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Abstract

In today’s digital world, computer security issues have become
increasingly important. In particular, researchers have proposed
designs for secure processors which utilize hardware-based mem-
ory encryption and integrity verification to protect the privacy and
integrity of computation even from sophisticated physical attacks.
However, currently proposed schemes remain hampered by prob-
lems that make them impractical for use in today’s computer sys-
tems: lack of virtual memory and Inter-Process Communication
support as well as excessive storage and performance overheads.
In this paper, we propose 1) Address Independent Seed Encryption
(AISE), a counter-mode based memory encryption scheme using a
novel seed composition, and 2) Bonsai Merkle Trees (BMT), a novel
Merkle Tree-based memory integrity verification technique, to elim-
inate these system and performance issues associated with prior
counter-mode memory encryption and Merkle Tree integrity veri-
fication schemes. We present both a qualitative discussion and a
quantitative analysis to illustrate the advantages of our techniques
over previously proposed approaches in terms of complexity, feasi-
bility, performance, and storage. Our results show that AISE+ BMT
reduces the overhead of prior memory encryption and integrity ver-
ification schemes from 12% to 2% on average, while eliminating
critical system-level problems.

1. Introduction

With the tremendous amount of digital information stored on
today’s computer systems, and with the increasing motivation and
ability of malicious attackers to target this wealth of information,
computer security has become an increasingly important topic. An
important research effort towards such computer security issues fo-
cuses on protecting the privacy and integrity of computation to pre-
vent attackers from stealing or modifying critical information. This
type of protection is important for enabling many important fea-
tures of secure computing such as enforcement of Digital Rights
Management, reverse engineering and software piracy prevention,
and trusted distributed computing.

One important emerging security threat exploits the fact that
most current computer systems communicate data in its plaintext
form along wires between the processor chip and other chips such
as the main memory. Also, the data is stored in its plaintext form in
the main memory. This presents a situation where, by dumping the
memory content and scanning it, attackers may gain a lot of valu-
able sensitive information such as passwords [12]. Another serious
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and feasible threat is physical or hardware attacks which involve
placing a bus analyzer that snoops data communicated between the
processor chip and other chips [7, 8]. Although physical attacks
may be more difficult to perform than software-based attacks, they
are very powerful as they can bypass any software security protec-
tion employed in the system. The proliferation of mod-chips that
bypass Digital Rights Management protection in game systems has
demonstrated that given sufficient financial payoffs, physical attacks
are very realistic threats.

Recognizing these threats, computer architecture researchers
have recently proposed various types of secure processor architec-
tures [4, 5, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26]. Secure pro-
cessors assume that off-chip communication is vulnerable to attack
and that the chip boundary provides a natural security boundary.
Under these assumptions, secure processors seek to provide private
and tamper-resistant execution environments [23] through memory
encryption [5, 13, 14, 16, 18, 19, 20, 22, 23, 24, 25, 26] and mem-
ory integrity verification [4, 14, 16, 17, 18, 20, 22, 23, 24, 26]. The
chip industry also recognizes the need for secure processors, as ev-
ident, for example, in the recent effort by IBM in the SecureBlue
project [9] and Dallas Semiconductor [15]. Memory encryption
protects computation privacy from passive attacks, where an adver-
sary attempts to silently observe critical information, by encrypting
and decrypting code and data as it moves on and off the processor
chip. Memory integrity verification protects computation integrity
from active attacks, where an adversary attempts to modify values
in off-chip storage or communication channels, by computing and
verifying Message Authentication Codes (MACs) as code and data
moves on and off the processor chip.

Unfortunately, current memory encryption and integrity verifica-
tion designs are not yet suitable for use in general purpose comput-
ing systems. In particular, we show in this paper that current secure
processor designs are incompatible with important features such as
virtual memory, Inter-Process Communication (IPC), in addition to
having large performance and storage overheads. The challenges
are detailed as follows:

Memory Encryption. Recently proposed memory encryption
schemes for secure processors have utilized counter-mode encryp-
tion due to its ability to hide cryptographic delays on the critical path
of memory fetches. This is achieved by applying a block cipher to a
seed to generate a cryptographic pad, which is then bit-wise XORed
with the memory block to encrypt or decrypt it. A seed is selected
to be independent from the data block value so that pad generation
can be started while the data block is being fetched.

In counter-mode encryption, the choice of seed value is critical
for both security and performance. The security of counter-mode
requires the uniqueness of each pad value, which implies that each



seed must be unique. In prior studies [16, 18, 19, 20, 23, 24, 25, 26],
to ensure that pads are unique across different blocks in memory
(spatial uniqueness), the block address is used as one of the seed’s
components. To ensure that pads are unique across different val-
ues of a particular block over time (temporal uniqueness), a counter
value which is incremented on each write back is also used as a
seed component. From the performance point of view, if most cache
misses find the counters of the missed blocks available on-chip, ei-
ther because they are cached or predicted, then seeds can be com-
posed at the cache miss time, and pad generation can occur in par-
allel with fetching the blocks from memory.

