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Abstract—Programs written in languages allowing direct access to
memory through pointers often contain memory-related faults, which
cause non-deterministic failures and security vulnerabilities. We present
a new dynamic tainting technique to detect illegal memory accesses.
When memory is allocated, at runtime, we taint both the memory
and the corresponding pointer using the same taint mark. Taint marks
are then propagated and checked every time a memory address m
is accessed through a pointer p; if the associated taint marks differ,
an illegal access is reported. To allow always-on checking using a
low-overhead, hardware-assisted implementation, we make several key
technical decisions. We use a configurable, low number of reusable taint
marks instead of a unique mark for each allocated area of memory,
reducing the performance overhead without losing the ability to target
most memory-related faults. We also define the technique at the binary
level, which helps handle applications using third-party libraries whose
source code is unavailable. We created a software-only prototype of
our technique and simulated a hardware-assisted implementation. Our
results show that (1) it identifies a large class of memory-related faults,
even when using only two unique taint marks, and (2) a hardware-
assisted implementation can achieve performance overheads in single-
digit percentages.
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software interfaces, C.1 Processor Architectures, D.2.5.g Monitors

1 INTRODUCTION

EMORY-RELATED faults are a serious problem for

languages that allow direct memory access through
pointers. An important class of memory-related faults are what
we call illegal memory accesses. In languages such as C
and C++, when memory is allocated, a currently-free area
of memory m of the required size is reserved. After m is
allocated, its starting address can be assigned to a pointer p,
either immediately (e.g., in the case of heap allocated memory)
or at a later time (e.g., when retrieving and storing the address
of a local variable). An access to m is legal only if 1) it uses
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pointer p or a pointer derived from p and 2) if the access
occurs during the interval when p is valid, (i.e. between the
allocation and deallocation of m). All other accesses to m are
illegal memory accesses (IMAs), where a pointer is used to
access memory outside the bounds of the memory area with
which it was originally associated, or outside the time period
during which the pointer is valid.

IMAs are especially relevant for several reasons. First, they
are caused by typical programming errors, such as array-out-
of-bounds accesses and stale pointer dereferences, and are thus
widespread and common. Second, they often result in non-
deterministic failures that are hard to identify and diagnose;
the specific effects of an IMA depend on several factors, such
as memory layout, that may vary between executions. Finally,
many security concerns such as viruses, worms, and rootkits
use IMAs as injection vectors.

This paper is an extended version of our previous work [3],
that presents a new dynamic technique for protecting programs
against most known types of IMAs. The basic idea behind the
technique is to use dynamic tainting, also known as dynamic
information flow tracking (DIFT) [11], to link memory areas
with their valid pointers. Every time memory is accessed
through a pointer, our technique checks if the access is legal
by comparing the taint mark associated with the memory and
the taint mark associated with the pointer used to access it.
The access is considered legitimate if the taint marks match.
Otherwise, an IMA is reported.

Because our technique is intended for efficient hardware-
assisted implementation, one of the key goals in our design is
to allow runtime decisions about the tradeoff between appli-
cation performance and IMA detection probability. Whereas a
software-only tool can select among any number of schemes
that offer different tradeoffs, in a hardware-assisted tool the
hardware cost would be the sum of hardware costs of all
supported schemes. In effect, hardware support for each dis-
tinct scheme would be included in the hardware cost of a
system even if that particular system never actually uses that
scheme. For this reason, our technique should be parametrized
such that the same scheme can be used to achieve different
points in the performance-accuracy tradeoff. We achieve this
parametrization by using a configurable number of taint marks,
instead of using a distinct taint mark for each memory al-
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location. Limiting the number of taint marks can result in
false negatives, because different memory regions and their
pointers can have the same taint mark and an IMA where
the address and the memory region happen to have the same
taint mark would be undetected. Thus, the probability of IMA
detection depends on how many taint marks can be used. The
hardware-assisted performance of the scheme also depends on
the number of taint marks — the number of bits needed to
encode each taint mark determines how much extra capacity
and bandwidth are used by the memory subsystem, and also
how much extra latency is added by taint propagation circuitry.
Overall, the number of taint marks can be used to select the
desired point in the performance-accuracy tradeoff.

Our evaluation has dual goals: evaluating the ability of
our technique to detect IMAs, and determining its effect on
program performance. To assess IMA detection, we developed
a software-only prototype that implements the approach for
x86 64-bit binaries and protects stack, heap and global allo-
cated memory and was used to perform a set of empirical
studies. This prototype instruments the application’s code
using LLVM [16] and its runtime component is built within
DYTAN [4], a generic dynamic-taint analysis framework. To
determine the performance impact of the hardware-assisted
implementation, we implemented another prototype within the
SESC [23] computer architecture simulator that uses MIPS
binaries. This two-pronged evaluation approach is needed
because hardware simulation is extremely time-consuming,
making start-to-finish simulations of real large programs with
known IMAs infeasible. Instead, we use a software-only
prototype to run these programs to evaluate our technique’s
IMA detection ability, but determine expected overheads using
a benchmarking methodology traditionally used in computer
architecture research — simulation of smaller applications and
using only a representative fraction of the entire run.

Our experiments show that our proposed technique can
identify a large number of IMAs, even when using only one-
bit taint marks (only two unique taint marks). They also show
that a hardware-assisted implementation imposes low time
overheads, typically a few percent for a single taint mark,
that grow moderately as the number of taint marks increases.
These low overheads should make our scheme practical for
use on deployed software.

The contributions of this paper are:

o A new technique for detecting IMAs that is effective and
amenable to hardware-supported implementation.

o A design space analysis for hardware implementation of
our technique.

o Two prototype implementations of the technique: a
software-only one that works on x86_64 binaries, and
a hardware-assisted one that works on MIPS binaries.

o A set of empirical studies that provide evidence of the
effectiveness and practical applicability of the approach.

2 MOTIVATING EXAMPLE

In this section, we introduce an example that we use to
illustrate our technique. The code shown in Fig. 1 is taken
from a reference manual [5] and consists of a function that,

void prRandStr (int n) {

1. int i, seed;

2. char xbuffer;

3. buffer = (char *) malloc(n);

4. if (buffer == NULL) return;

5. getSeedFromUser (&seed) ;

6. srand (seed) ;

7. for(i = 0; 1 <= n; i++) /* fault */
8. buffer[i] = rand()%26+’a’; /+ IMA x/
9. buffer[n - 1] = "\0’;

10. free (buffer);

11. printf ("Random string: %$s\n", buffer);

Fig. 1. An example IMA.

given an integer n, generates and prints a string of n — 1
random characters. We slightly modified the original code by
adding the use of a seed for the random number generation and
adding a call to a function (get SeedFromUser) that reads
the seed from the user and returns it in a parameter passed by
address. We also introduced two memory-related faults. First,
at line 7 we changed the terminating condition for the for
loop from “i < n”to“i <= n”, which causes the statement
at line 8 to write a random character at position buffer +
n. Because the address at offset n is outside the bounds of
the memory area pointed to by buffer, accessing it through
buffer is an IMA. The second IMA we introduced is that
buffer is freed in line 10, so at line 11 the user-level library
code in printf accesses memory that is no longer allocated.

The first IMA in this example is a spatial IMA — the access
is illegal because a pointer accesses memory outside of the
range that is valid for that pointer. The second IMA in our
example is a temporal IMA - a previously valid pointer-
memory association is no longer valid at the time of the access.

3 OUR TECHNIQUE

We first outline our technique at the source code level using
an unlimited number of taint marks. Sections 3.2 and 4 then
discuss how the technique works when the number of taint
marks is limited and when operating at the level of binaries.

