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Abstract We present a novel off-line algorithm for target segmentation and
tracking in video. In our approach, video data is represented by a multi-label
Markov Random Field model, and segmentation is accomplished by finding
the minimum energy label assignment. We propose a novel energy formula-
tion which incorporates both segmentation and motion estimation in a single
framework. Our energy functions enforce motion coherence both within and
across frames. We utilize state-of-the-art methods to efficiently optimize over
a large number of discrete labels. In addition, we introduce a new ground-
truth dataset, called Georgia Tech Segmentation and Tracking Dataset (GT-
SegTrack), for the evaluation of segmentation accuracy in video tracking. We
compare our method with several recent on-line tracking algorithms and pro-
vide quantitative and qualitative performance comparisons.
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1 Introduction

Recent work in visual target tracking has explored the interplay between state
estimation and target segmentation [2,15,35]. In the case of active contour
trackers and level set methods, for example, the state model of an evolving
contour corresponds to a segmentation of target pixels in each frame. One
key distinction, however, between tracking and segmentation is that track-
ing systems are designed to operate automatically once the target has been
identified, while systems for video object segmentation [46,44,10] are usually
interactive, and incorporate guidance from the user throughout the analysis
process. A second distinction is that tracking systems are often designed for
on-line, real-time use, while segmentation systems can work off-line and oper-
ate at interactive speeds.

Several recent works have demonstrated excellent results for on-line track-
ing in real-time [2,15]. However, the quality of the segmentations produced by
on-line trackers is in general not competitive with those produced by systems
for interactive segmentation [46,33,31], even in cases where the user interven-
tion is limited. One reason is that segmentation-based methods often adopt
a global optimization method (e.g. graphcut) and explicitly search a large,
fine-grained space of potential segmentations. In contrast, for tracking-based
methods the space of possible segmentations is usually defined implicitly via
the parameterization of the target model, and segmentation accuracy may be
traded for computational efficiency.

Our work is motivated by applications in biotracking [32,25,1,42,3,8,16,
17], where there is a need for a general purpose tool for tracking a wide range
of animals with different morphologies. In these applications, an off-line batch
formulation of video analysis is acceptable, but the need for guidance by the
user must be minimized in order for the tool to be useful to biologists. Standard
on-line tracking methods which use a coarse model of the target shape and
focus on robust estimation of the target center of mass are not sufficient for
many biotracking applications, which require a more detailed segmentation
in order to automate the measurement of experimentally-relevant behaviors.
However, while it is important, for example, to be able to extract the limbs
of a target animal, biotracking applications do not require the pixel-accurate
segmentations that are needed in video post-production and special effects
domains.

This paper describes a new method for automatic target segmentation and
tracking which uses a multi-label Markov Random Field (MRF) formulation
to sequentially “carve” a target of interest out of a video volume. Our goal is
to obtain higher-quality segmentations than existing on-line methods, with-
out requiring significant user interaction. The primary novelty of our approach
is our treatment of the inter-related tasks of segmenting the target and esti-
mating its motion as a single global multi-label assignment problem. Energy
functions enforce the temporal coherence of the solution, both spatially and
across time. The result is a clean problem formulation based on global energy
minimization. In contrast, on-line tracking methods often employ a diverse set
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of techniques to achieve good performance, including adaptive cue combina-
tion [2], spatially-varying appearance models [15], and shape priors [11]. We
demonstrate experimentally that our approach can yield higher-quality seg-
mentations than these previous methods, at the cost of greater computational
requirements within a batch formulation.

A second goal of this work is to support the quantitative assessment of
segmentation quality in tracking, through the development of a standardized
database of videos with ground-truth segmentations. There has been no sys-
tematic quantitative or comparative evaluation of segmentation quality within
the visual tracking literature.! We identify three properties of video sequences
that can hamper segmentation: color overlap between target and background
appearance, interframe motion, and change in target shape. We have devel-
oped a quantitative measure for each of these properties, and have assembled
an evaluation dataset, called GT-SegTrack, which spans the space defined by
these challenges. We provide a quantitative and qualitative evaluation of our
method and compare it to two recent on-line contour-based trackers [2,15] and
two reference systems for video segmentation using graphcuts.

In summary, this paper makes four contributions:

— We introduce a novel multi-label MRF formulation of video tracking which
provides high-quality target segmentations.

— We propose an energy function that enforces motion coherence between
spatial neighbors and across the temporal dimension.

— We present a novel database that supports systematic quantification of
segmentation quality with respect to three types of challenges found in
real-world video footage.

— We describe a comprehensive set of performance comparisons to four ex-
isting methods for video segmentation and tracking.

2 Related Work

There are two bodies of previous work which are related to our method. The
first are techniques for video object segmentation and layer segmentation which
also make use of an MRF formulation. The second are tracking methods which
construct a segmentation of the target object.