However, using the address (virtual or physical) as a seed com-
ponent causes a significant system-level dilemma in general purpose
computing systems that must support virtual memory and Inter-
Process Communication (IPC). A virtual memory mechanism typi-
cally involves managing pages to provide process isolation and shar-
ing between processes. It often manages the main memory by ex-
tending the physical memory to swap memory located on the disk.

Using the physical address as a seed component creates re-
encryption work on page swapping. When a page is swapped out to
disk and then back into memory, it will likely reside at a new phys-
ical address. This requires the blocks of the page to be decrypted
using their previous physical addresses and re-encrypted with their
new physical addresses. In addition, encrypted pages in memory
cannot be simply swapped out to disk as this creates potential pad
reuse between the swapped out page and the new page at that phys-
ical address in memory. This leaves an open problem as to how
to protect pages on disk. We could entrust the OS to encrypt and
decrypt swapped pages in software if the OS is assumed to be au-
thentic, trusted, and executing on the secure processor. However
this is likely not the most desirable solution because it makes the
secure processor’s hardware-based security mechanisms contingent
on a secure and uncompromised OS. Alternatively, we could rely on
hardware to re-encrypt swapped pages, however this solution has its
own set of problems. First, this requires supporting two encryption
methods in hardware. Second, there is the issue of who can request
the page re-encryptions, and how these requests are made, which
requires an extra authentication mechanism.

Using virtual address as a seed component can lead to vulnera-
ble pad reuse because different processes use the same virtual ad-
dresses. While we can prevent this by adding process ID to the
seed [24], this solution creates a new set of serious system-level
problems. First, this renders process IDs non-reusable, and current
OSes have a limited range of process IDs. Second, shared mem-
ory based inter-process communication (IPC) mechanisms are in-
feasible to use (e.g. mmap). The reason is that different processes
access a shared page in memory using different combinations of
virtual address and process ID. This results in different encryptions
and decryptions of the shared data. Third, other OS features that
also utilize page sharing cannot be supported. For example, pro-
cess forking cannot utilize the copy-on-write optimization because
the page in the parent and child are encrypted differently. This also
holds true for shared libraries. This lack of IPC support is especially
problematic in the era of CMPs. Finally, storage is required for vir-
tual addresses at the lowest level on-chip cache, which is typically
physically indexed and tagged.

The root cause of problems when using address in seed compo-
sition is that address is used as a fundamental component of memory
management. Using address also as a basis for security intermingles
security and memory management in undesirable ways.

Memory Integrity Verification. Recently proposed memory in-
tegrity verification schemes for secure processors have leveraged a
variety of techniques [4, 9, 14, 17, 20, 22, 23, 24]. However, the
security of Merkle Tree-based schemes [4] has been shown to be
stronger than other schemes because every block read from mem-
ory is verified individually (as opposed to [23]), and data replay
attacks can be detected in addition to spoofing and splicing attacks,
which are detectable by simply associating a single MAC per data
block [14]. In Merkle Tree memory integrity verification, a tree of
MAC values is built over the memory. The root of this tree never
goes off-chip, as a special on-chip register is used to hold its current
value. When a memory block is fetched, its integrity can be checked
by verifying its chain of MAC values up to the root MAC. Since the
on-chip root MAC contains information about every block in the
physical memory, an attacker cannot modify or replay any value in
memory.

Despite its strong security, Merkle Tree integrity verification suf-
fers from two significant issues. First, since a Merkle Tree built over
the main memory computes MACs on memory events (cache misses
and writebacks) generated by the processor, it covers the physical
memory, but not swap memory which resides on disk. Hence, al-
though Merkle Tree schemes can prevent attacks against values read
from memory, there is no protection for data brought into memory
from the disk. This is a significant security vulnerability since by
tampering with swap memory on disk, attackers can indirectly tam-
per with main memory. One option would be to entrust the OS to
protect pages swapped to and from the disk, however as with mem-
ory encryption it requires the assumption of a trusted OS. Another
option, as discussed in [22], is to associate one Merkle Tree and on-
chip secure root per process. However, managing multiple Merkle
Trees results in extra on-chip storage and complexity.

