
Understanding Issue Correlations:
A Case Study of the Hadoop System

Jian Huang

Georgia Institute of Technology

jian.huang@gatech.edu

Xuechen Zhang

University of Oregon

xczhang@uoregon.edu

Karsten Schwan

Georgia Institute of Technology

karsten.schwan@cc.gatech.edu

ABSTRACT
Over the last decade, Hadoop has evolved into a widely

used platform for Big Data applications. Acknowledging its

wide-spread use, we present a comprehensive analysis of the

solved issues with applied patches in the Hadoop ecosystem.

The analysis is conducted with a focus on Hadoop’s two es-

sential components: HDFS (storage) and MapReduce (com-

putation), it involves a total of 4218 solved issues over the

last six years, covering 2180 issues from HDFS and 2038

issues from MapReduce. Insights derived from the study

concern system design and development, particularly with

respect to correlated issues and correlations between root

causes of issues and characteristics of the Hadoop subsys-

tems. These findings shed light on the future development of

Big Data systems, on their testing, and on bug-finding tools.

Categories and Subject Descriptors D.2.5 [Software En-
gineering]: Testing and Debugging

General Terms Performance, Reliability, Security

Keywords Hadoop, Issue Correlation, Bug Study, Big Data

1. Introduction
Recent extensive work on data-intensive applications and

on the systems supporting them are mirrored by substantial

efforts to improve and enhance well-established frameworks

like Hadoop [3]. Hadoop is an open-source project which

has a considerable development and deployment history,

dating back to the year of 2002. Its users include Twitter [21,

32], Facebook [25], Yahoo! [39], Cloudera [34], and many

startup companies, with significant contributions to Hadoop

made by both the academic and industry communities [12].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SoCC ’15, August 27-29, 2015, Kohala Coast, HI, USA
c©2015 ACM. ISBN 978-1-4503-3651-2/15/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2806777.2806937

Developing and deploying Big Data systems is complex,

and as a consequence, they have experienced a wide range

of issues, reflected in extensive bug reports and patch histo-

ries. The importance of these issues is underlined by their re-

peated occurrence during system evolution, resulting in data

loss or even catastrophic failures [20, 34, 47]. At the same

time, given the complex codebases of Big Data systems, is-

sue identification is challenging, even with advanced bug-

finding tools [19, 29, 35]. A well-known reason for this dif-

ficulty is the many interactions between their different soft-

ware components [13, 15, 42]. In the Hadoop ecosystem,

for example, YARN (Apache Hadoop NextGen MapReduce)

is responsible for resource scheduling for MapReduce jobs,

while MapReduce interacts with HDFS for accessing input

and output data. In this context, issues observed in a Hadoop

job execution could result from the MapReduce framework,

or from schedulers in YARN, or from I/O streams in HDFS.

Furthermore, there are strong correlations between the dif-

ferent components even within a single subsystem, for in-

stance, a bug in network topology management could violate

data replication policies, which causes data loss in HDFS.

This paper studies and quantitatively analyzes the issue

correlations in Big Data systems, with the goal of provid-

ing references and hints to help developers and users avoid

potential issues and improve system performance and relia-

bility for future data-intensive systems. We examine in detail

two essential components of the Hadoop ecosystem evolved

over the last decade: HDFS (Hadoop Distributed File Sys-

tem) [22] and MapReduce [23], which are the storage and

computation platforms of the Hadoop framework. Our study

focuses on solved issues with applied patches that have been

verified by developers and users. Specifically, we examine

4218 issues in total, including 2180 issues from HDFS and

2038 issues from MapReduce, reported and solved over the

last six years (from 10/21/2008 to 8/15/2014). We manu-

ally label each issue after carefully checking its descrip-

tions, applied patches, and follow-up discussions posted by

developers and users. We conduct a comprehensive and in-

depth study of (i) correlations between issues and (ii) corre-

lations between root causes of issues and characteristics of

the Hadoop subsystems.

 2

Target Finding Suggestion

Bug-finding

Tools

Most issues do not depend on external components; they are inter-

nally correlated within a single subsystem; 33.0% of issues have

similar causes (§4). The logging subsystem is error-prone (§5.4.2)

Log-based bug-finding tools should place a higher priority on

the logs of the components in which the issue appears. Logs

should be audited to reduce false positives.

File System

The file system semantics of traditional file systems like EXT4 are

widely used in HDFS; many file system issues in HDFS are induced

by strictly ordered operations in distributed environment (§5.2.1).

Lessons/experiences from traditional file systems could be ap-

plied to distributed file systems. For instance, similar optimiza-

tions and features like fadvise and fsck in EXT4 have been im-

plemented in HDFS.

Storage
Problematic implementation of rack replication and data placement

policies may cause data loss (§5.2.2).

Policy checking tools are required to validate the correctness of

the applied policies for data placement, distributed caching, etc.

Memory

Memory leaks happen mostly due to uncleaned or unclosed objects;

the stale objects are apt to cause unexpected errors; high garbage

collection overhead (§5.2.3).

Lightweight or memory-friendly data structures are preferred;

implement object cache to reuse objects whenever possible.

Cache

Cache management in HDFS is centralized and user-driven. It uses

different data placement and destage algorithms to explore data

locality (§5.2.4).

Programmers can leverage these characteristics for performance

optimizations.

Networking
Wrong networking topology can cause data loss when unreliable

connections appear (§5.2.5).

A set of tools are needed to check and validate networking

setups (e.g., topology, configuration).

Programming

Half of programming issues are related to code mainte-

nance(§5.3.1); inconsistency problems frequently happen due to in-

terface changes(§5.3.2); 19% of the programming issues are caused

by inappropriate usage of locks (§5.3.3) and typos(§5.3.4).

As new input/output interfaces are implemented, additional ef-

forts are needed for their performance tuning and data structure

optimization.

Configuration

Many configuration parameters are relevant to performance tuning,

as misconfiguration can easily lead to suboptimal performance

(§5.4.1).

Leverage auto-tuning software or configuration checkers to

learn how parameters can affect system performance.

Documentation
Documentation issues are usually overlooked in system develop-

ment (§5.4.3).

Avoid biased or inconsistent description which can lead to users’

misunderstanding.

Testing

Not all failure cases can be simulated in Hadoop’s fault injection

platform; the simulation of large-scale clusters like the MiniCluster

in Hadoop can make testing results less accurate (§5.4.4).

An open and shared large-scale testing platform is an urgent

need; advanced simulation techniques for large-scale distributed

Big Data systems are needed.

Fault Handler

A significant fraction of issues cause failures (§6.1); system reli-

ability is most vulnerable as a consequence (§6.2); exception han-

dling and retrying are commonly used in Hadoop; unlike other find-

ings [47] (fault handler not implemented), we find that many issues

are caused by the inappropriate usage of exceptions and bugs in

their implementation (§6.3).

The exception type should be specified as concretely as possible;

a program analyzer may be required to check if all possible

exception cases have been covered in the implementation of

fault handlers.

Table 1. Our findings and consequent suggestions for improving distributed data-intensive systems.

Key findings from our study are as follows:

• Most of the issues (79.3% in MapReduce and 94.7% in

HDFS) do not depend on external factors, i.e., they are

not closely related to issues in other subsystems. In other

words, even in complex distributed systems like Hadoop,

many issues remain relatively centralized in their corre-

sponding subsystems.

• About half of the issues are internally correlated. We ob-

serve that up to 33.0% of the issues have similar causes,

10.5% of the issues arose because of fixing other issues

(fix on fix), and up to 20.1% of the issues block other is-

sues as one error could be caused by multiple events or

issues.

• The root causes of the issues have strong correlations

with the subsystem characteristics of Hadoop. For exam-

ple, HDFS has 349 issues related to the implementation

of file system semantics, file data snapshot, and metadata

checkpointing. More findings are summarized in Table 1.

The remainder of this paper is organized as follows. The

methodologies used in our study are described in §2. In

§3, we present the overall patterns of the issue distribution.