Video object segmentation has been previously formulated as a binary
labeling problem in an MRF and solved using a volume graphcut.? A key
issue in this approach is the construction of the temporal links that connect
pixel sites across frames. In the classical formulation from [7], the MRF is
instantiated in the temporal dimension by linking corresponding pixel sites in
adjacent frames. An alternative formulation was proposed by Li et. al. [31],
in which temporal links were instantiated between superpixels in adjacent

1 In contrast, there has been extensive work on comparing the state estimation perfor-
mance of standard state-based trackers. Some representative examples are [24] and the
VS-PETS workshops [14].

2 Volume graphcuts have also been employed in medical image segmentation [5,30].
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frames. These alternatives and others are illustrated in Figure 4. In section 5.1,
we present an experimental comparison between these competing alternatives
that provides a baseline for evaluating our proposed method. A key difference
between our formulation and these earlier works is our incorporation of motion
and segmentation constraints into a single, unified multi-label formulation.

Several alternative formulations of temporal coherence have been employed
in video segmentation, such as KLT Tracking [47,33], SIFT matching [46] and
dense optical flow [23]. These methods depend heavily on the quality of the
motion estimates and may fail in challenging sequences. Furthermore, the flow
in these works is primarily calculated between pairs of frames, and does not ex-
ploit coherence over larger time windows. Other works which address the joint
computation of optical flow and segmentation [49,13] are based on iterative
estimation methods which do not provide any global guarantees on solution
quality. Other works which combine tracking and segmentation include [35,
18,48].

Recently, there have been significant advances in discrete optimization
methods for large label spaces [26,27]. Komodakis et. al. proposed a discrete
optimization algorithm called Fast-PD [27], which provides an efficient ap-
proach to minimizing the discrete MRF energy. It has been used in image reg-
istration [21], stereo disparity estimation [27], and optical flow estimation [22].
In these latter applications, it is sufficient to analyze pairs of frames, while
our case requires the analysis of the entire video volume. The problem of
globally-optimal shape-based tracking has also been addressed recently using
combinatoric optimization methods [19,37]. In biotracking applications, how-
ever, color is often an important cue, and the substantial variations in target
shape over time can pose problems for purely shape-based methods.

A large number of on-line tracking methods can produce object segmenta-
tions (representative examples are [15,2,43]). Since these methods are fully-
automatic, they represent an interesting point of comparison, even though
they are not necessarily designed to produce fine-grained target segmenta-
tions. Bibby and Reid describe an impressive tracking system in [2], which
demonstrates adaptation of the target model and integration of multiple cues
so as to track a wide range of challenging targets. A level-set based system,
described in [15], uses a combination of spatially-constrained appearance mod-
eling and motion estimation to track the target boundary. In comparison to
these works, we employ a volumetric multi-label MRF formulation. We provide
experimental comparisons to these two methods in sections 5.2 and 5.3.

There has been a significant amount of prior work on tracking specific types
of targets, such as people and animals, using kinematic models in conjunction
with Bayesian filtering techniques. Representative examples include [12,40,
34,45,39,9]. While these works are capable of describing articulated animal
movement in significant detail, the need to specify kinematic and dynamic
models for target animals is a barrier to the widespread use of these methods by
biologists. In contrast, segmentation-based methods have the advantage that
the experimenter need only identify the target animal via manual segmentation
in the first frame in order to begin tracking.
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A preliminary version of the work described in this paper was presented
in [41]. In comparison to that prior publication, this work includes a more
complete experimental evaluation of the method and an expanded description
of the method (see Algorithm 1 and 2).

3 Multi-Label MRF Framework

Given a video sequence and a segmentation of a target of interest in the first
frame, our goal is to carve the moving target out of the video volume, yielding
a target segmentation in every frame. We adopt the volumetric MRF formu-
lation, in which the video volume is represented as a multi-label MRF with
hidden nodes corresponding to the unknown labels. The resulting optimization
problem is to find the joint label assignment L for all pixel sites G in the video
volume that minimizes

B(L) =\ S V(ly)

peG

+>‘2Z Z qu(lp»lq)

pEG q€N,(p)

+ Z VPHIT (lpmlflr) (1)

pt€G
qr=N¢ (Ptvlpt)

where L = {lp}pEG is a global labeling, V,(-) are the unary potentials rep-
resenting the data term, V,,(-,-) are the pairwise potentials representing the
smoothness term, G represents the set of pixel sites (nodes) in the video vol-
ume, A\; and Ao are tradeoff parameters, N, represents the spatial neighbor-
hood system of the nodes, and N, identifies the temporal neighbor, which is
determined by the assigned label. The definition of the temporal neighbor for
a site p; is given by

Ni(pt:lp,) = pe + Dlp,). (2)

We now define the label space and energy terms used in Equation 1.

