WearDrive: Fast and Energy Efficient Storage for Wearables

Jian Huang[†]

Anirudh Badam Ranveer Chandra Ed Nightingale

Wearable Computing: A New Era

Wearable Computing: A New Era

Energy Challenge: Wearable Apps Are Data-Intensive

Energy Challenge: Wearable Apps Are Data-Intensive

Energy Challenge: Wearable Apps Are Data-Intensive

Mobile Storage is Energy-Intensive

Flash device is not energy-intensive, Storage software stack is energy-intensive !

Mobile Storage is Energy-Intensive

Flash device is not energy-intensive, Storage software stack is energy-intensive !

Storage software consumes 80–110x more energy than Flash [Li et al., FAST'14]

Mobile Storage is Energy-Intensive

Flash device is not energy-intensive, Storage software stack is energy-intensive !

Slow Flash: Increased CPU Idle Time Runtime System Overhead Data Encryption

Use DRAM as Storage?

- DRAM is fast
- Closer to applications
- No software overhead for isolation and security

Use DRAM as Storage?

- DRAM is fast
- Closer to applications
- No software overhead for isolation and security

DRAM is volatile, the data durability is a problem !

No Hardware Changes

No Hardware Changes

Performance Improvement

IO Hardware Changes

Performance Improvement

Data Durability

Leveraging Phone for Capacity/Compute

Wearable applications focus on the latest data, but how about the old data?

Leveraging Phone for Capacity/Compute

Wearable applications focus on the latest data, but how about the old data?

Reaching the Phone Efficiently

	Standby Power	Data Transfer
BLE	Low	0.41 microjoules/bit
WFD	High	0.02 microjoules/bit

BLE for small data transfer, WFD for large data transfer

Reaching the Phone Efficiently

	Standby Power	Data Transfer
BLE	Low	0.41 microjoules/bit
WFD	High	0.02 microjoules/bit

BLE for small data transfer, WFD for large data transfer

Building A Distributed In-Memory Storage System

Improve performance & save energy

2 Reduce Flash size \rightarrow reduce \$ cost (10%)

3 Leverage phone's resources for wearable

WearDrive Design: Key Value Store

WearDrive Design: Key Value Store

WearDrive: Implementation in Real System

Application

Android OS (version 4.4)

Mobile Device

WearDrive: Implementation in Real System

Application		
KV-Store: WearCache/WearKV	BB-RAM Manager	Hybrid Network Management
Android OS (version 4.4)		
Mobile Device		

WearDrive: Implementation in Real System

	Application	
W	earDrive API	
KV-Store: WearCache/WearKV	BB-RAM Manager	Hybrid Network Management
Android OS (version 4.4)		
Mobile Device		

Experimental Setup

Emulated wearable device (similar to Samsung Gear) 1.2 GHz Dual-core + 512 MB RAM + BLE 4.0 + WiFi 802.11 b/g/n Monsoon power monitor

Experimental Setup

Т

WearableOnly	Use local Flash as storage
WearSDK*	Android Wear SDK
WearDrive	In-memory storage system

*we extend its data layer to make it support WFD and hybrid network protocol.

WearBench: Benchmarks for Wearables

Local Memory vs. Local Flash (Write)

17

Local Memory vs. Local Flash (Read)

18

Energy Usage of Sensor Data Aggregation

WearDrive consumes 1.5x less power than WearableOnly, up to 3x less power than WearSDK

Energy Usage of Receiving Notifications

Interval between two notifications (seconds)

WearDrive saves 1.2 - 3x energy than WearSDK-BLE

Compute Offload & Impact on the Phone

	Wearable (300 mAh)	Phone (2000 mAh)
WearableOnly	27.12%	
WearableOnly +InMemory	13.23%	
WearDrive	0.87%	2.09%

Data analysis with k-means on the data set generated by 16 sensors at 1 Hz for 24 hours.

Conclusion

WearDrive: Storage System for Wearables

- In-memory Storage System with battery-back DRAM (BB-RAM)
- 2 Extended Capabilities leveraging phone's storage and CPU
 - **Extended Lifetime**
 - 3x improvement on battery life time

Thanks!

Jian Huang[†] jian.huang@gatech.edu

Anirudh Badam Ranveer Chandra Ed Nightingale