Another significant problem is the storage overhead of internal
Merkle Tree nodes in both the on-chip cache and main memory. To
avoid repeated computation of internal Merkle Tree nodes as blocks
are read from memory, a popular optimization lets recently accessed
internal Merkle Tree nodes be cached on-chip. Using this optimiza-
tion, the verification of a memory block only needs to proceed up
the tree until the first cached node is found. Thus, it is not neces-
sary to fetch and verify all Merkle Tree nodes up to the root on each
memory access, significantly improving memory bandwidth con-
sumption and verification performance. However, our results show
that Merkle Tree nodes can occupy as much as 50% of the total
L2 cache space, which causes the application to suffer from a large
number of cache capacity misses.

Contributions. In this paper, we investigate system-level issues
in secure processors, and propose mechanisms to address these is-
sues that are simple yet effective. Our first contribution is Address
Independent Seed Encryption (AISE), which decouples security and
memory management by composing seeds using logical identifiers
instead of virtual or physical addresses. The logical identifier of a
block is the concatenation of a logical page identifier with the page
offset of the block. Each page has a logical page identifier which is
distinct across the entire memory and over the lifetime of the sys-
tem. It is assigned to the page the first time the page is allocated or
when it is loaded from disk. AISE provides better security since it
provides complete seed/pad uniqueness for every block in the sys-
tem (both in the physical and swap memory). At the same time, it
also easily supports virtual memory and shared-memory based IPC
mechanisms, and simplifies page swap mechanisms by not requir-
ing decryption and re-encryption on a page swap.



The second contribution of this paper is a novel and efficient
extension to Merkle Tree based memory integrity verification that
allows extending the Merkle Tree to protect off-chip data (i.e. both
physical and swap memory) with a single Merkle Tree and secure
root MAC over the physical memory. Essentially, our approach al-
lows pages in the swap memory to be incorporated into the Merkle
Tree so that they can be verified when they are reloaded into mem-
ory.

Finally, we propose Bonsai Merkle Trees (BMTs), a novel orga-
nization of the Merkle Tree that naturally leverages counter-mode
encryption to reduce its memory storage and performance over-
heads. We observe that if each data block has a MAC value com-
puted over the data and its counter, a replay attack must attempt to
replay an old data, MAC, and counter value together. A Merkle
Tree built over the memory is able to detect any changes to the
data MAC, which prevents any undetected changes to counter val-
ues or data. Our key insight is that: (1) there are many more MACs
of data than MACs of counters, since counters are much smaller
than data blocks, (2) a Merkle Tree that protects counters prevents
any undetected counter modification, (3) if counter modification is
thus prevented, the Merkle Tree does not need to be built over data
MACs, and (4) the Merkle Tree over counters is much smaller and
significantly shallower than the one over data. As a result, we can
build such a Bonsai Merkle Tree over the counters which prevents
data replay attacks using a much smaller tree for less memory stor-
age overhead, fewer MACs to cache, and a better worst-case sce-
nario if we miss on all levels of the tree up to the root. As our re-
sults show, BMT memory integrity verification reduces the perfor-
mance overhead significantly, from 12.1% to 1.8% across all SPEC
2000 benchmarks [21], along with reducing the storage overhead
in memory from 33.5% to 21.5%.

In the remainder of this paper, we discuss related work in sec-
tion 2. Section 3 describes our assumed attack model. Section 4
describes our proposed encryption technique while section 5 de-
scribes our proposed integrity verification techniques in detail. Sec-
tion 6 shows our experimental setup, and section 7 discusses our
results and findings. Finally, section 8 summarizes our main contri-
butions and results.

2 Related Work

Research on secure processor architectures [4, 5, 9, 13, 14, 16,
17,18, 19, 20, 22, 23, 24, 25, 26] consists of memory encryption for
ensuring data privacy and memory integrity verification for ensur-
ing data integrity. Early memory encryption schemes utilized direct
encryption modes [5, 13, 14, 22], in which a block cipher such as
AES [2] is applied directly on a memory block to generate the plain-
text or ciphertext when the block is read from or written to memory.
Since, on a cache miss for a block, the block must first be fetched
on chip before it can be decrypted, the long latency of decryption
is added directly to the memory fetch latency, resulting in execu-
tion time overheads of up to 35% (almost 17% on average) [25].
In addition, there is a security concern for using direct encryption
because different blocks having the same data value would result in
the same encrypted value (ciphertext). This property implies that
the statistical distribution of plaintext values matches the statistical
distribution of ciphertext values, and may be exploited by attackers.