3.1 Definition of Label Sets

In contrast to the standard approach to MRF-based segmentation, our label set
augments the usual foreground/background binary attribute with a discrete
representation of the flow between frames. We define a quantized motion field
{d',---,d'} associated with each pixel (and ignoring boundary effects). Then
the label assignment [, to pixel site p has two components:

— An attribute Attr(l,) € {fg, bg}, which gives the segmentation label for p,
— a displacement D(l,) € {d',---,d'} which gives the offset from p to the
corresponding pixel in the next frame.
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Fig. 1 Illustration of label definition. We illustrate the label space for a center pixel
in frame t. If the maximum displacement in the = direction is 2, then there are 5 possible
displacements ranging from (-2,0) to (2,0). In each case, the pixel can also be labeled either
foreground (red) or background (black), resulting in 10 possible labels per pixel.

If the maximum possible spatial displacement in x or y is M, and all integer
displacements are allowed, then there will be a total of i = (2M + 1)? flow
possibilities for a single pixel in a 2D image (including zero displacement).
In addition, each pixel can be either foreground or background, leading to a
total of 2(2M +1)? labels per pixel. Figure 1 illustrates these combinations for
a simple 1D example. Note that we take the Cartesian product of attributes
and flows (rather than their sum) because the interaction between these two
components is a key element in enforcing temporal coherence between frames.

3.2 Data Term

The data term in Equation 1 is defined as follows:

Vell) = | wpo) o) Ta o+ DDA+ Ul (3)
i Appearance Model

Appearance Similarity

The first term in Equation 3 measures the appearance similarity across
the temporal dimension. {2, represents the pixels in the local patch centered
at p, I(-) is the intensity of the pixel, w,(x) is a weighting function centered
at p, and p(-,-) is the similarity measure. Our implementation uses the Gaus-
sian weighted (with radius m;) Sum of Absolute Differences between the two
patches centered by control points. Other measures such as normalized cross
correlation, Rank Filter, or mutual information, could also be used.

The second term measures pixel appearance relative to the foreground-
background color models, and is defined as:

Uy = { ~logPrli(p)[foreground)  Attr(l,) = f (4)
PP/ 1 —log Pr(I(p)|background) Attr(l,) = bg.
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Fig. 2 Example of Motion Coherence. (a) The movement is both spatially and tem-
porally coherent (b) The movement is spatially and temporally incoherent.

The appearance model term measures the likelihood of the pixel depending
upon whether it is foreground or background. We employ a Gaussian mixture
model with mo Gaussians for both foreground and background probability
distributions in RGB color space. These models are used to compute the pixel
likelihoods in Equation 4.

3.3 Smoothness Term

The smoothness term is the key part of our formulation. It incorporates coher-
ence in attributes over time as well as spatial and temporal motion coherence.
In Equation 1, the smoothness term is defined with respect to the spatial and
temporal neighbors, Ng(p) and N¢(p), of each pixel p. An example of spatial
and temporal neighbors is given in Figure 1. For each pixel site there are a
total of 4 spatial neighbors and (2M + 1)? possible temporal neighbors. Each
neighbor contributes a binary potential function to the sum in Equation 1.

The basic coherence function is given in Equation 5. It is evaluated for
each pair of spatial neighbors (p, q). In addition, it is evaluated for each pair
of temporal neighbors (p;, N¢(p,1p,)) (see Equation 1).

qu(lpvlq) = )‘3|D(lp) - D(lq)| + qu(lpalq) (5)
———
Motion Coherence Attribute Coherence

The first term of Equation 5 captures the property of motion coherence. In the
case of spatial neighbors, the intuition behind this cost is that points which are
close to one another will move coherently. In the case of temporal neighbors,
the intuition is that the object should maintain a coherent movement across
frames. This is illustrated in Figure 2.

The second term in Equation 5 captures the property of attribute coher-
ence:

E. Attr(l,) # Attr(ly)
qu(lp’h]):{ 0 Attr(l,) = Attr(l,). (6)
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When applied to temporal neighbors, this term models the interaction between
segmentation and estimated motion, which is a key benefit of the joint label
space illustrated in Figure 1. It penalizes labellings in which spatial and tem-
poral neighbors receive different segmentations (i.e. pixel attributes). In the
spatial domain, it enforces the constraint that adjacent pixels have the same
attributes. This is identical to the spatial smoothness constraint used in the
standard binary label MRF formulation. In the temporal domain, it enforces
the constraint that the two pixels connected by a flow vector (i.e. temporal
neighbors) should have the same attribute label.