3.1

Our technique is based on dynamic tainting, which is a
technique for marking and tracking certain data at runtime.
Our approach instruments programs to mark two kinds of data:
memory in the data space and pointers. When a memory area
m is allocated, the technique taints m with a taint mark t.
When a pointer p is created with m as its referent (i.e., p
points to m’s starting address), p is tainted with the same taint
mark used to taint m. The technique propagates taint marks
associated with pointers as the program executes. Finally,
when memory is accessed using a pointer, the technique checks
that the memory and the pointer have the same taint mark.
Because pointers can be stored in memory, our technique
actually stores two taint marks for each memory location, one
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associated with the memory location itself and the other for a
pointer that may be stored in that location.

The rest of this section describes in detail the three parts of
our technique: tainting, taint propagation, and taint checking.

3.1.1 Tainting

This part of our technique is responsible for initializing taint
marks for memory and pointers. There are four cases that our
technique must handle: static memory allocations, dynamic
memory allocations, pointers to statically-allocated memory,
and pointers to dynamically-allocated memory.

Static memory allocations occur implicitly wherever a
global or local variable is declared. The memory for global
variables is allocated at program entry, by reserving space in
a global data area. For local variables declared in a function
f, memory is allocated upon entry to f, by reserving space on
the stack. For our example code in Fig. 1, assuming a 32-bit
word size, 12 bytes of stack space are allocated (for i, seed,
and buffer) when prRandStr is entered.

To taint statically-allocated memory, our technique inter-
cepts function-entry and program-entry events, identifies the
memory area used to store each local and global variable,
and taints each individual area with a fresh taint mark. The
memory area for a variable is identified using its starting
address and the size needed to store that variable’s type. In our
example code, when prRandStr is entered, three fresh taint
marks (e.g., t1, to, ad t3) are created, using the first to mark
the memory range [&i,&i + sizeof(int)), the second taint
mark for [&seed, &seed + sizeof (int)), and the third for the
[&buf fer, &buf fer + sizeof(charx)) range. For statically-
allocated arrays, the range is calculated analogously, with the
exception that the type’s size is multiplied by the number of
elements in the array.

Pointers to statically-allocated memory can be initialized
in two ways. For a scalar variable, the address-of operator
(&) returns the starting memory address of the variable to
which it is applied. When the address-of operator is used on
a variable, our technique taints the pointer with the same taint
mark that was used for the variable’s memory. In our example,
when the address-of operator at line 5 produces the starting
address of seed, our technique retrieves the taint mark ¢,
associated with seed and associates it with the address passed
to getSeedFromUser. For statically allocated arrays, the
name of the array is, for all practical purposes, a pointer to
the first element of the array. In either case, we can create a
shadow pointer that corresponds to each pointed-to region, and
taint this shadow pointer with the region’s taint mark (more
detail on this is provided in Section 4).

Dynamic memory allocations, occur explicitly, as a con-
sequence of a call to a memory-allocation function. In C and
C++, there are only a few memory-allocation functions, and
they all 1) take as input the size of the memory area to allocate
and 2) return either the beginning address of a contiguous
memory area of the requested size or NULL if the allocation
is unsuccessful.

To taint dynamically-allocated memory, our technique inter-
cepts calls to memory-allocation functions, (e.g., malloc).
When such a function is about to return successfully, the

technique identifies the range of the allocated memory as
[r,r + size), where r is the value returned by the memory-
allocation function and size is the amount of memory re-
quested passed as a parameter to the function, and taints the
memory in this range with a fresh taint mark. In our example
(Fig. 1), the call to malloc at line 3 would taint the range
[buf fer,buf fer +n) with a fresh taint mark (e.g., t4).

Pointers to dynamically-allocated memory are created
either directly (as a return value of an allocation function)
or indirectly (from another pointer). When our technique in-
tercepts a memory allocation function that returns successfully
and taints the allocated memory area with a fresh taint mark, it
taints the function’s return value (pointer) with the same taint
mark. If other pointers are derived from that pointer, their taint
mark is propagated to them as discussed in Section 3.1.2. In
our example, the call to malloc returns a value tainted with
ty, then (as a result of the assignment at line 3) this taint is
propagated to the buffer pointer.

3.1.2 Taint Propagation

In dynamic tainting, a propagation policy dictates how taint
marks flow along data- and control-dependencies as the pro-
gram executes. In our context, there are no cases where taint
marks should propagate through control-flow, so we define our
propagation policy for data-flow only. Our propagation policy
treats taint marks associated with memory and taint marks
associated with pointers differently.

Propagation of Memory Taint Marks: Taint marks
associated with memory are not actually propagated. They
are associated with a memory area when it is allocated and
removed when it is deallocated. This removal of taint marks
upon deallocation is implemented by intercepting memory
deallocation and clearing (e.g., setting to zero) the taint marks
associated with that memory area. Note that pointers that
were tainted with the memory area’s taint mark can remain
tainted. If such a pointer is used to access memory after its
deallocation, the taint marks of the pointer and the memory
location are different and an IMA is still detected.

Dynamically allocated memory is deallocated by calling
a memory-deallocation function (e.g., free), which is in-
tercepted by our technique to clear the taint marks of the
deallocated memory range. For the example in Fig. 1, the call
to free at line 11 is intercepted and the taint marks for the
memory region [buf fer,buf fer + n) are cleared.

Statically allocated memory is deallocated when the func-
tion that allocated it returns (for local variables) or at program
exit (for global variables). The latter case is irrelevant for
our technique. To handle deallocation of local variables, our
technique intercepts function exits and clears taint marks of
the memory that corresponds to the function’s stack frame. In
our example code, when prRandStr returns, our technique
clears taint marks associated with prRandStr’s stack, thus
removing taint marks associated with memory that stores local
variables i, seed, and buffer.

Propagation of Pointer Taint Marks: Unlike taint
marks associated with memory, taint marks associated with
pointers are propagated to derived pointers. To correctly prop-
agate these taint marks, our technique must accurately model



all possible operations on pointers and associate, for each
operation, a propagation action that assigns to the result of
the operation the correct pointer taint mark (using a zero taint
to denote “untaintedness” of non-pointer values).

A superficial analysis of typical pointer operations can
produce a reasonable initial propagation policy. For example,
additions or subtractions of a pointer p and an integer should
produce a pointer with the same taint mark as p; subtractions
of two pointers should produce an untainted integer (an offset);
operations such as adding or multiplying two pointers or
performing logical operations between pointers should be
meaningless and simply result in an untainted value.

Unfortunately, due to commonly used hand-coded assembly
functions and compiler optimizations, a propagation policy
defined in this way would be highly inaccurate and result in a
large number of false negatives. In our preliminary investiga-
tion, we encountered dozens of cases where a simple policy
falls short. To illustrate why simple policies are inadequate,
we use the strcpy function of the C library as an example.
This is a commonly-used function that copies the contents
of a character array (src) to another character array (dest)
under the assumption that the two arrays do not overlap. In
the version of the C library that we inspected, the strcpy
function is implemented as follows: it first initializes two
pointers s and d to point to the initial address of src and
dest, respectively. It then calculates the distance, dist, between
s and d by subtracting the two pointers. Finally, it executes
a loop that copies the character at position s, to the memory
location s+dist, incrementing s in each iteration until a string-
termination character (zero in C/C++) is copied.

With the simple policy described above, this function always
produces false positives — if src and dest have taint marks
tsre and tges:, when offset dist is computed it is an untainted
integer which, when added to s, results in a pointer that has
the taint mark t¢,.. but points to the memory area of the dest
string. As a result, an IMA is reported for each write to the
dest string in the strcpy function.