We then study the correlation between issues in §4 and

the correlation between issues and characteristics of various

aspects of Hadoop subsystems in §5. Consequences of these

results, impact, and reactions to issues are discussed in §6.

In §7, we present related work on issue studies of distributed

systems and the relevant debugging tools. We conclude the

paper in §8.

2. Methodology
This section outlines our reasons for selecting HDFS and

MapReduce as target open-source Big Data systems. We

then introduce the methodology used for analyzing the ex-

amined issues, and discuss how our patch database HPATCHDB

helps further patch studies.

2.1 Selected Open Source Systems
We select HDFS (storage) and MapReduce (computation)

as target systems because their analysis can shed light on a

broad set of other data-intensive systems, for three reasons.

First, as the core components of the Hadoop ecosystem,

HDFS and MapReduce have been developed into mature

 3

Figure 1. A subset of systems in Hadoop ecosystem. Many

systems and tools for data processing and resource manage-

ment being developed are based on HDFS and MapReduce.

Systems HDFS MapReduce
Reported issues 6900 5872

Closed issues 2359 2340

Studied issues 2180 2038

Sampled period 10/21/08-8/15/14 6/17/09-7/27/14

Table 2. Number of reported and solved issues for HDFS

and MapReduce until 8/15/2014. We examine a total of 4218

issues, covering 89.8% of the closed issues.

systems over the last decade, and they are widely used to

store and process large data sets from both enterprise [21,

25, 32, 34, 39] and scientific workloads [9, 40], representing

the state-of-the-art distributed systems.

Second, as shown in Figure 1, other data-intensive sys-

tems are architected based on HDFS and MapReduce, in-

cluding Hive (data summarization, query and analysis) [6],

Pig (high-level platform for MapReduce programs genera-

tion) [8], Flume (collection, aggregation and processing for

streaming data) [2], HCatalog (data cleaning and archiv-

ing) [5], Mahout (machine learning and data mining) [7],

Cascading (framework for building data processing applica-

tions) [1], and HBase (distributed key-value store) [4, 28].

Third, HDFS and MapReduce share the same develop-

ment and deployment tools (e.g., Ant and Maven for Java) as

used in other data management and analytics systems [24].

The issues patterns in these subsystems would be reflected

in the study of the essential components in Hadoop.

2.2 Sampled Data Sets
For a comprehensive study of the selected core systems, we

manually examine most of the solved issues with applied

patches from the issue repositories of HDFS and MapRe-

duce. As shown in Table 2, there are 6900 issues reported

between Oct. 21, 2008 and Aug. 15, 2014 in HDFS, 5872

issues reported between Jun. 17, 2009 and Jul. 27, 2014

in MapReduce. Among these issues, there are 2359 and

2340 closed issues (i.e., the issue was fixed, the attached

patches passed the test and worked as expected) in HDFS

and MapReduce, respectively. We only examine these closed

issues, as for those, it has been established that both issues

and corresponding solutions are valid. Duplicate and invalid

issues are excluded in our sampled data sets to reduce sam-

pling error. With these criteria, we used roughly 1.6 years to

sample and analyze 2180 and 2038 closed issues in HDFS

and MapReduce, respectively.

In order to precisely analyze and categorize each sam-

pled issue, we tag each issue with appropriate labels af-

ter checking its description, patches, follow-up discussions,

and source code analysis posted by developers and users.

The labels include IssueID, CreatedTime, CommitTime,

SubComponent, Type, Priority, Causes, Consequence,

Impact, Keyword, CorrelatedIssues and Note. To mini-

mize errors caused by human factors during the manual clas-

sification, each issue is inspected at least twice, the compli-

cated and unclear issues are examined by two observers sep-

arately, and then discussed until consensus was reached.

To track the issue correlations, the labels SubComponent,

CorrelatedIssues, and Keyword are used to build the

connections with relevant components and system fea-

tures. Note that one issue may have multiple keywords,

since it is possible that the issue is caused by several

factors or events, and multiple components are involved.

For instance, in the issue MR-54511, a configurable pa-

rameter LD LIBRARY PATH cannot be set and parsed cor-

rectly on Windows platforms, resulting in MapReduce job

failures. This issue will be recorded with keywords of

Configuration and Compatibility. With these labels,

it is easier for us to categorize and index each issue. We

place all of the examined issues into our issue database

HPATCHDB. More detailed analytics and examples are

presented throughout the paper to show how tagging and

HPATCHDB are performed.

2.3 Use Cases with HPATCHDB
The labels with each issue identify its characteristics, and

represent its root causes, correlated components, and impact

on systems, etc. HPATCHDB is useful for programmers, as

they can use HPATCHDB to find solved issues with charac-

teristics similar to those of their new or unsolved issues, thus

learning useful lessons and experiences from them. This in-

sight is validated by our finding: 33.0% of issues have sim-

ilar causes (§4). HPATCHDB is also useful for bug-finding

and testing tools, to conduct further studies from different

viewpoints and to filter out issues of specific types. Sys-

tem designers can use HPATCHDB to refer to the issue pat-

terns of specific components (e.g., file system, cache man-

agement). As future work, we wish to automate the issue

classification procedure to enrich HPATCHDB.

3. Issue Overview
Before we discuss issue correlations, we first present the

overall patterns of examined issues, and investigate how

these issues are distributed.

Issues are categorized into four types with three priority

levels by leveraging the Type and Priority labels. Issue

types include Bug (issues cause systems to behave unexpect-

1 MR represents MapReduce in the paper.

 4

(a) Types-HDFS (b) Types-MapReduce (c) Priority-HDFS (d) Priority-MapReduce

Figure 2. Distribution of solved issues in HDFS and MapReduce.

edly), Improvement (software stack improvements for per-

formance and code maintenance), New Feature (new func-

tionalities), and Test (unit and failure tests). The three lev-

els of priorities are Blocker (immediate fix needed as this

type of issue blocks the software release), Major (important

issues that have serious impact on the functionality of the

system), and Minor (have minor impact on the functionality

of the system in general but need to be fixed).

3.1 Issue Types
Issue distributions over time for different types and priority

categories are depicted in Figure 2. While the number of

solved issues changes each year, the percentages of different

types and priorities are relatively stable.

As shown in Figure 2(a) and Figure 2(b), Bugs dom-

inate solved issues over the past six years. They occupy

59.1% and 67.6% of issues on average in HDFS and MapRe-

duce respectively. A large fraction of issues are related to

Improvement. They include performance improvement,

code maintenance, serviceability improvements, etc. Along

with each patch, tests are conducted to evaluate it, but we

find that many issues are reported because of bugs in the

testing platform rather than in the applied patch (§5.4.4).

3.2 Issue Priority
Figure 2(c) and Figure 2(d) show the percentage breakdown

of issues according to their priorities, demonstrating a sig-

nificant number of major issues in both HDFS and MapRe-

duce. These issues could cause job failures, incorrect outputs

and runtime errors. As for blocker issues that may cause

serious failures and unexpected behaviors such as memory

leaks, they occupy 9.4% of total issues on average. A con-

siderable subset of examined issues are minor issues that

are normally ignored in other studies [20, 47], but they also

constitute a large fraction of issues in Hadoop. These minor

issues should not be neglected, as they can significantly af-

fect system availability and serviceability, and some of them

are not easily fixed. For instance, a typo in the name of a li-

brary path (configuration issue) could block system startup.

Type Num of corre-
lated issues 0 1 2 3 ≥4

E
X

T HDFS 94.7% 4.8% 0.5% 0.0% 0.0%

MapReduce 79.3% 17.1% 2.8% 0.5% 0.3%

IN
T HDFS 52.7% 32.8% 9.1% 3.1% 2.3%

MapReduce 59.3% 32.7% 5.6% 1.3% 1.0%

Table 3. Percentage of issues externally and internally cor-

related with other issues. EXT denotes external correlation,

INT denotes internal correlation.

In large-scale distributed systems, these minor issues may

require substantial effort for only “one-line” fixes. Our study,

therefore, covers all of these issues, with a focus on their

correlations with other issues (§4) and with system charac-

teristics (§5).