3.4 Optimization

In order to optimize the energy function in Equation 1, we adopt the Fast-
PD method of Komodakis et. al. [27,28].Fast-PD has demonstrated impres-
sive performance in multi-label MRF optimization. The generated solution is
guaranteed to be an f-approximation to the true optimum, and in practice
the per-instance approximation factor often drops quickly to 1 [27]. Fast-PD
utilizes alpha-expansions, and solves a max-flow problem for a series of graphs.
Because it ensures that the number of augmentations per max-flow decreases
over time, it can provide substantial speed-ups over conventional multi-label
graphcut methods, which we have found to be unacceptably slow due to the
size of our label space. In our experiments, we use the library described in [28].

Algorithm 1 Multi-Label Tracking Algorithm

start < 0
while start +n < end do
step 1: sample space-time window from frame start to start +n
step 2: downsample pixels in every frame of the window by k
step 3: establish hard constraints for frame start
if start =0 then
initialized from human input
else
initialized from previous result on frame start
end if
step 4: set value for Vj,(Ip) and Viq(lp,lg)
step 5: optimization with Fast-PD over a window of n + 1 frames
step 6: use down-sampled segmentation result to set hard constrains and interpolate
using graphcut
step 7: start < start+n
end while

In our implementation, we use a sliding window approach to address the
practical infeasibility of storing the entire video volume graph in memory.
Pseudocode for the proposed method is given in Algorithm 1. We first sample
n+1 consecutive frames to form a space-time window (Step 1). For each sliding
window position, the first frame of the current window is overlapped with the
last frame of the previous window. This enforces the continuity of the solution
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between window evaluations. The main consideration for the choice of n is not
to exceed the available memory and computation time, which is part of the
experiment design. Within each window, we spatially down-sample the image
by a constant factor & to obtain a set of node control points (Step 2). By work-
ing with these control points first, and then up-sampling them to the original
resolution in a post-processing step, we reduce the computational cost. Obvi-
ously, increasing k can significantly shorten running time, because the number
of nodes and edges in the MRF will decrease dramatically. However, setting
k too large will sacrifice accuracy, because too many details are missed as a
result of the control points being too sparse. Hard constraints are then estab-
lished for the first frame, using labels obtained from the previous volumetric
label assignment (or from the initialization frame in the beginning) (Step 3).
In this case, hard constraints mean that we assign a large constant penalty
inf to the data term, to make sure the resulting segmentation is consistent
with the initialization.

We then assign values to the data and smoothness terms, according to
Equations 3 and 5 (Step 4). We build a Gaussian Mixture Model for the data
term [5], and use the standard smoothness term as described in [6]. The trade-
off is controlled by a parameter \; on the data term. Next, we perform the
global optimization to infer motion and segmentation variables simultaneously
using Fast-PD (Step 5). We then use the standard graphcut to interpolate the
down-sampled segmentation result to the original size (Step 6). In the inter-
polation, the hard constraints (similarly defined as in Step 3) are established
using the binary segmentation results. We identify the largest connected com-
ponent in the foreground segmentation, which presumably corresponds to the
target of interest. We then refine the segmentation by removing the small
blobs whose area is below a fraction p of the target area. Our implementation
uses the following parameter values: n = 4,k = 4,inf = 1leb, A\ = 0.2, Ay =
02,\3=1,E.,=2,M =16,m; = 5,my =5,p=0.1.

3.5 Baseline Method Using Explicit Temporal Links

To enforce motion coherence, we perform joint optimization of segmentation
and motion estimation. A simpler alternative would be to estimate temporal
correspondences directly and then use them to explicitly instantiate tempo-
ral edges in the graph. These temporal edges, in conjunction with spatial
edges, would constitute a standard volumetric MRF in which hidden nodes
correspond to the unknown labels {fg, bg}. The volumetric graph can then be
segmented using the standard graphcut method for binary MRFs. The disad-
vantage of this approach is that motion estimates might be unreliable, leading
to suboptimal graph structures and inaccurate segmentations.

In order to demonstrate the benefit of the joint approach over the decou-
pled paradigm, we implemented a baseline graphcut method for comparison
purposes. Conceptually, there are two parts to the baseline algorithm:

1. Instantiation of the temporal n-links that define the volumetric graph.
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Fig. 3 Temporal coherence from tracked features. Nodes (pixels) in the central frame
are connected to the other frames’ nodes according to KLT flow. Temporal n-links are entered
from a patch of pixels at frame ¢ to its corresponding patch at t.

2. Execution of graphcut segmentation in a sliding temporal window, in order
to satisfy memory constraints.

The energy function which is minimized in the baseline approach is similar
to that of Equation 1, but with two important differences. The first difference
is that we only consider a binary attribute label, in contrast to the joint label
space used in Equation 1. The second difference lies in the method of instan-
tiating temporal links. In the baseline approach, the temporal neighborhood
N¢(p:) is specified before the optimization stage, and does not depend upon
the label assignment as it does in Equation 2.