To address this and other issues, we defined a more so-
phisticated policy based on our intuition and knowledge of
the underlying assembly instructions and patterns found in the
software subjects that we studied. We present a summary of
our more final policy by discussing how it handles different
operations:

Add, Subtract: (¢ = a +/- b). If a and b are tainted
with ¢, and ¢, respectively, then c¢ is tainted with ¢, + ¢,
(for addition) or t, — t; (for subtraction). This accounts for
a range of situations, such as adding to (or subtracting from)
a pointer an offset computed by subtracting two pointers. In
the strcpy code discussed above, dist is now tainted with
tgest — tsre. When dist is added to s, the result is now tainted
with tgpc+ (tdgest —tsre) = tdest, the correct taint for accessing
the memory that contains the dest string. This policy also
produces correct ¢, for the cases where a and b are untainted
(t, and t; are zero, so t. is also zero) and where one of them is
tainted (pointer) and the other is not (e.g., when ¢, is non-zero
and t, is zero, t. will be equal to t,).

Multiply, Divide, Modulo, Bitwise OR and XOR:
Independently from the taint mark of the operands, the result

of any of these operations is never tainted.

Bitwise AND: (¢ = a&b). Bitwise AND can have
different semantics depending on the value of its operands. In
particular, a program may AND a pointer and an integer to get
a base address (mask out the lower bits of the pointer). For
example, a & Oxfffff£00” masks out the lowest
eight bits of pointer a. Bitwise AND can also be used
to compute an offset (e.g., “c = a & 0x000000000£”).
To address this issue, we defined our propagation policy as
follows. If a and b are either both untainted or both tainted,
then c is not tainted; we could not identify any reasonable case
where ¢ could still contain useful pointer-related information
in these two cases. If only one of ¢ and b is tainted with a
given taint mark ¢, c is tainted with ¢ if the result preserves
the most-significant bits of the tainted value; the rationale for
this is that the operation is (or might be) computing a base
address for some memory range.

Bitwise NOT: (c = ~ a). Bitwise NOT can be used as an
alternative to subtraction, e.g., “c = b — a — 1” could be
optimized into “c = b + ~ a”. Thus, our taint propagation
rule for bitwise NOT is ¢t. = —t,. Note that this also correctly
handles bitwise NOT of untainted values (t, is zero).

It is important to note that clever or unusual combinations of
operators can result in sequences that are not handled correctly
by any specific policy, and similar problematic sequences can
be created for any IMA detection scheme that is defined at
the binary level. Therefore, it is unlikely that any propagation
policy can be proven to be sound and complete. However, our
policy works correctly for all the software that we studied so
far, as discussed in Section 5. If additional experimentation
reveals shortcomings of our policy, we will refine it accord-

ingly.
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3.1.3 Checking

To check legality of memory accesses, our technique intercepts
all memory accesses and compares the taint mark of the
pointer used to access memory with the taint mark of the
accessed memory location. These taint marks are equal for
legitimate memory accesses, so the access is considered an
IMA when the taint marks are different (including the case
where one is tainted and the other is not). Currently, our
technique halts program execution when it detects an IMA.
However, it could also perform different actions, such as
attaching a debugger or logging the IMA and allowing the
execution to continue. The specific action chosen may depend
on the context (e.g., in-house versus in-the-field, friendly
versus antagonistic environments, etc.).

3.2 Limiting the Number of Taint Marks

Ideally, our technique would use an unlimited number of
unique taint marks because it would allow detecting all IMAs.
Realistically, however, the number of distinct taint marks that
the technique can use must be limited for the technique to be
practical.

In our implementations, each taint mark is represented with
n bits, limiting the number of distinct taint marks to 2".
Although it is possible to use a large number of bits (e.g.,



64 bits) for a virtually unlimited number of taint marks,
the storage and manipulation of large taints would introduce
unacceptable overheads. As stated previously, our approach
stores two taint marks for every memory location—one for
the memory location, and the other for the pointer stored in
that location. Two 64-bit taint marks per byte of data would
result in a 16-fold memory increase, which is prohibitive for
many applications.

Most importantly, large taints would prevent a practical
hardware-assisted implementation. There are two primary rea-
sons for this. First, the performance overhead in a hardware-
based implementation comes mostly from the competition
between data and taint marks for space (e.g., in caches) and
bandwidth (e.g., on the system bus). Therefore, it is highly
desirable to keep the size of taint marks small relative to
the size of the corresponding data. Second, large taints would
dramatically affect the design complexity of the hardware.

Based on these considerations, a key feature of our scheme
is that the number of taint marks can be small while still 1)
avoiding false positives and 2) retaining the ability to detect
all types of IMAs. The drawback of using fewer taint marks
is that they have to be reused, so several allocated memory
areas may have the same taint mark. When a pointer intended
to point to one area is used to access another that has the
same mark, the resulting IMA would be undetected. In other
words, when using a limited number of taint marks, IMAs
are detected probabilistically. Assuming n-bit taint marks, a
uniformly-distributed random assignment of taint marks to
memory regions, and IMAs where a pointer accesses a random
memory region, the probability of detecting each IMA is equal
to P=1-— QL This is encouraging: even for a single taint
mark (1 bit), our technique may still find 50% of all IMA
events; with 2-, 4-, and 8-bit taints we would expect to detect
each IMA with 75%, 94%, and 99.6% probability, respectively.

Moreover, these estimates may actually be low for two
reasons. First, many IMAs occur because a pointer is used
to access memory slightly outside the bounds of its intended
referent. Ensuring that abutting regions get different taint
marks would mean that these IMAs will be caught. Second, in
cases where a single defect can result in multiple IMAs, even
a 50% probability of detection for each IMA event results in
a much higher probability of revealing the underlying defect
by detecting at least one IMA caused by it.

Even though limiting the number of taint marks makes the
technique probabilistic, it does not lead to false positives. A
pointer and its corresponding memory region will always have
the same taint mark. This gives us the ability to fune the
number of taint marks to achieve a desired tradeoff between
likelihood of IMA detection and space and performance over-
head, without worrying about introducing false positives that
would need to be investigated and detract from the practical
usability of the technique.

4 |IMPLEMENTATION

Although previous sections present the technique at the source-
code level, our prototype implementations actually operate at
the binary level. This approach allows our technique to work

correctly even when no source code is available for parts of
the application, such as when using dynamically loaded off-
the-shelf modules and libraries. Working at the binary level
also facilitates a hardware-assisted implementation, where the
hardware accelerator operates at the machine level with little
or no knowledge of the source code structure. The role of this
hardware accelerator in our technique is to propagate taints,
while the software is responsible for correctly initializing the
taint information using the ISA (similar to FlexiTaint [30])
extensions provided by the hardware. In this section, we pro-
vide details of the two implementations (software-based and
hardware-assisted) and discuss the main differences between
them.

4.1 Operating at the Binary Level

When operating at the binary level, our technique can still
use the same taint propagation rules described in Section 3,
but loses the necessary information for initializing taints
correctly. To retain that information, the runtime library needs
to be modified to intercept heap allocations and deallocations,
and the compiler must instrument the application’s code to
appropriately initialize memory and pointer taints for global-
and stack-allocated memory.

Handling of dynamically allocated objects requires that we
modify the heap allocation library to appropriately initialize
the taint as described in Section 3.1.1. We note that use of
custom memory allocators by the application, even if they
are not changed to initialize memory and pointer taints, does
not result in false positives in our technique. Assume that an
application allocates several MBytes through malloc and
internally partitions them. The allocated memory area will
have a single memory taint, and all the pointers pointing to
its partitions will have the same pointer taint as the original
pointer to the array (return value of the malloc function)
because they have all been derived from it. This eliminates
false positives, but does prevent identification of IMAs within
that area (e.g., using a pointer to one partition to access
another). To enable IMA detection in this case, the author
of the memory allocator should modify the custom allocator
to insert appropriate taint initialization and clearing code.