Interestingly, we observe similar issue patterns over time

for both HDFS and MapReduce. This gives credence to our

supposition that a study of the Hadoop ecosystem can shed

light on other data-intensive systems.

4. Issue Correlation
This section further examines the correlations between is-

sues. We distinguish correlations between issues of different

subsystems in the Hadoop ecosystem (external correlation),

or between issues of different components in the same sub-

system (internal correlation).

The purpose of this study is to better understand the ex-

ternal and internal correlationships between issues and the

potential implications on tracking and fixing issues in dis-

tributed systems. We record the number of correlated issues,

the IssueID of correlated issues, and the relationships (i.e.,

similar causes, blocking other issues and broken by other

issues) in HPATCHDB. Table 3 shows the percentages of is-

sues for different numbers of correlated issues (0 to ≥4).

4.1 External Correlations
We first study the externally correlated issues. These issues

occur in one subsystem (i.e., HDFS or MapReduce), but

 5

HDFS MapReduce
0

10

20

30

40

50
P

e
rc

e
n

ta
g

e
 (

%
) Similar causes

Broken by other issues

Blocks other issues

Figure 3. Classification of correlated issues.

are related to issues in other subsystems (see §2.1), such as

HBase, YARN, etc.

In HDFS, we find that a significant number of the ex-

amined issues (94.7%) are independent (the number of cor-

related issues is 0) without any relationships with issues

from other subsystems. This is due to the fundamental role

of HDFS in the Hadoop ecosystem, residing at the bottom

of the software stack. For the issues related to one other

issue in other subsystems, 62.5% of them are related to

Hadoop Common subsystem, others are distributed across

HBase (15.0%), YARN (10.0%), MapReduce (5.0%), Slider

(7.5%), and etc. For the issues related to two issues in other

subsystems, all are from Hadoop Common. We did not find

any issues in HDFS that correlate with more than two issues

from other subsystems. This indicates that bug-finding tools

leveraging logs can narrow their searches for root causes

by first considering the logs of the subsystems in which is-

sues are observed and then consider other correlated sub-

systems (especially for cross-systems debugging and test-

ing) [48, 49].

In MapReduce, we also observe that most of the exam-

ined issues (79.3%) are not related to any issues from other

subsystems. Among the issues related to one issue in other

subsystems, we find a large fraction of them to be relevant to

YARN (46.3%), Hadoop Common (29.9%), HDFS (9.0%),

Hive (6.0%), and others (8.8%) such as ZooKeeper, Ma-

hout, and Spark. Among the issues whose correlation factor

is 2, 72.7% are from Hadoop Common. For the issues re-

lated to more than two issues from other subsystems, most

involve the YARN and Hadoop Common subsystems. Com-

pared to HDFS, issues in MapReduce have more correla-

tions with other subsystems, especially with YARN. This is

reflected in the evolution of the computation framework in

Hadoop, leading to more MapReduce issues being involved

with YARN.

4.2 Internal Correlations
We now examine internally correlated issues, i.e., those with

relationships to other issues in the same subsystem. Com-

pared to the external correlation analysis, we find that more

issues are internally correlated, as shown in Table 3. HDFS

and MapReduce have similar distribution of issues classified

according to the number of their correlated issues.

To further study internal correlations, we categorize the

relationships between issues into three types: similar causes,

0 1 2 3 >=4

0 1 2 3 >=4
0

30

60

90

120

150

180

F
ix

 t
im

e
 (

d
a
y
s
)

HDFS MapReduce

Internal Correlation External Correlation

Figure 4. Efforts required to fix an issue, on average.

broken by other issues (i.e., the issue is caused by fixing

other issues) and blocking other issues (i.e., the issue needs

to be fixed before fixing other issues). As shown in Figure 3,

26.0-33.0% of the issues have causes similar to other issues

in the same system, indicating that similar issues happen

repeatedly and it is worth the effort to avoid duplicate issues.

This finding also inspires us to provide a new HPATCHDB

feature with which users can discover issues with similar

causes, facilitating learning from existing solved issues how

to fix their current problems.

We further observe that about 10.5% of the issues were

broken by other issues. Most of these issues happen be-

cause of the fact that one function depends on another sub-

function. And conversely, we find that 5.1-20.1% of the is-

sues could block other issues, indicating that one failure

could be caused by multiple events or issues.

4.3 How Hard Is It to Fix Correlated Issues?
We conduct a quantitative study on the effort required to fix

a correlated issue in Hadoop. We use the CreatedTime and

CommitTime labels to calculate the fix time, which serves

as an indicator for issue complexity. Because we report an

average over thousands of sampled issues, this can signifi-

cantly improve the accuracy of our indicator statistically and

reduces the reporting errors caused by artificial factors such

as developers delaying patch commits.

As shown in Figure 4, correlated issues require almost

twice the fix time of independent issues, and fix times in-

crease dramatically with increasing correlation factors. In

other words, compared to internal correlated issues, external

correlated issues require more effort. In HDFS, we do not

find correlated issues whose correlation factor is more than

2 (see Table 3), therefore, they are not shown in Figure 4.

Summary: Most of the issues are externally independent.

They are not closely related to issues from other subsystems.

More issues are internally correlated, and the effort required

to fix these issues increase significantly as the correlation

factor increases. The good news is that most of the correlated

issues only relate to one other issue.

5. Correlation with Distributed Systems
In this section, we examine the correlation between root

causes of issues and subsystem characteristics of Hadoop.

We first describe the issue classification and demonstrate

its distributions among these categories. We then study how

 6

Subtype Description

S
y
st

em
s

File system
Issues related to file system, e.g., inode and

namespace management

Storage
Issues related to block operations, e.g., data repli-

cation and placement

Memory
Memory management and relevant issues, e.g.,

out of memory and null pointers

Cache
Issues related to operations in caches, e.g., data

caches of file system and object caches

Networking
Issues related to networks, e.g., errors in proto-

cols/topology and timeout

Security
Issues related to security, e.g., access control and

permission check

P
ro

g
ra

m
m

in
g

Code Main-

tenance

Code maintenance, e.g., data structure reorgani-

zation and dead code cleanup

Interface
Issues caused by interface changes, e.g., added,

combined and deleted interfaces

Locking Issues caused by inappropriate lock usage

Typo Issues caused by typos

T
o
o
ls

Configuration Inconsistent/wrong/missed configurations

Debugging Issues in the process of debugging

Docs
Issues related to documents for system/function

description

Test Issues related to unit and failure tests

Table 4. Issue classification based on their correlations with

major aspects in Hadoop.

Figure 5. Overall distribution of issues in the Systems,

Programming, and Tools categories.

causes are correlated to the characteristics of various aspects.

Concrete cases will be given to facilitate our discussions.

5.1 Issue Classification
We classify issues into the three types shown in Table 4:

Systems, Programming, and Tools. Each type is further

divided into a few subtypes. Note that one issue may belong

to several subtypes, so we use its primary tag for statistical

analysis, but also keep the other tags in HPATCHDB for

indexing and further studies.

As shown in Figure 5, the overall distributions of issues

among the three categories in HDFS and MapReduce are

similar. For Systems issues, we find that a large fraction of

HDFS issues relate to file system interacting frequently with

underlying systems and hardwares, while surprisingly more

MapReduce issues relate to memory aspects (further dis-

cussed in §5.2). As for Programming and Tools, we obtain

similar numbers for HDFS and MapReduce, which could be

because they are both using the Java programming language

and the same development and deployment tools. This find-

ing further underlines our expectation that our studies of a

(a) Systems (b) Programming (c) Tools

Figure 6. Issue distribution across major aspects (i.e., sys-

tems, programming, and tools) of Hadoop systems.

subset of systems in the Hadoop ecosystem have relevance

to other data-intensive infrastructures.

5.2 System Issues
In this section, we will discuss any system issues relevant to

file system, storage, memory, cache, networking, and secu-

rity respectively.