Figure 4 illustrates four different ways to instantiate the temporal links.
The first three of these have appeared in previously-published works, while
the dynamic temporal n-link method shown in Figure 4 (E) is a new approach
which is described in this section. In section 5.1, we present an experimen-
tal evaluation of these four different approaches. We demonstrate that the
dynamic approach (E) gives the best performance among the four. In sec-
tion 5.2, this method, which we refer to as the volume graphcut approach,
serves as a baseline for evaluating the joint label assignment approach.

The dynamic n-link approach uses feature detection and tracking to adap-
tively instantiate the temporal links, thereby adapting the volumetric graph
to the motion in the video. This process is illustrated in Figure 3. The video
volume is analyzed by means of a sliding window. For each window posi-
tion, a standard feature detector [38] and KLT tracker [4] is used to identify
correspondences between the central frame and all other frames in the local
volume. Each identified correspondence between a pixel p in frame ¢ and a
corresponding site ¢ in frame t’ results in the creation of a temporal n-link in
the volumetric graph. Note that outside of the differences in label space and
link instantiation, the baseline cost function is the same as that in Equation 1.
Specifically, the data and spatial smoothness terms are given by Equations 4
and 6, respectively.

Pseudocode for the baseline method is given in Algorithm 2. We first sam-
ple a total of n 4+ 1 consecutive frames centered at frame middle (Step 1).
For each window of frames, we assign values for the data term D,(f,) us-
ing Equation 4. To initialize the optimization, we set hard constraints using
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either manually-labeled strokes on frame 0, or the labels from the previous
segmentation if middle is not the first frame (Step 2). We assign values to the
smoothness term Vp,(fp, fq) using Equation 6. Standard 4-connected spatial
n-links are entered for all nodes in the local graph (Step 3).

In order to enforce temporal coherence, we compute KLT flow from the
middle frame to all other frames. To make a fair comparison to Algorithm 1
where the displacements are limited to a fixed range, we only retain the flows
whose displacement in each direction is less than d,,.. * k, where k is the
frame difference (Step 4). Costs associated with temporal n-links are specified
by Equation 6 (Step 5). The energy function is optimized using the GraphCut
algorithm (Step 6). After removing small blobs using the approach described
in Algorithm 1, the segmentation of frame middie 4+ 1 is output as the final
result for that frame (Step 7), and the window is advanced by one frame. This
continues until the end is reached (Step 8). In our implementation, we use
n=4,inf =15, \1 = 0.2, E. = 2,d 0. = 16,m1 = 5.

Algorithm 2 pseudo code of the baseline

middle < 0
while middle + n < end do
step 1: sample space-time window from frame middle — n/2 to middle + n/2
step 2: set value for Dy (fp) using Equation 4
if middle = 0 then
establish hard constrains for frame middle from human input
else
establish hard constrains for frame middle from previous result
end if
step 3: set value for Viq(fp, fg) in each frame using Equation 6
step 4: compute KLT flow from frame middle to all other frames and retain those
within maximum displacement.
step 5: assign edge values to KLT flows for Vp,q, (fp;, fq.) using Equation 6, and
remove outliers.
step 6: optimization with GraphCut
step 7: Output label for frame middle + 1
step 8: middle < middle + 1
end while

4 GT-SegTrack Database

An additional goal of this work is to facilitate a deeper understanding of the
trade-offs and issues involved in on-line and off-line formulations of video seg-
mentation and tracking. Since we were unable to identify any previous work
addressing the comparative segmentation performance of tracking methods,
we created our own standardized database of videos with ground-truth seg-
mentations.? We began by identifying three properties of video sequences that
pose challenges for segmentation:

3 The dataset is available at http://cpl.cc.gatech.edu/projects/SegTrack
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[ sequence [ color [ motion [ shape [ challenge summary ]

parachute .038 .119 .024 low-low-low

girl .205 145 .147 low-low-high
monkeydog .299 .243 132 low-high-high

penguin 1.02 .016 .013 high-low-low
birdfall 466 .283 .070 high-high-low
cheetah .760 273 187 high-high-high

Table 1 GT-SegTrack database metrics: Associated with each sequence is a numerical
measurement of its difficulty with respect to the challenges of color overlap, interframe
motion and shape change. Each sequence is characterized as being either high or low difficulty
with respect to the three challenges.

— Color overlap between target and background appearance,
— Interframe motion, and
— Change in target shape between frames.

We developed a quantitative measure for each of these phenomena, described
below, and we systematically assembled an evaluation dataset, called GT-
SegTrack, which spans the space of challenges. This dataset is used to quantify
the performance of our method in section 5.2.