For the case of statically allocated objects on the stack, e.g.,
a stack-based buffer, the address of the object is determined
at runtime and it is relative to the stack pointer of the
program. The compiler instruments the code to initialize the
memory taint of the buffer e.g., using the ISA extensions.
However, subsequent accesses to the buffer are ordinarily often
computed by adding a constant offset to the stack pointer,
which has zero pointer taint in order to access the non-tainted
stack variables, and would result in false positives, because
the resulting pointer will not have the “correct” taint. In
our prototype implementation, we overcome this problem by
introducing a shadow pointer for every tainted area (e.g., a
buffer) in the stack. The prologue of each function initializes
these shadow pointers to point to the corresponding stack-
allocated memory areas, and initializes the memory taint of
each memory area and the pointer taint of its shadow pointer.
The body of the function is then changed to no longer use the



stack pointer to access these memory areas, but use the shadow
pointers instead. Similarly, the address-of operator now simply
copies the shadow pointer, propagating it to the newly created
pointer. Finally, the epilogue of each function clears the
memory taints of the stack-based objects that are freed at that
point. The same approach is also used for global statically
allocated memory — the only difference is that initialization
of the memory taint occurs when global constructors and
initializers are being called. Finally, the memory taint of the
shadow pointers themselves is zero, protecting them from any
accidental or malicious overwrites. Similarly to the shadow
pointers the memory taint of the return address is also zero to
prevent possible attacks.

These changes ensure that each statically allocated object
is now accessed only through its shadow pointer or pointers
copied or derived from it, just like a dynamically-allocated
object is only accessed through the pointer returned by an
allocation function (e.g., malloc) or pointers copied or derived
from it. Furthermore, clearing of memory taints when we leave
the object’s scope makes the object’s shadow pointer no longer
valid for accessing it, also just like pointers to dynamically
allocated memory stop being valid because deallocation clears
memory taints of the memory that is being deallocated.

Finally, our technique operates without false positives inside
shared libraries and other binaries for which the source code is
not available. Inside such code, our technique will not detect
IMAs that only involve stack-based objects from within the
uninstrumented code, but will still detect heap-based IMAs and
IMAs where a pointer from the instrumented part of the code
is used to access memory that belongs to the uninstrumented
code, or vice versa. It should be noted that this is neither a
fundamental limitation in our scheme nor is it endemic to our
scheme: any IMA detection scheme would be unable to detect
IMAs in code whose pointer-memory associations cannot be
conveyed to the scheme, and dynamic recompilation at the
binary level would be able to overcome this problem (at least
for stack-based objects) by instrumenting function entry and
exit code even when no source code is available.

4.2 Software-based Implementation

To create our software-based prototype, we added a pass in
LLVM 2.6 [16] to taint all stack and global defined arrays
using the shadow-pointer approach described in Section 4.1.
The taint propagation is implemented using DYTAN [4], a
generic dynamic tainting framework which is itself built on
top of the Pin dynamic-instrumentation framework [18]. Taint
initialization requests from the instrumented application code
are conveyed to our Dytan-based runtime implementation via
function calls that are intercepted by Pin.

Although Pin allows our implementation to handle shared
libraries, it cannot instrument the underlying Operating System
(OS), so our implementation must recognize system calls and
and account for their effects on memory and pointers. These
effects are relatively simple to model and account for, so
system call handling in our prototype is more of a tedium than
a conceptual difficulty. Signals are only slightly more difficult
to handle than ordinary function calls — the OS performs a

context switch and allocates a new stack frame before calling
the handler function in the application, so our implementation
must suitably initialize and clear taint information in the
handler’s entry and exit code, respectively.

4.3 Hardware-based Implementation

As explained in Section 3, one of the key advantages of our
IMA detection technique is that the bulk of the performance
overhead in the software-only implementation is due to prop-
agation of pointer taints and comparisons between pointer and
memory taints when accessing memory, both of which are
amenable to hardware acceleration. Hardware acceleration of
taint propagation and checking have already been discussed
in the literature, both for fixed-functionality security schemes
(e.g., Minos [6]) and programmable ones (e.g., Raksha [19]
and FlexiTaint [30]).

Because our technique’s taint propagation and checking
needs differ from those in prior tainting work, in this section
we briefly re-examine the design space to identify good
candidates for an IMA-detection accelerator. The primary
parameters of this design space are:

o How are taints processed and stored — tightly coupled
with data in a “data-widening” implementation such as
the one used in Minos [6] or Raksha [19], or separately
from data in a “decoupled taint” implementation such as
the one used in FlexiTaint [30]

o How are taints propagated and accesses checked — by
hard-wiring the rules or programming one of the pro-
grammable accelerators proposed in the literature?

4.3.1 Taint processing and storage:
Data-widening or Decoupled Taint?

The most straightforward way to implement a hardware DIFT
scheme is to simply extend (widen) each word by a few bits to
accommodate the taint information. This widening applies to
all parts of the system where values can be stored or transmit-
ted, including memory, registers, data buses, forwarding logic,
etc. The main appeal of this approach is that taint information
is simply an extension of a data value and naturally flows
together with it. Whenever data values are operated on in an
ALU, the taint bits of the operands can be processed in parallel
with that ALU operation to produce the taint bits for the result.
The main disadvantage is that it requires extensive changes
(e.g., widening of buses, forwarding logic, memory locations,
registers, etc.) across the entire processor pipeline and the
memory subsystem, and prevents use of standard memory
modules and buses (must be widened to add taint bits).
Another way to implement our DIFT-based hardware IMA
detector is to decouple taint storage and processing from
data. A similar decoupling approach has been adopted in
prior schemes for program monitoring, such as programmable
monitoring of memory accesses in MemTracker [31], pro-
grammable DIFT support in FlexiTaint [30], and even IMA
detection using “safe pointers” in HardBound [7]. In this
approach, taint information is stored as a packed array in a
reserved part of the application’s virtual address space. This
reserved virtual space is managed by the Operating System



(OS), allowing taint pages to be paged in and out similar
to normal data pages. Existing page-level access controls
can be simply extended to protect taints from accidental or
malicious overwrites using normal data access instructions
while allowing them to be initialized, propagated, and checked
by the DIFT mechanism itself. Finally, a separate and small
L1 cache can be dedicated to storing taints, preventing any
pollution in the existing data L1 cache and avoiding any extra
contention on its ports. Because taints are typically much
smaller than the corresponding data, the L2 cache and memory
capacity and bandwidth can be shared between data and taints,
so they store taint regions of memory just like any other
memory. More details on this implementation can be found
in MemTracker [31] and FlexiTaint [30], including details
on how a decoupled-taint approach can be implemented with
minimal impact on performance-critical parts of the out-of-
order instruction execution engine found in modern processors,
as well as how it interacts with the OS.

Most prior proposals for hardware-assisted DIFT use this
data-widening approach [6], [19]. These mechanisms use
DIFT primarily to identify unsafe uses of “untrusted” values,
typically using a one-bit taint to mark “untrusted” values that
come from external sources, such as the network, propagating
the “untrusted” taint to derived values, and detecting a possible
attack when an “untrusted” value is used in an unsafe way.

The conceptually straightforward data-widening approach
is very attractive for such schemes: one additional bit in each
memory word in memory or in a bus can be accommodated
relatively easily, e.g., by repurposing ECC bits (if some
degradation in reliability is acceptable). Also the additional bit
in the data paths, caches, registers, etc. of the processor chip
results in only a minor increase in area and circuit latency.