5.2.1 File System
HDFS is a distributed file system which not only implements

the basic file system semantics, but also supports high data

reliability with techniques such as metadata snapshot and

checkpointing. We observe that a large number of issues

(349 issues in HDFS, 117 issues in MapReduce) are related

to file system, as shown in Figure 6(a).

The file system semantic issues (29.2%) include names-

pace management, fsck, file operations (i.e., read, write,

delete, rename), file permissions, file format, etc. We ob-
serve that the basic concepts used in these systems are sim-
ilar to conventional file operations, e.g., the management

and checking for file access permissions in the EXT4 file

system. Many optimizations used in traditional file systems

have been implemented in Hadoop. For example, the cache

policies used in traditional file systems can be used in HDFS,

as exposing underlying architecture details (e.g., OS buffer

cache) to upper layers could bring benefits for applications.

HDFS-4817 and HDFS-4184 are two examples showing the

HDFS improvements by making its advisory caching con-

figurable on I/O patterns. Another example is fsck which is

also implemented in HDFS for file checking.

Furthermore, we find many consistency issues in conven-
tional systems also exist in HDFS. For example, violating the

rule for inorder updates could result in inconsistency issues,

breaking systems due to crash vulnerability [33]. In HDFS,

the consistency issues become more complex, e.g., a file is

deleted from NameNode but it may still reside in DataNode.

Since some issues had been solved with the techniques in

conventional file systems, we believe the techniques, experi-

ences and lessons gained from those legacy systems can also

be applied in distributed file systems.

 7

On the other hand, the distributed HDFS system is de-
signed for solving much larger scale data sets than legacy
file systems, it is more likely to suffer from performance is-
sues. For example, removing a directory in HDFS with mil-

lions of files can be slow using the conventional approach.

User requests cannot be served for minutes while the dele-

tion is in progress. The approach to reduce the latency expe-

rienced by users is incremental file deletion. Specifically, the

target subdirectory to be deleted will be removed from the

directory tree first to prevent further changes. Then the files

and directories under it are deleted with a lock protected.

Between two deletes, the lock is relinquished to allow Na-

meNode operations for other clients.

Moreover, we find many issues are caused by the in-
order of log operations, happening frequently in file snap-
shot (21% of file system issues). The file snapshot is in-

crementally built with operations recorded in a log after per-

forming the last snapshot. It is error-prone when applying

the logged operations to create a new snapshot. For instance,

during system recovery, a block update operation may in-

correctly happen after a file deletion, resulting in recovery

failure and data corruption (HDFS-6647).

5.2.2 Storage
The block-layer design of the storage system in Hadoop pro-

vides reliability and availability via block replication, load

balancing, and recovery after disk failures. A number of is-

sues (90 in HDFS, 12 in MapReduce) are related to these

designs. Specifically, a small fraction of storage issues occur

when the computation framework accesses its input and out-

put data with optimizations on data movement, intermediate

data management, interfaces for new data formats.

Hadoop employs replication techniques to guarantee high

reliability even after hardware failures. We observe, how-

ever, that the implementation of fault-tolerance functional-
ity is error-prone, e.g., logic errors in the rack placement

policy could cause loss of data replicas. In HDFS, replicas

should not be placed into the same rack for data reliability

guarantee. However, due do decommissioning of nodes for

OS upgrade in a running cluster, about 0.16% of blocks and

all replicas of the blocks could be in the same rack, lead-

ing to higher risk of data loss when the rack is taken offline.

To solve this issue, policy checkers or tools, e.g., Hadoop

fsck, are required to verify this for large amounts of data

blocks (HDFS-1480). Another typical example in Figure 7(a)

shows that asynchronous block operations may cause data

loss. The NameNode receives the block report while the

block in DataNode is still under construction. However, if

the DataNode fails and NameNode accepts the block report

with an old generation stamp while the write pipeline recov-

ery is working, the corrupt block will be marked as valid.

5.2.3 Memory
Hadoop is designed to process Big Data with extremely high

concurrency, but severe issues happen with large data sets

under high memory pressure in JVM [41], and memory bugs

(e.g., memory leaks) make matters worse. For instance, the

JVM creates a thread with 512 KB stack size by default,

but 4096 or more DataXceiver threads are created nor-

mally on DataNode, this occupies a large amount of memory

(HDFS-4814). Similar cases are observed in reported issues

such as HDFS-5364 and HDFS-6208.

Figure 7(b) shows a memory leak case (MR-5351), where

the unclosed FileSystem Java object will cause a memory

leak. This is because the common practice that on job com-

pletion the need for cached objects to be cleaned or closed is

often ignored by developers. Further, although Java provides

the garbage collection (GC) mechanism to clean stale ob-

jects automatically, the system suffers from large GC over-

head and unexpected errors caused by objects that are not

cleaned in a timely fashion (e.g., HDFS-5845).

Under high levels of concurrency using certain data
structures produces significant memory pressure. We found

a number of Improvement patches addressing this issue. A

simple approach is to use memory-friendly objects, e.g., re-

placing the standard object with LightWeightGSet. One can

also use an object cache to reduce the overhead of object

allocation and deallocation (HDFS-4465). Furthermore, pro-

grammers also need to minimize the usage of expensive op-

erations on objects, e.g., ConcurrentSkipListMap.size

may take minutes to scan every entry in the map to compute

the size (MR-5268).

5.2.4 Cache
Caches in Hadoop are not only used to bridge the perfor-

mance gap between memory and disk (e.g., distributed cache

for data blocks on DataNode, metadata cache on NameNode,

I/O stream cache), but they are also used to avoid duplicate

operations, such as token cache, socket cache, file descriptor

cache, and JobContext cache.

Many cache-specific issues (especially on the perfor-
mance aspect) are related to their configurations in Hadoop.
Differing from traditional page caches, Hadoop uses user-

driven and centralized cache management [10]. Users can

employ cache directives to specify which file path

should be cached and how to cache it among distributed

DataNodes. After scanning the directives, the NameNode

sends cache/uncache commands to DataNodes to manage

the placement of block replicas in the caches of differ-

ent DataNodes. The NameNode needs to periodically res-

can cache directives and adjust block placement to reflect

changes in cache directives. The data placement in the

distributed caches affect applications’ performance signif-

icantly, so programmers need to carefully tune cache config-

urations such as the rescan interval and size (HDFS-6106).

Another common type of issues in cache is relevant to
state maintenance for the cached objects. For example, Na-

meNode uses a retry cache to prevent the failure of non-

idempotent operations (e.g., create, append, and delete). As

shown in patch (HDFS-6229), when a NameNode fails, one

 8

(a) Systems - Storage

NameNode DataNode
block report
with gen_stamp

Description: Block reports from DataNode and block commits are
async operations. NameNode accepts block report while the block is
still under construction. If a report was received with old generation
stamp from a failed node, the corrupt block is counted as valid.
Result: data loss
Solution: NameNode records the reported generation stamp in its
replication list, the replications with wrong stamp will be removed on
commit.

HDFS-5438 (b) Systems - Memory MR-5351
public class CleanupQueue{
 ……
-  p.getFileSystem(conf).delete(p, ture);
-  return null;
+ FileSystem fs = p.getFileSystem(conf);
+ try {
+ fs.delete(p, true);
+ return null;
+ } finally {
+ if (ugi != null) fs.close();
+ }

Description: closeAllForUGI closes all cached file systems in fs
cache, CleanupQueue calls getFileSystem to delete staging
directory, adding a fs object to the cache but never be closed.

Result: memory leak

fs object should
be closed

(c) Systems - Networking HDFS-5671
 Peer peer = newTcpPeer(dnAddr);
-  return BlockReaderFactory.newBlockReader(…);
+ try{
+ reader = BlockReaderFactory.newBlockReader(…);
+ return reader;
+ } catch (IOException ex) {
+ throw ex;
+ } finally{
+ if(reader == null) IOUtils.closeQuietly(peer);
+ }
Descr ipt ion: DFSInputSt ream.b lockSeekTo() invokes
getBlockReader which creates a peer with newTcpPeer. The peer
will not be closed after IOException, resulting in CLOSE_WAIT
connection. Result: socket leak

Figure 7. Real cases of issues in systems category.

stand-by node A in the cluster is set to become a new Na-

meNode and starts building a complete retry cache. Before

the retry cache on A is completed, another retry request, e.g.,

removing a block, may get served by A again and miss the

retry cache. This can cause a race condition and wrong states

of retry cache. To resolve it, a stronger lock or an explicit

state is set on the cache so that non-idempotent operations

are not allowed while building the retry cache.