In order to obtain a set of sequences which adequately cover the space of
challenge properties, we went through the following selection procedure. First,
a set of 11 image sequences were manually identified as potentially covering
the space of challenges. Then each sequence was manually rated as being either
high or low with respect to each challenge type. The sequences were assigned
to one of eight combination bins, corresponding to a rating of either high or
low for each of the three challenges: color, motion, and shape.

Next, the sequences were manually segmented and the challenge measures
were computed for each one. Finally, using the computed measures we selected
six image sequences, ranging in length from 21 to 70 frames, that maximally
cover the challenge space. Table 1 lists the resulting video clips and their
numerical scores with respect to the challenge measures for color, motion, and
shape. The last column summarizes the difficulty of the sequences with respect
to the three challenges. For example, the penguin sequence is summarized as
high-low-low, since it is challenging from the standpoint of color overlap, but
presents a low level of difficulty with respect to interframe motion and shape
change. We now describe the three challenge metrics.

Target-background color overlap: An accurate segmentation of the
target, provided by the user, is commonly used to estimate a color model for the
target and non-target pixels. However, the discriminative power of such models
is inversely proportional to the degree of overlap between the figure-ground
color distributions. Numerous trackers and interactive segmentation systems
evaluate color overlap to decide how and when to lessen the importance of
color and increase reliance on other models of the target (e.g. a locally modeled
shape prior as in [46]). We chose to model target and ground colors with GMMs
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containing 5 Gaussians. Equation 7 gives a formula for evaluating color overlap
on a per-frame basis. High C; values correspond to large target-background
overlap, which makes segmentation and tracking more difficult. The average
measure per sequence is given in Table 1.

_ JxergPXIbg) [y ey, P(X1f9)
B erfgp(X|fg) erbgP(X|bg)

o (7)

Interframe target motion: Many tracking systems rely on the matching
of discriminative local features to maintain temporal coherence. Large target
motions result in an expanded search space for registration, which can result
in poor matching performance. From ground truth segmentation, we measure
interframe motion as the foreground XOR intersection area normalized by the
mean object bounding box area. The per-frame average motion is reported in
Table 1.

Target shape change: Shape priors constructed from target initializa-
tion, keyframes (as obtained automatically in [48]) and previously-segmented
frames are often adaptively applied when other appearance models (e.g. color)
are predicted to have small discriminative power. When target shape is rela-
tively constant and motion estimation is reliable, shape priors can be used to
track reliably in sequences with large figure-ground color overlap and occlu-
sions [46]. However, when motion estimation is unreliable or shape change is
drastic, this strategy can fail for obvious reasons. The GT-SegTrack database
contains such challenging scenarios. The measurement of shape change is sim-
ilar to that of target motion: it is given by the foreground XOR intersection
area normalized by the mean object bounding box area after compensating
for translational motion estimated from centroid differences. Table 1 reports
the mean shape change for each sequence.

5 Experiments

We conducted four experiments. The first experiment evaluates the relative
performance of 5 different temporal link instantiation strategies, as described
in section 3.5. The second experiment provides quantitative comparisons be-
tween our method and three alternative approaches, using the GT-SegTrack
Database. The three methods are: the level set-based tracker from [15], the Ro-
tobrush tool from Adobe AfterEffects CS5, which seems to be based in part on
the method of [46], and the baseline volumetric graphcut approach described
in section 3.5 (see algorithm 2). In the third experiment, we provide quali-
tative performance comparisons to [2] and [15], demonstrating our method’s
ability to generate more accurate segmentations in many cases. The fourth
experiment assesses our system’s performance in tracking longer sequences.
In our experiments, each tracker was initialized by the ground-truth of first
frame(if provided), or by performing a manual segmentation of the first frame
into foreground and background pixels. We performed the same initialization
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Fig. 4 Temporal n-link structures: (B) static temporal n-links in a 3 frame window,
(C) static temporal n-links in a 5 frame window, (D) dynamic temporal n-links on super-
pixel nodes as described in [31] and (E) dynamic temporal n-links instantiated from tracked
features.

for our method, the baseline graphcut-based method, and the Adobe After-
Effects Rotobrush tool. We initialized the level set algorithm by drawing a
contour as described in [15]. In this case, the user specified an initial contour
in the first frame that defined the target segmentation. For each competing
method, we used a single set of manually-specified parameters in all of our
experiments.