For our IMA detection technique, however, more than one
taint bit is needed for each memory location, and ability to
support multi-bit taint marks is also highly desirable: one of
the key features of our IMA detection technique is that it
permits a cost-accuracy tradeoff, i.e. using more taint bits
to improve detection accurately at the cost of memory (to
store taints) and performance (to process and manage larger
taints), or using fewer taint bits to minimize cost with some
degradation in accuracy.

Because the data-widening approach adds a taint mark to
every data location and register, it requires the maximum
number of supported taint marks to be decided at hardware
design time. A data-widening implementation eliminates this
important advantage. The maximum number of taint bits is
decided at runtime, and the cost (additional bits in memory,
registers, etc. and performance degradation due to larger
circuitry and caches) is paid for that maximum number of
bits. As a result, it makes little sense to not use anything but
the maximum number of taint bits.

In contrast, a decoupled-taint implementation allows the
desired point in the cost-accuracy tradeoff to be decided for
each system or even application separately: how much memory
and L2 space is occupied by taints depends on taint size; how
much performance overhead is incurred also primarily depends
on taint size (larger taints consume more bandwidth and suffer
more misses in the taint L1 cache and in the shared L2 cache).

At one extreme of the cost-accuracy tradeoff, the technique
can be turned off — no IMAs will be detected, but no memory
is used for taint storage and the taint propagation and checking
support in the processor pipeline can be turned off and kept
outside the processor’s critical path [30]. At the other extreme,
a very large number of taints (e.g., 32-bit or even 64-bit taints)
can provide each area of memory with its own unique taint
mark, resulting in detection of all IMAs but with a large cost
in terms of memory space and performance; half or more of
memory and L2 space is used for taints, and the small taint
L1 cache is suffering large numbers of misses.

Storing taints as packed arrays in memory using the
decoupled-taint approach has a secondary advantage in terms
of performance — rapid initialization and clearing of memory
taints in a given (allocated or deallocated) block of memory,
because each memory word in the taint storage area stores
taints for several consecutive data locations.

Overall, for our IMA detection technique, the decoupled-
taint approach has multiple important advantages over the
data-widening approach. As a result, the prototype hardware-
accelerated implementation of our IMA detection scheme uses
the decoupled-taint approach.

4.3.2 Taint propagation and access checking:
Hard-wiring or programming an accelerator?

Our IMA detection technique can be implemented by hard-
wiring our taint propagation rules (Section 3.1.2) and pointer-
memory taint checks (Section 3.1.3) into the taint propagation
and checking engine of a decoupled-taint DIFT accelerator.
However, it would be highly desirable if these propagation
rules and checks could be implemented using one of the
previously proposed programmable DIFT accelerators: the cost
of tainting support could then be amortized between existing
DIFT-based schemes (detection of unsafe uses of untrusted
data) and our new IMA detection scheme. An additional
advantage of using programmable accelerators lies in future-
proofing: hard-wired approaches would require a hardware
upgrade each time DIFT rules are upgraded, whereas a scheme
using a programmable accelerator can be upgraded by repro-
gramming the accelerator.

It should be noted that future-proofing, while still a possible
concern, is not as pressing for our IMA detection scheme
as it is for prior uses of DIFT that interpret the taint mark
as an indication of whether the data is trusted or not by
propagating the trusted/untrusted property to derived values
and identifying unsafe operations that use untrusted values
(e.g., a jump instruction that uses an input-derived target
address). In such schemes, different interpretations of trust and
safety have resulted in many different sets of DIFT rules, and
updates to DIFT rules may be needed as the interpretations
of trust and safety are revised in the face of new attacks.
In contrast, DIFT rules in our scheme mirror legal ways
of deriving pointers from one another. Whether a value is
a pointer and how it is derived are well-defined properties,
so we do not expect frequent changes in our DIFT rules.
Still, we cannot rule out the need for such upgrades, so an
implementation that uses a programmable accelerator would
still be desirable.



Unfortunately, our technique has four characteristics that
are at odds with the assumptions that were made in the design
of prior programmable accelerators. First, the resulting pointer
taint mark for an operation (e.g., ADD or SUB) is not a simple
copy or a result of a logical operation (AND, OR, etc.) of the
sources’ taint marks — e.g., for ADD, the taint mark of the
result is the sum of sources’ taint marks. This kind of prop-
agation can only be implemented using an exception handler
for each ADD/SUB/NOT, etc. instruction' in the Raksha [19]
DIFT accelerator as it was originally described. However, it
would be relatively simple to add hardware support for these
taint operations to Raksha’s repertoire. In FlexiTaint [30], the
hardware accelerator can be programmed to perform these
operations, but the performance degradation would be some-
what higher due to the large number of possible input-output
taint combinations that could cause misses in FlexiTaint’s TPC
(a small cache used to memoize output taints for recently
encountered input taint combinations). The second obstacle
is that our technique divides taint information into pointer and
memory taints which are propagated differently, then compares
the pointer taint of the address with the memory taint of
the location being accessed. In Raksha, different rules would
require pointer and memory taints to be treated as different
taint propagation schemes, which precludes comparisons of
pointer and memory taints without resorting to exceptions?
in Raksha [19]. Although extensions to Raksha that would
enable such cross-scheme checks are feasible, they would not
be straightforward. In FlexiTaint, the two separate taints can
be implemented together, but would increase the number of
frequently seen input taint combinations (which again reduces
the effectiveness of its TPC). The third difficulty is that both
schemes do not treat the taint of the destination (e.g., memory
location in a store instruction) as one of the input taints for the
operation, which prevents them from comparing the memory
taint of the target memory location with the pointer taint of
the address in a store-to-memory operation®. Again, either
scheme can be extended to support this, but the extension
would be non-trivial, would increase the schemes’ cost, and
result in additional performance overhead. The final (fourth)
and most pressing problem is that our taint propagation rules
determine the resulting taint using not only the taints of the
input operands, but also their data values — e.g., to handle the
AND operation* as described in Section 3.1.2. Extensions to
allow efficient and programmable consideration of data values
in taint propagation in either scheme (Raksha or FlexiTaint)

1. These instructions represent about 20% of all dynamic instructions
in the benchmarks we used in our experimental evaluation. Even with a
10-instruction exception handler (which is extremely optimistic), the total
instruction count would increase three-fold

2. Load and store instructions, which require these checks, represent
about 39% of all dynamic instructions in the benchmarks we used in our
experimental evaluation; even a 10-instruction exception handler would result
in a five-fold increase in the total instruction count

3. 12% of dynamic instructions in our experiments, so an exception-based
workaround would result in a two-fold instruction count increase

4. This operation represents only 0.5% of dynamic instructions in our ex-
periments, so an exception-based workaround with 10-,20-,and 30-instruction
handlers would increase the instruction count by 5%, 10%, and 15%, respec-
tively, and likely cause somewhat higher performance degradation (exceptions
cause expensive pipeline flushes in modern processors)

are an open research problem.

As a result of these considerations, we chose a hard-wired
approach for our implementation. However, we do expect that
further work on programmable taint propagation accelerators
to eventually allow an efficient implementation of our tech-
nique using a programmable DIFT accelerator. In fact, we
hope that the above discussion of the existing accelerators’
shortcomings will serve as motivation for improving their
flexibility in this direction.

5 EMPIRICAL EVALUATION

The goal of our empirical evaluation is to assess the effec-
tiveness and efficiency of our technique. To this end, we used
the two prototypes described in Section 4 on a set of real
applications gathered from different sources and investigated
three research questions:

RQI1: How effective is our technique at detecting IMAs
when using only a small number of taint marks?

