prefetch

distance based on the accuracy. Srinath et al. [31] proposed a

more sophisticated feedback mechanism. In their work, not

only the prefetching accuracy but also the timeliness and

cache pollution effect are used to reduce the negative effects

of prefetching.

Some research has focused on throttling prefetch requests

instead of controlling the aggressiveness of prefetching. A

throttling mechanism controls only the priority of requests (or

even drops requests) but does not control the aggressiveness

of prefetching. Zhuang and Lee [35] proposed hardware

based cache pollution filters for processors employing ag-

gressive prefetching (both hardware and software). They clas-

sified useful prefetches as good prefetches while early and

wrong prefetches were classified as bad prefetches. A history

table (based on PC or request address) stores information as

to whether a prefetch is good or bad. If a prefetch is con-

sidered as bad, it is dropped immediately. Ebrahimi et al. [9]

proposed a coordinated throttling of multiple prefetchers in

a core for prefetching linked data structures. They monitor

accuracy and coverage of each prefetcher and control the

aggressiveness. Ebrahimi et al. [8] also proposed a prefetch

throttling mechanism among multiple prefetchers in a CMP

system. In a CMP system, very aggressive prefetching (even

though its accuracy is very high) from one application may

hurt other applications running together with it because of

inter-core interference with prefetch and demand accesses

from other cores. Thus, they propose a hierarchical prefetch

coordination mechanism that combines per-core (local) and

prefetch-caused inter-core (global) interference feedback to

maximize the benefits of prefetching on each core while

maintaining overall system performance.

Lee et al. [16] proposed Prefetch-Aware DRAM Con-

trollers that dynamically prioritize between prefetch and

demand requests based on the accuracy of the prefetcher.

The proposed DRAM controllers also drop prefetch requests

that have been resident in the DRAM request buffers for

longer than an adaptive threshold (based on the accuracy of

the prefetcher) since such requests are likely to be useless.

Caragea et al. [2] proposed a software prefetching algorithm

called resource-aware prefetching (RAP). The resource under

consideration is the number of MSHR entries. Depending

on the number of MSHR entries in the core, the distance of

prefetch requests is adjusted (reduced) so that prefetches are

issued for all loop references.

There are three major differences between these previous

feedback mechanisms and our work: 1) these feedback al-

gorithms use accuracy as one of the main feedback metrics,

so they do not work well when prefetch accuracy is al-

most 100%. These mechanisms control the aggressiveness of

prefetching and when there is 100% accuracy, they consider

all prefetch requests as useful. In GPGPUs, even if prefetch

requests are 100% accurate, they can be harmful because of

resource contentions. 2) These feedback mechanisms are not

designed for supporting hundreds of threads. 3) All these

feedback mechanisms, except Caragea et al., are only for

hardware prefetching and not for software prefetching.

In addition to these differences, our prefetching mech-

anisms contain a new prefetch algorithm (inter-thread

prefetching) that is specifically designed for GPGPUs. None

of the previous work exploited these characteristics.

C. Memory System Optimizations in Vector Architectures

In classical vector architectures, a single instruction oper-

ates on arrays of data elements. Thus, similar to SIMT GPUs,

vector architectures can generate several memory requests

due to a single instruction. Accesses in vector processors can

be either strided (unit stride and non-unit stride) or scatter-

gather accesses. Non-unit stride and scatter-gather accesses

are equivalent to uncoalesced accesses in SIMT machines.

Vector architectures typically did not use caches due to large

working sets, low locality of access, and the use of highly

interleaved memory. The granularity of memory accesses
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in such vector architectures without caches was individual

data elements. The strategy adopted by vector architectures

to reduce memory access latencies was to develop more

effective mechanisms for interleaving [30] and to reorder

memory requests to concurrently service memory accesses as

much as possible [6, 27].

Some vector processors even adopted caches [33]. Fu

and Patel specifically discussed the benefits of using caches

for uncoalesced loads (exploiting spatial locality) and also

employed stream/stride prefetchers [10]. However, their pro-

posed mechanisms were also very simple and did not provide

any scalability.

XI. CONCLUSION

The key ideas behind our MT-prefetching schemes are

(a) per-warp-training and stride promotion, (b) inter-thread

prefetching, and (c) adaptive throttling. The first two intro-

duce the idea of cooperative prefetching among the threads,

which exploits a fundamental property of current GPGPU

applications, namely, the presence of many threads in-flight.

The third idea, adaptive throttling, solves the observed prob-

lem that even with 100% accuracy, prefetching can still

degrade performance in GPGPUs, again precisely because of

the large numbers of concurrent threads. Putting these ideas

together, our evaluation shows that basic MT-prefetching

improves performance while throttling reduces or eliminates

any possible negative effects.

These ideas represent just the beginning of the study of

MT-prefetching schemes for GPGPUs and other many-core

SIMT architectures. For instance, our baseline assumes a

relatively simple memory hierarchy, whose designs continue

to evolve. In future work, we will extend our mechanisms for

more complex hierarchies.

More broadly, MT-prefetching schemes extend GPGPU

designs with additional latency-tolerance mechanisms that

can, in principle, serve much more diverse applications. Thus,

a major question moving forward is what additional or new

applications might now become GPGPU applications in an

GPU + MT-prefetching system.
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