5.1 Temporal Link Instantiation

We investigated the performance of five different approaches, denoted as (A)
through (E), for instantiating fixed temporal n-links. In comparison to the
joint label approach, these graph structures are all specified prior to optimiza-
tion during a pre-processing stage, and are not a function of the label assign-
ment. We implemented and tested each method within our baseline framework
of sweeps of local graphcuts. In approach (A), there are no temporal links,
and so each frame is segmented independently. Approaches (B) through (E)
are illustrated in Figure 4. The the most straight-forward case is (B), which
was described in the classical work of Boykov and Jolly [7]. In this approach,
temporally-adjacent sites are connected, resulting in temporal n-links of the
form ((x,y,t), (z,y,t+1)). One disadvantage of this formulation is that when
the inter-frame motion is large, these fixed temporal links are less likely to
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reflect true motion correspondences. Approach (C) is similar to (B), but in-
creases the temporal interval over which links are instantiated.

An alternative to fixed temporal links is to adapt the link structure to
the video contents. In the method of Li et. al. [31], super-pixels are computed
in each frame, and links are constructed between temporally- and spatially-
adjacent superpixels. This is shown as approach (D) in Figure 4. In particularly
challenging sequences it may be useful to construct temporal links which more
directly reflect the motion in the video. In particular, it may be useful to
instantiate “long range” temporal links which cross multiple frames. This is
accomplished by the method (E), which was presented in section 3.5.

Of the methods shown in Figure 4, two of them are novel (C, E) and three
are not (A, B [7], D [31]). Colored circles and arcs in the figure represent
corresponding graph nodes connected by temporal n-links. Ellipses represent
super-pixel nodes[20]. Static n-links connect nodes with the same spatial lo-
cation. Dynamic n-links connect nodes as a function of the image contents. In
order to increase the robustness of approaches which are based on temporal
link estimation, we ran the local graphcut algorithm in a forward-backward
manner as follows: We initialized the forward pass by manually segmenting
the first frame in the sequence and then ran local graphcuts in the forward
direction. We then manually segmented the last frame in the sequence and
ran the local graphcut approach in the backward direction. The final pixel-
level segmentation output was the AND of the masks from the forward and
backward passes.

The summary of quantitative results is shown in Table 2. From the table,
we can see that using explicit motion estimation to instantiate the tempo-
ral links in the volume MRF is beneficial in comparison to a fixed topology.
In subsequent sections, we refer to method (E), which had the best overall
performance, as the baseline volumetric graph cut method.

We note that condition (D) resulted in the worst performance in our ex-
periments. We hypothesize that this is due to the fact that when a super-pixel
is assigned the wrong label, the error applies to all pixels and is therefore
amplified by the area of the super-pixel. In the absence of human input to
interactively modify the segmentation, this approach does not appear to lend
itself to achieving high per-pixel segmentation accuracy.

We also point out that for the monkey sequence, all of the more complicated
methods failed to perform as well as the simplest fixed topology temporal
graph. We hypothesize that this was because of the reflection in the water
and other challenging properties of this video, which make tracking and other
more complex analysis more difficult.

5.2 Quantitative Comparison

We used the GT-SegTrack database to perform quantitative performance com-
parisons to three alternative tracking methods: the state-of-the-art level set-
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[ sequence [ A [ B [ C [ D [ E ]
cheetah 999 1116 891 1459 874
girl 3539 | 2919 | 2793 | 3364 | 2217

soldier 3021 | 1576 | 1394 | 4841 | 1375
monkey 5580 | 2435 | 3384 | 8726 | 3459

Table 2 Results of different temporal links: This table reports average number of
error pixels per frame in four video sequences under five experimental treatments. Each
treatment corresponds to the temporal n-link structure depicted in Figure 4. Treatment A
corresponds to a graph without temporal n-links. The minimum error is highlighted in bold.
Note that condition E results in minimum error for all sequences but monkey.

based tracker described in [15], the Rotobrush tool within Adobe AfterEffects
CS5 (which seems to be based in part on [46]), and the baseline graphcut ap-
proach using KLT-based temporal links, which was described in section 3.5.
In order to evaluate the level-set method [15], we carefully tuned the system
to obtain the best results we could achieve, using source code which was gen-
erously provided by the authors. In each sequence, the target contour was
initialized manually in the first frame. In our evaluation of Rotobrush, we
used the interface in Adobe AfterEffects CS5 to manually segment the first
frame by hand. We then ran the brush tool through the entire video sequence
without any additional human input. Likewise for the baseline method.*

A quantitative comparison of tracking performance is provided in Table 3.
Our per-pixel segmentation accuracy is better than that of all competing meth-
ods across most sequences. The only exception is the parachute sequence,
where the baseline graphcut method performs slightly better. The large im-
provements in error which were observed for the penguin sequence are the
result of tracker failure occurring in competing methods, with the result that
the target contour vanished completely. In the case of the Rotobrush tool, it
would be straight-forward to obtain more accurate segmentations through ad-
ditional human intervention, by means of the excellent user-interface. While
this experiment does not employ the Rotobrush tool in the manner in which
it was designed to be used, it does provide a useful assessment of the ability
of a state-of-the-art commercial product to perform automatic segmentation.