RQ2: Does our technique erroneously report an IMA for
any legitimate memory access?

RQ3: How much runtime overhead is a hardware-assisted

implementation of the technique likely to impose?
Section 5.1 presents the software applications that we used
in the study. Sections 5.2, 5.3, and 5.4 present our results and
discuss each of our three research questions.

5.1

In our empirical studies, we used two sets of subjects. The
first set consists of applications with known illegal memory
accesses, shown in Table 1. Most of these applications are
from the BugBench [17] suite. Four additional subjects were
obtained by browsing on-line bug databases (CVE’): pine
v4.44, an email and news client, mutt v1.4.2.li, an email
and news client, gnupg v1.2.2, an implementation of the
OpenPGP standard, and version 5.2.0 of the php language.
Pine, mutt, gnupg, and php each have one known heap
based IMA. Finally we also used a testbed [32] that performs
various attacks exploiting stack, heap and global buffers. We
use all these subjects to investigate RQ1.

Our second set of subjects consists of the twelve applica-
tions from the integer component of SPEC CPU 2000 [26].
These applications cover a wide range of possible program
behaviors and range in size from ~3.1k LoC, for 181 .mcf,
to ~1312.2k LoC, for 176 . gcc. The SPEC benchmarks were
created as a standardized set of applications to be used for
performance assessment and are close-to-ideal subjects for
us for two reasons. First, they are widely used and, thus,
thoroughly tested (i.e., we do not expect them to be faulty), so
we can use them to address RQ2. Second, they are commonly
used to evaluate hardware-based approaches, so they are also
a good set of subjects for investigating RQ3. For RQ3, we
used the SPEC CPU2000, SPEC CPU 2006 and Splash-2 [27]
benchmark suites, a detailed list of the benchmarks we ran
can be found in Section 5.4.

Experimental Subjects and Setup

5. http://cve.mitre.org/



In our experiments (both x86_64 software-only and MIPS
hardware-assisted), we use taints at the granularity of 32-
bit memory words. This creates some risk of false positives
and negatives when sub-word accesses are used, but no such
problems exist in any of the applications we used: pointers
stored in memory are word-aligned so word-granularity pointer
taints are sufficient, dynamic memory allocation in the stan-
dard library is in terms of chunks that are at least double-
word-aligned, and existing performance optimizations of stack
and global memory result in pointer-accessed variables (i.e.
arrays) being word-aligned as well. Note that this word-
granularity tainting is again a cost-performance choice, not
a fundamental requirement: when byte-granularity tainting is
used instead, taints would use four times as many bits per word
of data, i.e. two taint marks at byte-granularity would result in
performance similar to the performance results we show for
16 taint marks, four taints marks would result in performance
similar to what we show for 256 taint marks, etc.

5.2 RQ1

To address RQ1, we ran all applications from our first set of
subjects while protecting them with our software-based tool
configured to use only two taint marks. For each known IMA
in these applications, we ran the application, reproduced the
IMA, and checked if our tool detected it. The results of the
study are shown in Table 1. For each IMA, the table shows the
application containing the IMA, the IMA location, the type of
the illegal access, and if our prototype detected the IMA. The
type of the overflow can be either sequential (seq), where the
contents of an adjacent memory location are overwritten, or
random (rnd) where the base pointer of the buffer is used to
access potentially any memory location.

As the table shows, all IMAs were detected by the pro-
totype. Recall that we only expected about 50% of IMA
occurrences to be detected when using only two taint marks,
whereas our experiments indicate that the detection rate is
100%. This apparent discrepancy is a result of the fact that
many IMAs in these test subjects (and likely in software in
general) tend to involve abutting regions of memory — we
try to ensure, whenever it is feasible, that abutting regions of
memory have different taint marks, thus detection of IMAs
that involve such region is highly likely. This result is very
encouraging because it indicates that even with a very limited
number of taint marks our technique can detect nearly all
real heap, global and stack-based IMAs of the most common
variety (those involving abutting regions) and a significant
percentage (50% for two taint marks, 75% for four, etc.) of
all other (non-abutting-region) IMAs.

5.3 RQ2

To address RQ2, we performed a study similar to the one
we performed for RQ1: we protected the applications in the
SPEC CPU 2000 integer benchmarks using our software-based
tool, ran each of them against their test-input workload, and
checked that no IMA was reported. Because we consider the
programs in the benchmark to be virtually bug-free due to
their widespread usage, reporting an IMA would correspond

TABLE 1
Results for RQ1 (effectiveness).

Application |~kLoC|IMA location Overflow & |Dete-
IMA Type |cted

bc-1.06 14.4 storage.c:177 seq heap v
bc-1.06 14.4 util.c:577 seq heap v
bc-1.06 14.4 be.c:1425 seq global |V

< |compress 1.9 harness.c:234 rnd global |V

g gzip-1.2.4 8.1 gzip.c:457 seq global |V

ohigo 29.2 g27a.c:137 seq global |V

A [man-1.5h1 4.1 man.c:978 seq global |V
ncompress 1.9 compress42.c:896|seq stack v
polymorph-0.4{0.7 polymorph.c:120 |seq global |V
polymorph-0.4 |0.7 polymorph.c:193 |seq stack v
squid-2.3 93.5 ftp.c :1024 seq heap v
Wilander  et|0.6 seq  {stack,|v’
al [32] heap, global}
gnupg-1.4.4 |117.3 |parse_packet.c: |rnd heap v

0 2095

c>_) mutt-1.4.2.1i  |453.6 |utf7.c:199 seq heap v
php-5.2.0 558.2 |string.c:3152 seq heap v
pine-4.44 2219 |rfc822.c:260 seq heap v

to a false positive. Note that, although our technique should
not generate any false positive by construction, we have no
formal proof of that. Therefore, this study served as a sanity
check for both our technique and our implementation.

Although we observed no IMAs for eleven of the twelve ap-
plications, the prototype reported an IMA for 255.vortex.
After examining 255 .vortex’s source code, we discovered
that the IMA reported was indeed caused by a heap-based
temporal fault (dangling pointer) in the code. We then checked
the documentation for the SPEC benchmarks and found that
this is a known fault in 255.vortex that was corrected in
the subsequent release of the benchmarks, and that this was
the only known memory-related fault in that release of the
benchmark suite.

Overall, the results for RQ2 are fairly positive: our technique
generated no false positives, and was also able to detect the
only actual memory-related fault in this whole set of subjects.

5.4 RQ3

For RQ3, we could not use the software-based implementation
of our approach. First, we developed our prototype by focusing
on functionality rather than efficiency. We used a generic
tainting framework that already trades speed for flexibility and
imposes approximately a 30x time overhead [4]. In addition,
we implemented our tainting, propagation, and checking ap-
proach as external functions that are invoked by the framework
for every memory access, which results in a considerable
additional overhead. As a result, the overall overhead of
the software-based implementation varies between 100x and
500x, depending on the application. Second, no software
implementation based on binary re-writing can approach the
efficiency of a hardware-assisted implementation due to the
intrinsic cost of instrumenting almost every instruction in the
code.
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Fig. 3. SPEC 2006 performance overhead

The hardware implementation of our technique has three
potential sources of overhead: 1) execution of code instru-
mented by LLVM [16], 2) initialization of memory taints
when allocating and freeing memory, and 3) taint propagation
in hardware can cause stalls in the taint processing unit
and/or make taints and data compete for cache space. In the
evaluation of our technique we believe that the most important
points in this performance cost/detection accuracy tradeoff are
the ones that allow detection of most IMAs, while suffering
relatively small performance overheads — such settings would
allow always-on use of our technique (continuous protection,
even in production runs). Therefore, our evaluation will focus
on configurations that use 2, 4, 16, and 256 distinct taint marks
per word — this corresponds to using 2, 4, 8, and 16 taint bits
for each word in memory; half of the taint bits are used for
the memory taint of the memory location, and the other half
for the pointer that stored in it (or to mark the value as a
non-pointer).