5.2.5 Networking
Hadoop maintains large numbers of sockets and connec-

tions between mappers and reducers, and between NameN-

odes and DataNodes. Moreover, various networking proto-

cols and topologies are supported to resolve compatibility

issues across systems. We find that 204 issues in HDFS and

48 issues in MapReduce are relevant to networking.

We identify that approximately one quarter of networking
issues could cause resource wastage. An example in Fig-

ure 7(c) demonstrates that an unclosed connection may

cause a socket leak. In blockSeekTo() of DFSInputStream,

getBlockReader is invoked to create a connection with

the functionnewTcpPeer. However, if an IOException

is triggered, the connection is not closed, resulting in a

CLOSE WAIT connection and memory wastage. Such issues

could evolve into serious problems when large-scale net-

work operations happen in data-intensive systems.

In Hadoop, networking information is used to instruct

data block operations like data placement and load balance.

We observe that a number of networking issues involved
in network management, such as network topology (e.g.,
HDFS-5846), could lead to data loss. This is caused by an

incorrect networking location, e.g., rack id, being assigned

to DataNodes, resulting in replicas of blocks on those nodes

being placed in the same fault domain, such that a single

failure can cause loss of two or more replicas.

5.2.6 Security
Differing from legacy distributed system, Hadoop has greater

requirement for security because its applications may run in

a shared cloud environment subjecting to malicious attacks.

Security issues may involve exception handling, access

control list (ACL), security policies, etc. These constitute

5.7% and 10.0% of the total system issues in HDFS and

MapReduce, respectively.

Although security is always a big concern in cloud com-
puting platforms, we did not observe specific efforts or tech-
niques used in these open-source systems. Many security is-

sues 2 can be fixed with existing techniques. MR-5208 shows

that a symlink attack may happen if the ShuffleHandler

and SpillRecord access a map task’s output and index files

without using a secured I/O stream. A malicious user re-

moves the task’s log file and puts a link to the jobToken

file of a target user. It then tries to open the syslog file

via the servlet on the tasktracker, while tasktracker

is unaware of the symlink, and blindly streams the con-

tent of the jobToken file. Thus, the malicious user can ac-

cess potentially sensitive outputs of the target user’s jobs.

SecureIOUtils was implemented to fix such issues. More

efforts are expected to secure the systems on both data (i.e.,

source, intermediate, output data) and job execution.

Summary: We observe that approximately a third of sys-

tem issues are related to file systems; MapReduce suffers

from more memory issues than HDFS; the majority of se-

curity issues can be solved with existing techniques used in

conventional systems, and more efforts are expected for new

security models for Big Data.

5.3 Programming Issues
The Java programming language facilitates programming

with features like automatic object management. However,

complex large-scale software still suffers from a significant

number of programming issues, as shown in Figure 6(b).

5.3.1 Code Maintenance
Half of all programming issues are related to code main-
tenance (277 issues in HDFS, 269 issues in MapReduce),
such as stale code and interfaces cleaning, data structure

reorganization and optimization, appropriate fault handler

implementation, etc. A well-known case is checking for

NULL pointers before using them (HDFS-6206), which is

often skipped by developers. Similar examples referring to

code maintenance include HDFS-5710, MR-5743, etc. In the

Hadoop system, these issues are marked as ‘minor’ issues by

developers, but may require considerable effort to fix.

2 e.g., HDFS-6556, HDFS-6462, HDFS-6411, HDFS-6435, MR-5809, MR-

5770, MR-5475 and etc.

 9

Programming – Lock & Fix on Fix MR-5364
+ private boolean cancelled = false;
+ private synchronized boolean renewToken()
+ throws IOException, InterruptedException {
+ if (!cancelled) { dttr.renew(); return true; } return false; }
 public void run() {
-  if (cancelled.get()) {return; }
+ if (renewToken()) { setTimerForTokenRenewal(dttr, false);
-  public boolean cancel() {
-  cancelled.set(true);
+ public synchronized boolean cancel () { cancelled = true;

Description: the local variable cancelled introduced in MAPREDUCE-4860 (fix a
race when renewing a token) causes potential deadlock in run() and cancel().
Result: deadlock

Figure 8. An example relevant to locking.

5.3.2 Interface
The second major group of issues is related to interfaces

(147 issues in HDFS, 196 issues in MapReduce). In complex

systems clean interfaces can dramatically reduce the possi-

bility of producing unexpected errors and reduce the burden

on programming and code maintenance. We observe a num-
ber of issues were produced by inconsistency problems due
to interface changes and inappropriate usage of interfaces.

Interface issues are becoming more relevant as Big

Data systems evolve rapidly to support new data analysis

model and diverse data formats. The data sources could

be structured data (e.g., database record, scientific data),

unstructured data (e.g., plain text, webpages) and semi-

structured data (e.g., movie reviewers) [43]. We find new

interfaces like DBInputformat were implemented in new

features and tasks to support database data formats (e.g.,

MR-716). However, supporting the diverse data formats re-

quires more than just implementing new input/output inter-

faces, they also require additional efforts on performance

tuning and data structure optimization [9, 26, 27].

5.3.3 Locking
A small fraction of issues relate to locking techniques.

These issues (30 issues in HDFS, 18 issues in MapRe-

duce) are normally caused by inappropriate usage of locks,

synchronous or asynchronous methods, e.g., a concurrent

saveNamespace executing as the expired token remover

runs may result in NameNode deadlock (refer to HDFS-4466).

Another case shown in Figure 8 illustrates an issue relevant

to deadlock introduced by a fix on fix. In MR-4860, a vari-

able cancelled was defined to fix a race condition when

renewing tokens for jobs, however, it introduced a poten-

tial deadlock between the methods cancel() and run() in

RenewalTimerTask.

5.3.4 Typo
Surprisingly, we observe 1.5-5.6% of programming issues
are caused by typos. Many of them were marked as ‘minor’

issues. However, typos may not only cause wrong results and

produce misleading outputs (e.g., HDFS-4382), but also re-

sult in failures (e.g., HDFS-480). For instance, a typo in the

error information (i.e., ‘=’ is missing in ‘≥’ condition) re-

ported in the logs could mislead developers (HDFS-5370).

Another serious case is MR-5685: a typo in the function

name (reduceContext.getCacheFiles() is mistakenly

spelled as getCacheArchive()) causes getCacheFiles()

function returns Null in WrappedReducer.java file. Most

of these typo issues cannot be easily detected (by compiler

or spell checker) at an early stage, and they usually take

enormous amount of effort for only “one-line” fix.

Summary: About half of the programming issues are

related to code maintenance, including stale code and inter-

face cleaning, data structure reorganization, and optimiza-

tion. With the evolution of Big Data systems, interface issues

are becoming increasingly prominent.

5.4 Issues in Tools
The subtypes configuration, debugging, documentation

(docs), and test are placed into the Tools category be-

cause they share the same purpose of improving the reliabil-

ity and serviceability of the systems.

5.4.1 Configuration
As shown in Figure 6(c), we observe a significant fraction of

issues in the Tools category to be related to configuration

(166 issues in HDFS, 202 issues in MapReduce). Configura-

tion issues have been investigated in other systems, such

as CentOS, MySQL, Apache HTTP server, OpenLDAP,

etc. [45, 46]. Similar configuration issues occur in the

Hadoop ecosystem. For example, MR-1249 shows the in-

consistency issue between configuration and initial values in

source code.