The main difference between our approach and the baseline methods de-
scribed in section 5.1 is that our approach performs a joint optimization of seg-
mentation and motion, while the other methods use explicit motion estimation
to provide inputs to the segmentation process. The drawback of doing motion
estimation and segmentation in separate stages is that in some challenging
sequences the motion analysis might perform poorly, resulting in inaccurate
inputs to the segmentation process. By incorporating the motion estimation
step into the label space, our method has the opportunity to jointly-optimize
both quantities.

4 Note that for the experiments in this section, all algorithms were run in the usual
“forward” manner, by segmenting the first frame and processing the subsequent frames in
order.
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[ sequence [ Our score [ [15] score [ Rotobrush [ Volume Graphcut ]
parachute 235 502 2441 213
girl 1304 1755 5450 1566
monkeydog 563 683 1178 726
penguin 1705 6627 3916 7041
birdfall 252 454 444 304
cheetah 1142 1217 1581 2183

Table 3 Scores on GT-SegTrack database: Scores correspond to average number of
error pixels per frame. Select frames from parachute, girl, monkeydog and birdfall are illus-
trated in Figure 6, while frames from penguin are displayed in Figure 5. The minimum error
is highlighted in bold.

[ sequence | Max Min [ Average |
parachute 1.1515 | 1.1060 1.1341
girl 1.2134 | 1.0445 1.1338
monkeydog | 1.3026 | 1.0829 1.1873
penguin 1.1574 | 1.0721 1.1241
birdfall 1.2388 | 1.0356 1.1452
cheetah 1.1635 | 1.1269 1.1486

Table 4 Suboptimality bound on GT-SegTrack database: We ran Fast-PD on each
sliding window for every sequence. We report the range and average of the suboptimality
bounds for each sequence.

5.3 Qualitative Comparison

Figure 5 provides a qualitative comparison between our method and those
of [2], [15], and the Adobe AfterEffects Rotobrush tool, for select frames in
five different test sequences. In order to compare our output with that of [2],
since we lacked access to the authors’ source code and segmentation masks,
we identified the source video clips used in their experiments and applied our
tracker to the same footage. Representative frames were extracted from their
output videos and compared to identical frames from our output. In general,
our method was able to provide more accurate segmentations, at the cost of
additional computational resources in an off-line setting.

In Figure 6, we present additional segmentation results from our method
on a variety of additional video sequences. The upper four sequences are a
selection of frames from our GT-SegTrack database, while the last two clips
are longer sequences from BBC’s Planet Earth video series. Full length outputs
are provided on our project website.

Optimality: In order to test the effectiveness of Fast-PD in this specific
application, we report the suboptimality bounds for the algorithm on the GT-
SegTrack database in Table 4. Compared with the bounds obtained for single
image applications [29], the gaps are slightly larger. This might be due to the
joint label space formulation and complexity of the video object segmentation.
However, the average bounds are still close to 1 in all sequences, showing good
performance.
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Time and space requirements: Our algorithm was implemented in
C++ and executed on a 2.66 Ghz Intel Core i5 processor with 24GB of mem-
ory. We measured its execution speed and memory requirements for a video
resolution of 400 by 300 pixels, with the parameter settings provided in the
paper. The computational cost of solving for a single sliding window position
can be broken down into the cost of constructing the MRF model and the cost
of optimizing it. Model construction was parallelized with OpenMP. It took
15 seconds when utilizing four cores. The optimization step ran in a single
thread and took approximately 25 seconds per sliding window. The algorithm
consumed approximately 20GB of memory at its peak.

6 Conclusion

We have described an off-line method for target tracking through the sequen-
tial segmentation of the video volume. Our formulation uses multi-label MRF
optimization with an energy function that enforces spatio-temporal coherence.
We present a ground-truth dataset for target tracking, called GT-SegTrack,
which is based on a systematic assessment of the sources of difficulty in ac-
curate segmentation. We compare our method to two recent on-line trackers,
and demonstrate improved performance. Our results suggest that it is possible
to obtain more accurate segmentations using an off-line approach, at the cost
of increased computation. Our dataset is available from our project website.’
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Fig. 5 Comparative results: Tracking results are illustrated for selected frames from five
sequences, comparing our method to that of [2], [15] and Rotobrush.
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Fig. 6 Qualitative tracking results: Top: Girl sequence[36] from the UCF action
database, illustrating shape changes. Row 2: Birdfall sequence from GT-SegTrack, exhibit-
ing color overlap, large motion and small shape change, followed by Parachute, the easiest
sequence in GT-SegTrack. Row4: Monkeydog sequence from SegTrack, showing large mo-
tion and significant shape change. Row5: One more penguin example. Rows 6 and 7: Two
successfully tracked long sequences.