To evaluate the taint propagation overhead, we employ
cycle-accurate simulation using the open-source SESC [23]
architectural simulator. We model a four-core multiprocessor,
with Core2-like 4-wide out-of-order superscalar cores running
at 2.93GHz. Each core has a private 32KByte, 8-way set-
associative, dual-ported Data L1 cache with a 64-byte line size.
All cores share an L2 cache that is 8MBytes in size, 32-way
set-associative, single ported, and also with a 64-byte line size.
The Taint L1 cache is 8KByte, 4-way associative, dual ported,
and with a 64-byte line size. To determine taint initialization
overheads, we added a taint initialization instruction that adds
two cycles to the execution time to process each 32-bit word in
the packed taint array. Finally, we had to estimate the overhead
of running LLVM-instrumented code. LLVM 2.6 [16] does not
provide, as of now, a stable MIPS back-end (SESC [23] uses

the MIPS ISA). We estimate the instrumentation overhead by
running an uninstrumented and then a LLVM-instrumented
x86_64 version of the application code on a Xeon X5450
running at 3.0GHz. We then apply this overhead to the MIPS
version of the code. This assumes that the instrumentation
would cause similar slowdown in MIPS code and in x86_64
code. This is likely a conservative assumption (overestimates
the overhead) because the instrumented code could benefit
from the larger number of registers available in the MIPS ISA.

In our evaluation, we use SPEC 2000 and SPEC 2006
benchmarks [26], shown in Figures 2 and 3 respectively, all
executed with reference input sets. The only omitted appli-
cations are those for which the baseline LLVM (without our
instrumentation pass) did not produce a correct executable. To
achieve reasonable simulation time, we fast-forward through
the first 5% of the application’s execution (to skip initializa-
tion) and then simulate 2 billion instructions in detail. For
evaluating multi-threaded applications, we use all benchmarks
from the Splash2 [27] suite with reference input sets, and
simulate their execution from start to end when running with
four threads.
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Fig. 2, 3, and 4 present the performance overhead, broken
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down into the overhead of IMA detection in the heap and
in the stack (the overhead for global memory protection is
negligible) when using four distinct taint marks®.

The heap protection overhead accounts for the initialization
of heap memory taints during allocation and deallocation, as
well as all of the taint propagation cost. The stack and global
protection overhead includes initialization of stack and global
memory taints, as well as the instrumentation overhead (mostly
from changing stack-pointer-based accesses to use our shadow
pointers as described in Section 4.1). To gain more insight
into these sources of overhead, Figure 5 breaks down the
total overhead according to its cause (instrumentation, taint
initialization, taint propagation) for applications whose total
overhead is more than 9%, and also for the average of all
simulated applications (not just the ones shown in Figure 5)
in each benchmark suite.

In the benchmarks that exhibit higher overheads, the two
factors that dominate are the taint propagation and the in-
strumentation necessary for taint initialization of the stack
memory. For applications where the taint propagation overhead
is dominant (e.g., lucas, mcf, omnetpp, xalancbmk,
milc, sphinx3), it is caused mainly by pipeline stalls due
to misses in the Taint L1 cache and by competition between
data and taints for L2 capacity. In some situations, the increase
in the L2 miss rate also leads to increased contention for L2
bandwidth. This effect is especially pronounced in SPEC2006
benchmarks, which tend to be more memory-intensive than
those in SPEC2000.

The instrumentation and initialization overhead is domi-
nant in applications which allocate global or stack buffers
often (e.g., crafty, fma3d, gobmk, h264ref, mesa). A
pathological case was mesa, which allocates stack buffers in
frequently called functions for the maximum possible texture
size (several KBytes), even when the application operates on
much smaller textures (whose size is passed as a parameter
to the function). This results in initializing taints for many
stack locations at each function entry and exit point, then
actually accessing only the first few of these locations. By
changing the code to allocate only the necessary buffer size
(e.g., in texture.c:2265, change the array size from PB_SIZE
to n), the taint initialization overhead is reduced by an order of
magnitude (and the total overhead of IMA detection is reduced
from 227% to 15%).

6. This corresponds to a total of 4 taint bits per memory location, two for
the memory taint and two for the pointer taint

Avg milc  povray sphinx3 Avg barnes volrend Avg
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On average, SPEC2000 benchmarks exhibit a performance
overhead of 7%. For SPEC 2006, the average is 8%, and in
Splash2 the average is 6%. In the Splash2 benchmark suite,
taint propagation overheads are increased because of coher-
ence misses needed to keep taints in memory coherent. Instru-
mentation overheads in these benchmarks are also relatively
high, primarily because their execution times are generally
much shorter than in SPEC 2000 and especially SPEC 2006,
resulting in reduced amortization of instrumentation overheads
in initialization, setup, and cleanup code.
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Fig. 6. Performance overhead vs. number of taint marks

Fig. 6 shows the average performance overheads across our
benchmarks for various numbers of taint marks. We observe
that, as we increase the number of taint bits, the overheads
increase accordingly. The increase is non-linear because some
of the overheads (e.g., the overhead of running instrumented
code) are fixed, and also because the taint L1 miss rates and
the contention for L2 space are non-linear phenomena that
depend on working set sizes. For applications with smaller
working set sizes, data and taints can fit in the L2 cache even
when large taints are used. When working sets are large (as in
several SPEC 2006 applications), however, contention for L.2
space exists even with the smallest taint size and gets worse
as taint size is increased. As a result, SPEC2000 benchmarks
still have a nominal 13% overhead even for 256 taint marks
(16 taint bits for each memory location), whereas SPEC2006
exhibits overheads of 11% for 16 taint marks (8 taint bits for
each memory location) and 21% for 256 taint marks.

In Splash2 benchmarks, the overhead steadily increases in
spite of their small working sets. This overhead is caused
by increased coherence activity, which almost doubles as we
double the number of taint bits. The increased coherence
activity can be attributed in part to false-sharing of lines
containing taint bits — the taint bits of adjacent memory
regions, which are mapped in different cache lines and cause



no false-sharing when accessed, will reside in the same line.
Although taint coherence traffic is still much smaller than data
coherence traffic, it still contributes to interconnect contention
and causes additional performance overhead.

Finally, we note that even the ‘“large” overheads in
SPEC2006 are still much lower than any software IMA
detection scheme, such as a software implementation of our
DIFT-based IMA detection (100X slowdown). Moreover, our
technique loses very little efficiency when applied to multi-
threaded code. In contrast, software-only approaches typically
suffer very large additional overheads when applied to multi-
threaded code, mainly because extensive lock/unlock activity
is needed to ensure atomicity of data and meta-data (taints in
our technique) updates and checks. We also note that some of
our overheads (e.g., the instrumentation overhead for detection
IMAs in stack and global memory) may be reduced based on
static analysis and optimizations similar to those applied in
software-only IMA detection work (e.g., SoftBound [20]) —
in this proof-of-concept implementation, shadow pointers are
used for all stack and global allocations, although many can be
eliminated because the corresponding checks are redundant.
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Fig. 7. Cache latency vs. number of taint marks.

B2 04 016 @256

100%

80%

60%

40%

20%

0% -

Register File DL1 Cache L2 Cache

Fig. 8. Power overhead vs. number of taint marks.