Beyond the configuration errors mentioned above, a ma-
jority of configuration issues are related to system perfor-
mance, caused by poorly tuned parameters. For example,

a patch was applied in MR-353, adding the parameters of

shuffle and connection timeouts to the configuration file

mapred-default.xml, because a huge performance differ-

ence was seen in terasort workload with the tuning of these

parameters. With the evolution of systems, more config-

urable parameters are added to provide flexibility for users,

e.g., there are about 170 configurable parameters in MapRe-

duce’s default configuration file mapred-default.xml,

and a large fraction of them affect system performance.

5.4.2 Debugging
We observe that 107 issues in HDFS and 145 issues in

MapReduce are related to debugging. These issues happen

in logs, output delivered to users, error, fault, warning re-

ports, etc. Incorrect, incomplete, indistinct output may mis-
lead users, hurting the system’s serviceability. To make mat-

ters worse, many existing bug-finding tools are based on

system-generated logs (with the assumption that logs are

correct), the error-prone logging system could decrease their

effectiveness.

5.4.3 Documentation
Documentation is not taken seriously enough during Hadoop

system development. We identify that 1.94-3.35% of issues
are related to docs issues. These docs issues include typos,

 10

inconsistency with latest versions of design and implemen-

tation, wrong information, lost docs, etc. For instance, the

introduction of how to copy files with the cp command in

the original snapshot documentation may mislead users (re-

fer to HDFS-6620).

5.4.4 Test
We observe a number of issues happening in test with

obvious symptoms of test failures. These issues are typically

caused by incompatibilities (e.g., tests succeed on the Linux

platform but fail on Windows) and inappropriate parameter

configuration (e.g., timeout settings).

Evaluating and testing applied patches for large-scale dis-

tributed systems is important but difficult and challenging

for three reasons. First, confirming every fix or applied patch

in a real system can take a long time and require substan-

tial computational resources on petascale data sets. Second,

few developers have access to large-scale clusters config-

ured with thousands of machines and hundreds of petabytes

of storage. Third, the simulation of large-scale clusters like

the MiniCluster of Hadoop could make testing results less

accurate. A recent study proposed to use data compression

techniques to enable large-scale tests on smaller-scale clus-

ter, but it mainly targets scalability tests and does not work

for failure tests [44]. Hadoop has implemented a fault injec-

tion platform but not all failure cases can be simulated. For

example, with reference to HDFS-6245, the IOError cannot

be simulated from getCanonicalPath using unit tests. An

effective testing platform is an urgent need for the develop-

ment of distributed data-intensive systems.

Summary: We observe a large number of configuration

issues as investigated in previous studies. However, in data-

intensive systems, more of these relate to performance tun-

ing. The logging system is also error-prone, which increases

the difficulty of detecting bugs for log-based approaches.

5.5 Discussion
Across the whole system stack, we identify a significant

number of issues to be related to consistency and compat-

ibility. We observe 134 issues in HDFS and 102 issues in

MapReduce are related to consistency. They include the

inconsistency between inode and data (e.g., HDFS-4877),

the namespace and state inconsistency in jobtracker (e.g.,

MR-5375, MR-5260), etc. These consistency issues are dif-

ficult to identify using bug-finding tools because they are

closely tied to function and component logic. For instance,

accessing files via file paths in HDFS could cause names-

pace conflicts when a file being written is renamed and an-

other file with the same name is created. This issue was fixed

in HDFS-6294 using a unique inode ID for each inode in-

stead of relying on a file name.

We also observe a large number of issues (124 in HDFS,

287 in MapReduce) related to compatibility. These is-

sues are mainly caused by use of new interfaces, features,

and platforms (e.g., Hadoop on Windows, JDK version

Consequence Description
Build error Codebase cannot be compiled or built successfully.

Failure It includes corruption, crash, hang and job failures.

Runtime error
Faults/exceptions happen during program execu-

tion.

Test failure Unit or failure tests fail.

Wrong Incorrect output, unexpected workflow.

Potential error No direct impact on system operations.

Table 5. Classification of consequences.

0 10 20 30 40 50 60 70 80 90 100

Percentage (%)

HDFS

MapReduce

Build error

Failure

Runtime error

Test failure

Wrong

Potential error

Figure 9. Consequences of sampled issues.

Types Corruption Crash Hang Job failures
HDFS 32 (1.5%) 47 (2.2%) 124 (5.7%) 268 (12.3%)

MapReduce 10 (0.5%) 46 (2.3%) 57 (2.8%) 379 (18.6%)

Table 6. General classification of failures. It illustrates the

percentages of each failure type in total HDFS and MapRe-

duce issues, respectively.

changes). For example, a number of compatibility issues

were observed after YARN was released.

6. Consequences, Impact, and Reactions
We further analyze the severity of examined issues with

a focus on the correlations between issue types and their

consequences. We then investigate how the system reacts to

handle the issues in Hadoop.

6.1 Issue Consequence
We classify consequences into six categories as shown in

Table 5. We list the top three serious consequences failure,

runtime error, and wrong in this paper.

Failure refers to corruption, crash, hang, and job

failures. In general, we observe that 21.7% of HDFS

issues and 24.2% of MapReduce issues cause failures di-

rectly. Specifically, we give the percentages of each subtype

of failure in Table 6, showing the distribution of these is-

sues among the total examined issues. A large number of

issues cause job failures. They are usually easy to catch us-

ing exception reports or logs. For issues that cause the sys-

tem to hang, many are caused by deadlocks (e.g., MR-5364,

HDFS-4466) and inconsistent states (e.g., MR-3460). Debug-

ging of these issues is hard due to limited logging informa-

tion and because it requires knowledge of function logic.

Many issues causing system crashes relate to resource man-

agement such as out of memory, reference to non-existent

objects, etc. Furthermore, we observe more corruption cases

 11

Impact Description
Availability Systems continue to work even when faults happen.

Functionality
The components or functions work correctly accord-

ing to the specifications.

Performance
Systems operate with lower overhead and higher per-

formance.

Reliability The ability to consistently perform as expected.

Serviceability
The ease with systems that can be maintained, re-

paired and used.

Table 7. Classification of impact.

0 10 20 30 40 50 60 70 80 90 100

Percentage (%)

HDFS

MapReduce

Availability

Functionality

Performance

Reliability

Serviceability

Figure 10. Impact of issues on systems.

in HDFS than in MapReduce. A large number of these issues

were involved in block operations and data layout changes.

Runtime errors are distributed widely among the com-

ponents of the systems. Many of them are caused by inappro-

priate usage of exceptions and bugs in fault handling code

(see §5.4). Unlike the findings in [47], most of the fault han-

dlers are implemented in open-source systems, but an un-

covered exception case could trigger serious errors.

Wrong refers to any issues that produce incorrect output

or execution in some unexpected path. These results are

dangerous because they may mislead users or hide potential

errors. Further, it is hard to detect these issues with normal

bug-finding tools.

For issues relevant to code maintenance and new

features, they may not cause direct system destruction at

report time, but they still have the potential to trigger faults

(Potential Error). We observe 30.4-34.9% of issues po-

tentially cause errors. For example, the issues relevant to

code maintenance were reported because the old inter-

faces may confuse developers or they are no longer called.

With the evolution of systems, the codebase becomes more

complex, uncleaned code could inhibit software develop-

ment and incur unexpected errors.

6.2 Issue Impact
Figure 10 illustrates the distribution of issues among the

six types (Table 7) of system impacts. We observed sys-
tem reliability is the most vulnerable in Hadoop. The

majority of these issues come from bugs. The second

largest group of issues influences serviceability, mainly

caused by issues in tools (§5.4). More specifically, we ob-

served many of them to be related to documentation and

debugging. The third largest group of issues have impact

on functionality. To fix these issues, specific knowledge

about component logic and workflows are required. For ex-

ample, as reported in HDFS-6680, BlockPlacementPolicy-

Default may choose favored datanodes incorrectly, hurting

the fault tolerance of HDFS. Fixing this issue requires the

understanding of how datanodes are allocated for blocks.