Analysis of a Data-Widening Implementation: Our
qualitative analysis in Section 4.3 has resulted in choosing
a decoupled-taint implementation over a data-widening one.
The primary reason for this choice is that data-widening
incurs overheads that depend on the maximum number of
supported taint marks, whereas overheads in decoupled-taint
implementations mainly depend on the number of actually
used taint marks. This choice allows a runtime selection of
the cost-accuracy tradeoff.

However, our rejection of data-widening may still be flawed
if overheads of data-widening with a large number of sup-
ported taint marks are still lower than with a decoupled-taint
approach. Therefore, we performed additional quantitative

analysis to estimate the overheads of a possible data-widening
implementation. Figure 7 shows the latency increase and Fig-
ure 8 shows the energy consumption increase, both obtained
using the Cacti v5.0 [28] tool, from data widening in the
register file, L1 cache, and L2 cache. Both of these increases
are mostly caused by the increase in the structure’s size
(i.e. longer bit-lines and other wires). From these figures, we
see that data-widening causes significant energy and latency
increases in L1 and L2 caches when using more than 4 taint
marks. In modern energy-constrained processors, this is likely
to reduce the processor’s clock frequency and/or its IPC,
resulting in performance overheads similar to those incurred by
a decoupled-taint implementation when using a similar number
of taint marks.

6 RELATED WORK

There is a large body of existing work, across many disci-
plines, that attempts to detect IMAs in C and C++ programs.
Therefore, in this section we can only discuss the work most
closely related to ours.

Program-analysis-based tools (e.g., [9], [10], [12], [14],
[33]) attempt to discover IMAs by performing various types
of static analysis on an application. Although powerful, these
tools may produce a large number of false positives due to
the conservative nature of the analysis they perform, which
is likely to alienate users. Language-based approaches, such
as Cyclone [15] and CCured [21], are also static in nature;
they attempt to remove the possibility of IMAs by translating
unsafe languages into safe variants. Some of these approaches
attempt to perform an automated translation, but for large
applications they still involve programmer intervention, in the
form of rewriting or annotations. Overall, approaches based on
static analysis or program transformations can be considered
complementary to dynamic approaches in terms of strengths
and weaknesses.

Dynamic approaches for IMA detection instrument a target
application to perform runtime monitoring. Instrumentation
can either be done at the source-code level (e.g., [8], [24],
[34]) or a the binary level (e.g., [13], [25]). Source-code
level approaches typically impose less overhead because they
can leverage additional information not present at the binary
level. However, they have the problem of not being able to
track memory allocations or accesses within external black-
box libraries and components. Approaches based on dynamic
instrumentation, conversely, can instrument code on the fly and
handle pre-compiled external code. Among the approaches that
work at the binary level, Valgrind [25] is the most similar to
our technique, in that it uses a bit to keep track of which
memory has been defined and identify illegal accesses to
uninitialized memory. Unlike our technique, however, Valgrind
cannot detect accesses to memory that has been initialized, but
is being accessed through an illegal pointer.

Another popular approach for detecting IMAs is that of
using safe pointers (sometimes referred to as fat pointers) [1],
[7], [20], [21]. A smart pointer augments the pointer value
with the upper and lower bounds of the memory object it
points to. During the program execution, any derived pointers



from the original fat pointer inherit the bounds information.
For example, if a new pointer is obtained as a sum of an
existing base pointer and an offset, the new pointer inherits
the bounds metadata from that of the base pointer. During a
memory accesses, the metadata of the fat pointer needs to be
checked if the access is within bounds in order to verify that
this a legal access.

Software-only implementations of these safe pointers need
to instrument the program code not only to intercept allocation
events that create pointers, but also to implement the meta-
data propagation and checking mechanism. This result in high
overheads — even recent schemes that analyze the code to
eliminate redundant checks, such as SoftBound [20], still incur
average overheads in excess of 50%. Another drawback of
software-only IMA detection schemes is that they are typically
not thread-safe — significant additional overheads would be
needed to keep pointers and their bounds consistent (i.e.
pointers and their bounds must be updated atomically, e.g.,
using a critical section or a transaction).

Hardware-assisted solutions for safe pointers, such as Hard-
Bound [7], alleviate the cost of storing and propagating the
pointer bounds meta-data, using bounds checking in hardware
and with a number of optimizations aimed at efficiently
storing and propagating this meta-data to and from memory.
Additionally, hardware techniques such as HardBound can
maintain data/meta-data consistency at a relatively low cost
— both HardBound and our new DIFT-based technique store
meta-data (taints for our technique, bounds for HardBound)
in a packed array, decoupled from its data, and (as described
in MemTracker [31] and FlexiTaint [30]) can leverage the
existing instruction replay mechanisms in modern out-of-order
processors to keep their data and meta-data consistent.

Even though safe pointers offer strong detection guarantees
for spatial IMAs (access to a different region of memory
region), they cannot efficiently detect temporal memory errors
(access to memory the pointer is no longer allowed to access).
For example, an access through a dangling pointer is unde-
tectable with bounds information alone, and would require
additional expensive checks (e.g., a lookup in a hash table of
still-allocated memory regions). In contrast, our DIFT-based
IMA detector can detect both spatial and temporal IMAs with
equal probability, because the association between a pointer
and the memory it points to is broken when the taint of the
memory location changes — it is reset on deallocation and then
set to a different (with a probability that increases in proportion
to the number of available taint marks) when it is reused for
another allocation.

In addition to software-based approaches and hardware-
assisted safe pointer approaches, there have also been numer-
ous other proposals for hardware-assisted detection of particu-
lar classes of IMAs. In SafeMem [22], existing memory-error
correcting codes were used to detect accesses to unallocated
memory. MemTracker [31] associates a state with each mem-
ory location and uses a programmable state machine to detect
accesses incompatible with the location’s current state (e.g.,
reads from uninitialized locations). Our DIFT-based technique
is more general than these approaches, in that it targets all
spatial and temporal IMAs, e.g., those that involve accesses

to allocated and initialized memory. For example, SafeMem
and MemTracker can only allow (or disallow) all reads from a
location, but cannot prevent reads using a given pointer while
allowing reads using another one.

Other related work includes DIFT support in hardware [2],
[6], [19], [29]. These schemes taint data that comes from ex-
ternal inputs, propagate this taint at runtime, and detect when
input-derived values are used as jump addresses or fetched as
instructions. These mechanisms, as originally proposed, cannot
support the taint propagation rules needed for our new IMA-
detection technique. However, they demonstrate that hardware
support can provide taint propagation with nearly negligible
overheads, and are complementary to our technique in that
they could, with some additional design effort, help amortize
the cost of taint propagation and checking hardware.

7 CONCLUSION

This paper presents a novel dynamic technique for detecting
Invalid Memory Accesses (IMAs). Our approach (1) taints
a memory region and the pointers that are allowed to point
to that region with the same taint mark, (2) propagates taint
marks, and (3) checks memory accesses performed through
pointers to make sure that the pointer and the memory it
accesses have the same taint mark. If this is not the case,
it reports an IMA and stops the execution.

Our approach has several key advantages over previous
dynamic techniques for IMA detection. First, it is highly
effective: it was able to identify all known IMAs in the real
programs we used in our evaluation. Second, it is amenable
to a hardware-assisted implementation: detailed simulations of
a hardware-based implementation show average performance
overheads below 10%, even in multi-threaded applications. Fi-
nally, unlike previous IMA detection techniques, our technique
can easily be tuned to achieve different tradeoffs between
performance overhead and probability of detecting IMAs.
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