We observe a large fraction of availability issues

were triggered in fault handling methods. These meth-

ods may have programming issues, inappropriate usage

of exceptions, etc. Finally, we observe 8.5% of issues re-

late to system performance. Most of these issues (e.g.,

HDFS-6191, HDFS-4721, MR-5368, MR-463) belong to the

types of improvement and new feature.

6.3 Reactions to Issues
We further examine how systems take actions to handle is-

sues before they are detected by users. The study of the

system reactions could help us locate the causes of issues

from a different viewpoint. We identified four reaction meth-

ods commonly used in Hadoop: exception handling,

retrying, silent reaction, restart and recovery.

6.3.1 Exception Handling
Programmers usually use exceptions to catch signals that

errors or exceptional conditions have occurred, and they im-

plement the corresponding fault handlers to handle caught

exceptions. We observe a significant fraction of the Hadoop

codes to use try-catch-finally exception handling.

However, exception handling itself is error-prone according
to our study. Some Java compilers force the programmers

to use exception handling when they call specific functions

such as socket creation, open file, and so on. But

compiler checking cannot avoid the situation in which the

fault handlers are not implemented appropriately. Further-

more, the inappropriate and inaccurate usage of exception

types and throwing (e.g., HDFS-4388) further weaken the

functionalities of exception handling.

6.3.2 Retrying
Retrying is another mechanism used frequently in dis-

tributed systems. When an exceptional fault occurs, the cor-

responding components will re-execute programs with de-

fined retry policies. Hadoop implements three retry policies:

RETRY FOREVER (keep trying forever), TRY ONCE DONE FAIL

(fail silently, or re-throw the exception after trying once) and

TRY ONCE THEN FAIL (re-throw the exception after trying

once). The retry method can overcome some transient er-

rors. For instance, as the networking connection may termi-

nate for a short period, retrying the connection within the de-

fined timeout could rebuild the connection. However, when
the retry method does not succeed, it can result in system
hangs or failures. We observed that 1.1-2.3% of issues with

such consequences were reported.

6.3.3 Silent Reaction
Systems can continue to work after silent reactions to some

‘trivial’ or ‘minor’ issues. However, this may hide potential

 12

issues and transient errors. It also increases the complexity

of bug detection, and their evolution could result in severe
problems like data loss and service unavailability [14]. We

find 0.6% of issues are caused by silent reactions, including

ignorance of return values, skipped sanity checking, etc.

6.3.4 Restart and Recovery
System restart and recovery are the “last line of defense”

to handle failures. In Hadoop, metadata (e.g., copies of

FSImage and edit log) and data blocks are replicated to

several machines. If hardware errors or file corruption hap-

pens, replicated copies are used to recover the system. How-

ever, maintaining a consistent view of replicated copies and
snapshots is hard. We observe that 3.7% of the total issues

are involved in the procedure of checkpointing.

Summary: Exception handling is widely used to catch

software errors, but unfortunately the fault handler itself is

error-prone. Retry methods can overcome transient faults but

can cause serious consequences if transient faults are turned

into non-transient faults.

7. Related Work
Bug and patch analysis: A number of characteristics stud-

ies on bugs and patches in various systems have been con-

ducted. Rabkin et al. [34] examined a sample of 293 cus-

tomer support cases happened during the period of spring

and summer 2011 in Cloudera’s CDH3 Hadoop distribution.

Gunawi et al. [20] studied 3655 ‘major’ issues in cloud sys-

tems over a period of three years (1/1/2011–1/1/2014). We

share the purpose with these studies, but offer a unique fo-

cus on internal and external correlations of issues. We also

reveal the unique bug patterns and its correlations with char-

acteristics of various Hadoop aspects.

In addition, our work is different from other prior studies

in three ways. First, we conduct our study based on a larger

set of issues, covering 4218 issues over a longer period of

six years. Second, all examined issues have been solved with

applied patches, and have been proven to operate correctly,

which guarantees that every issue examined in our study is

valid. Third, we not only study ‘major’ issues, but also cover

‘minor’ issues, as we observe that these ‘minor’ issues also

cause serious consequences.

Recent work has investigated bug patterns [30] and er-

ror management [37] in conventional Linux file systems,

misconfiguration errors in commercial storage systems [46],

operating system errors in Linux kernels [11], concurrency

bugs in MySQL [16] and other sever applications [31]. All

of these studies addressing conventional software and ap-

plications have motivations similar to ours: to learn from

mistakes and experience. We focus on state-of-the-art dis-

tributed data-intensive systems.

Bug-finding tools: Detecting and finding bugs in dis-

tributed systems is challenging [29, 35]. Yuan et al. [47]

proposed a static checker for testing error handling code,

based on their finding that the majority of serious failures

are caused by error handling (e.g., fault handler is not im-

plemented) in distributed systems. Unlike their findings, we

observe that many issues occurring in error handling code

are caused by the inappropriate usage of exceptions and by

incorrect logic in fault handler implementations. Gunawi et

al. [19] proposed a testing framework to tackle recovery

problems for cloud systems. Reynolds et al. [35] proposed

an infrastructure to expose structural errors and performance

problems by comparing actual behavior and expected behav-

ior in distributed systems. Geels et al. [18] proposed to log

the execution of distributed applications, and then replay the

logs to reproduce non-deterministic failures. Sambasivan et

al. [38] discussed end-to-end tracing methods for distributed

system. Our study complements these works with insights

on issue characteristics and their intrinsic correlations, and

offers useful hints and findings to assist in the development

of bug-finding tools for distributed data-intensive systems.

Reliable distributed systems: Recent work has proposed

to build more reliable distributed systems against failures

and unexpected errors. Although distributed systems can

leverage fault tolerance techniques like Byzantine Fault Tol-

erance [36] to protect systems from unexpected behaviors

like data corruption, they still suffer from software bugs

and cannot work properly if their implementations have is-

sues [14]. Do et al. [14] built an enhanced version of HDFS

named HARDFS to protect it against fail-silent bugs. Fryer

et al. [17] presented a file system with specific metadata

interpretation and invariant checking to protect file system

metadata against buggy file system operations. Our work

would be helpful for building reliable distributed systems

based on the revealed issue patterns in such systems.

8. Conclusion
This paper presents a comprehensive and in-depth study of

4218 solved issues in the two representative, widely used

storage (HDFS) and computation (MapReduce) platforms

designed for Big Data applications. The study covers the re-

ported and solved issues over the last six years with the pur-

pose of summing up learned lessons and experiences for the

development of distributed data-intensive systems. It exam-

ines these issues from several dimensions, including types,

correlations, consequences, impacts, and reactions. These

finding should help the development, deployment, and main-

tenance of existing and future distributed data-intensive sys-

tems and their associated bug-finding and debugging tools.

Acknowledgments
We would like to thank our shepherd Sumita Barahmand as

well as anonymous reviewers. We thank Taesoo Kim and Kei

Davis for their feedback. We also thank Xin Chen for his

initial support on collecting MapReduce issues. This work

was supported in part by the Intel Science and Technology

Center for Cloud Computing (ISTC-CC).

 13

References
[1] Apache Cascading.

http://www.cascading.org/.

[2] Apache Flume.

http://flume.apache.org/.

[3] Apache Hadoop.

http://hadoop.apache.org/.

[4] Apache HBase.

http://hbase.apache.org/.

[5] Apache HCatalog.

https://cwiki.apache.org/confluence/display/

Hive/HCatalog.

[6] Apache Hive.

https://hive.apache.org/.

[7] Apache Mahout.

https://mahout.apache.org/.

[8] Apache Pig.

http://pig.apache.org/.

[9] J. B. Buck, N. Watkins, J. LeFevre, K. Ioannidou,

C. Maltzahn, N. Polyzotis, and S. Brandt. SciHadoop: Array-

based Query Processing in Hadoop. In SC’11, Seattle, WA,

Nov. 2011.

[10] Centralized Cache Management in HDFS.

https://hadoop.apache.org/docs/r2.3.

0/hadoop-project-dist/hadoop-hdfs/

CentralizedCacheManagement.html.

[11] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An

Empirical Study of Operating Systems Errors. In SOSP’01,

Oct. 2001.

[12] Contributors to Hadoop.

http://blog.cloudera.com/blog/2011/10/the-

community-effect/.

[13] J. Dai, J. Huang, S. Huang, B. Huang, and Y. Liu. HiTune:

Dataflow-Based Performance Analysis for Big Data Cloud. In

USENIX ATC’11, 2011.

[14] T. Do, T. Harter, Y. Liu, H. S. Gunawi, A. C. Arpaci-Dusseau,

and R. H. Arpaci-Dusseau. HARDFS: Hardening HDFS with

Selective and Lightweight Versioning. In FAST’13, San Jose,

CA, Feb. 2013.

[15] U. Erlingsson, M. Peinado, S. Peter, and M. Budiu. Fay:

Extensible Distributed Tracing from Kernels to Clusters. In

SOSP’11, Cascais, Portugal, Oct. 2011.

[16] P. Fonseca, C. Li, V. Singhal, and R. Rodrigues. A Study of

the Internal and External Effects of Concurrency Bugs. In

DSN’10.

[17] D. Fryer, K. Sun, R. Mahmood, T. Cheng, S. Benjamin,

A. Goel, and A. D. Brown. Recon: Verifying File System Con-

sistency at Runtime. In FAST’12, San Jose, CA, Feb. 2012.

[18] D. Geels, G. Altekar, S. Shenker, and I. Stoica. Replay Debug-

ging for Distributed Applications. In USENIX ATC’06, May

2006.

[19] H. S. Gunawi, T. Do, P. Joshi, P. Alvaro, J. M. Hellerstein,

A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, K. Sen, and

D. Borthakur. FATE and DESIGN: A Framework for Cloud

Recovery Testing. In NSDI’11, Boston, MA, Mar. 2011.

[20] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-

anake, T. Do, J. Adityatama, K. J. Eliazar, A. Laksono, J. F.

Lukman, V. Martin, and A. D. Satria. What Bugs Live in

the Cloud? A Study of 3000+ Issues in Cloud Systems. In

SOCC’14, Nov. 2014.

[21] Hadoop at Twitter.

https://blog.twitter.com/2010/hadoop-twitter.

[22] Hadoop Distributed File System.

http://hadoop.apache.org/docs/current/hadoop-

project-dist/hadoop-hdfs/HdfsUserGuide.html.

[23] Hadoop MapReduce.

http://hadoop.apache.org/docs/r1.2.1/mapred_

tutorial.html.

[24] Hadoop Systems.

http://hadoop.apache.org/.

[25] T. Harter, D. Borthakur, S. Dong, A. Aiyer, L. Tang, A. C.

Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Analysis of

HDFS Under HBase: A Facebook Messages Case Study. In

FAST’14.

[26] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and Z. Xu.

RCFile: A Fast and Space-efficient Data Placement Structure

in MapReduce-based Warehouse Systems. In ICDE’11, Apr.

2011.

[27] Y. Huai, A. Chauhan, A. Gates, G. Hagleitner, E. N. Hanson,

O. O’Malley, J. Pandey, Y. Yuan, R. Lee, and X. Zhang. Major

Technical Advancements in Apache Hive. In SIGMOD’14.

[28] J. Huang, X. Ouyang, J. Jose, M. W. Rahman, H. Wang,

M. Luo, H. Subramoni, C. Murthy, and D. K. Panda. High-

Performance Design of HBase with RDMA over Infiniband.

In IPDPS’12.

[29] P. Joshi, M. Ganai, G. Balakrishnan, A. Gupta, and N. Pa-

pakonstantinou. SETSUDO: Perturbation-based Testing

Framework for Scalable Distributed Systems. In TRIOS’13.

[30] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and

S. Lu. A Study of Linux File System Evolution. In FAST’13,

Feb. 2013.

[31] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from Mistakes

- A Comprehensive Study on Real World Concurrency Bug

Characteristics. In ASPLOS’08, Seattle, WA, Mar. 2008.

[32] G. Mishne, J. Dalton, Z. Li, A. Sharma, and J. Lin. Fast Data

in the Era of Big Data: Twitter’s Real-Time Related Query

Suggestion Architecture. In SIGMOD’13, New York, USA,

June 2013.

[33] T. S. Pillai, V. Chidambaram, R. Alagappan, S. Al-Kiswany,

A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. All File

Systems Are Not Created Equal: On the Complexity of Craft-

ing Crash-Consistent Applications. In OSDI’14, Broomfield,

CO, Oct. 2014.

[34] A. Rabkin and R. H. Katz. How Hadoop Clusters Break. IEEE
Software, pages 88–94, 2013.

[35] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah,

and A. Vahdat. Pip: Detecting the Unexpected in Distributed

Systems. In NSDI’06, San Jose, CA, May 2006.

 14

[36] R. Rodrigues, M. Castro, and B. Liskov. BASE: Using Ab-

straction to Improve Fault Tolerance. In SOSP’01, Banff,

Canada, Oct. 2001.

[37] C. Rubio-González, H. S. Gunawi, B. Liblit, R. H. Arpaci-

Dusseau, and A. C. Arpaci-Dusseau. Error propagation anal-

ysis for file systems. In Proceedings of the 30th ACM SIG-
PLAN Conference on Programming Language Design and Im-
plementation, PLDI ’09, 2009.

[38] R. R. Sambasivan, R. Fonseca, I. Shafer, and G. R. Ganger.

So, you want to trace your distributed system? Key design

insights from years of practical experience. Technical Report,
CMU-PDL-14-102, 2014.

[39] A. Silberstein, R. Sears, W. Zhou, and B. F. Cooper. A Batch

of PNUTS: Experiences Connecting Cloud Batch and Serving

Systems. In SIGMOD’11, Athens, Greece, June 2011.

[40] M. Tatineni. Hadoop for Scientific Computing. SDSC Summer
Institute: HPC Meets Big Data, 2014.

[41] B. Venners. Inside the Java Virtual Machine. McGraw-Hill,

Inc., New York, NY, USA, 1996.

[42] C. Wang, I. A. Rayan, G. Eisenhauer, K. Schwan, V. Talwar,

M. Wolf, and C. Huneycutt. VScope: Middleware for Trou-

bleshooting Time-Sensitive Data Center Applications. In Mid-
dleware’12, Montreal, Quebec, Canada, Dec. 2012.

[43] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao,

Z. Jia, Y. Shi, S. Zhang, C. Zheng, G. Lu, K. Zhan, X. Li, and

B. Qiu. BigDataBench: A Big Data Benchmark Suite from

Internet Services. In HPCA’14, Flordia, USA, Feb. 2014.

[44] Y. Wang, M. Kapritsos, L. Schmidt, L. Alvisi, and M. Dahlin.

Exalt: Empowering Researchers to Evaluate Large-Scale Stor-

age Systems. In NSDI’14, Seattle, WA, Apr. 2014.

[45] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan,

Y. Zhou, and S. Pasupathy. Do Not Blame Users for Mis-

configurations. In SOSP’13, Farmington, Pennsylvania, Nov.

2013.

[46] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and

S. Pasupathy. An Empirical Study on Configuration Errors in

Commercial and Open Source Systems. In SOSP’11.

[47] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao,

Y. Zhang, P. U. Jain, and M. Stumm. Simple Testing Can

Prevent Most Critical Failures: An Analysis of Production

Failures in Distributed Data-Intensive Systems. In OSDI’14,

Broomfield, CO, Oct. 2014.

[48] D. Yuan, S. Park, P. Huang, Y. Liu, M. M. Lee, X. Tang,

Y. Zhou, and S. Savage. Be Conservative: Enhancing Failure

Diagnosis with Proactive Logging. In OSDI’12, Hollywood,

CA, Oct. 2012.

[49] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage. Improv-

ing Software Diagnosability via Log Enhancement. In ASP-
LOS’11, Newport Beach, California, Mar. 2011.

 15