As a result of these concerns, recent studies have leveraged
counter-mode encryption techniques [16, 18, 19, 20, 23, 24, 25, 26].
Counter-mode encryption overlaps decryption and memory fetch

by decoupling them. This decoupling is achieved by applying a
block cipher to a seed value to generate a cryptographic pad. The
actual encryption or decryption is performed through an XOR of
the plaintext or ciphertext with this pad. The security of counter-
mode depends on the guarantee that each pad value (and thus each
seed) is only used once. Consequently, a block’s seed is typically
constructed by concatenating the address of the block with a per-
block counter value which is incremented each time the block is
encrypted [19, 23, 24, 25]. If the seed components are available
on chip at cache miss time, decryption can be started while the
block is fetched from memory. Per-block counters can be cached
on chip [23, 24, 25] or predicted [19].

Several different approaches have previously been studied for
memory integrity verification in secure processors. These ap-
proaches include a MAC-based scheme where a MAC is computed
and stored with each memory block when the processor writes to
memory, and the MAC is verified when the processor reads from
memory [14]. In [23], a Log Hash scheme was proposed where
the overhead of memory integrity verification is reduced by check-
ing the integrity of a series of values read from memory at periodic
intervals during a program’s execution using incremental, multiset
hash functions. Merkle Tree based schemes have also been pro-
posed where a tree of MAC values is stored over the physical mem-
ory [4]. The root of the tree, which stores information about every
block in memory, is kept in a secure register on-chip. Merkle Tree
integrity verification is often preferable over other schemes because
of its security strength. In addition to spoofing and splicing attacks,
replay attacks can also be prevented. We note that the Log Hash
scheme can also prevent replay attacks, but as shown in [20], the
long time intervals between integrity checks can leave the system
open to attack.

The proposed scheme in this study differs from prior studies
in the following ways. Our memory encryption avoids intermin-
gling security with memory management by using logical identifiers
(rather than address) as seed components. Our memory integrity
verification scheme extends Merkle Tree protection to the disk in a
novel way, and our BMT scheme significantly reduces the Merkle
Tree size. The implications of this design will be discussed in detail
in the following sections.

3. Attack Model and Assumptions

As in prior studies on hardware-based memory encryption and
integrity verification, our attack model identifies two regions of a
system. The secure region consists of the processor chip itself.
Any code or data on-chip (e.g. in registers or caches) is consid-
ered safe and cannot be observed or manipulated by attackers. The
non-secure region includes all off-chip resources, primarily includ-
ing the memory bus, physical memory, and the swap memory in the
disk. We do not constrain attackers’ ability to attack code or data
in these resources, so they can observe any values in the physical
and swap memory and on all off-chip interconnects. Attackers can
also act as a man-in-the-middle to modify values in the physical and
swap memory and on all off-chip interconnects.

Note that memory encryption and integrity verification cover
code and data stored in the main memory and communicated over
the data bus. Information leakage through the address bus is not pro-
tected, but separate protection for the address bus such as proposed
in [3, 27, 28] can be employed in conjunction with our scheme.



We assume that a proper infrastructure is in place for secure ap-
plications to be distributed to end users for use on secure processors.
Finally, we also assume that the secure processor is executing ap-
plications in the steady state. More specifically, we assume that the
secure processor already contains the cryptographic keys and code
necessary to load a secure application, verify its digital signature,
and compute the Merkle Tree over the application in memory.

4. Memory Encryption
4.1. Overview of Counter-Mode Encryption

The goal of memory encryption is to ensure that all data and
code stored outside the secure processor boundary is in an unintel-
ligible form, not revealing anything about the actual values stored.
Figure 1 illustrates how this is achieved in counter-mode encryp-
tion. When a block is being written back to memory, a seed is en-
crypted using a block cipher (e.g. AES) and a secret key, known
only to the processor. The encrypted seed is called a cryptographic
pad, and this pad is combined with the plaintext block via a bit-
wise XOR operation to generate the ciphertext of the block before
the block can be written to memory. Likewise, when a ciphertext
block is fetched from memory, the same seed is encrypted to gen-
erate the same pad that was used to encrypt the block. When the
block arrives on-chip, another bitwise XOR with the pad restores
the block to its original plaintext form. Mathematically, if P is the
plaintext, C' is the ciphertext, E is the block cipher function, and
K is the secret key, the encryption performs C = P @ Ex (Seed).
By XORing both sides with Ex (Seed), the decryption yields the
plaintext P = C' @ E (Seed).

Secret Key
Plaintext Data/Code

@ Crypto Pad B.lock ¢ Seed
Cipher
4 I Secure Chip
Boundary
Ciphertext Data/Code
‘ Main Memory ‘

Figure 1. Counter-mode based memory encryption.

The security of counter-mode encryption relies on ensuring that
the cryptographic pad (and hence the seed) is unique each time a
block is encrypted. The reason for this is that suppose two blocks
having plaintexts P; and P», and ciphertext C; and C, have the
same seeds, that is Seedy = Seeds. Since the block cipher function
has a one-to-one mapping, then their pads are also the same, i.e.
Er(Seedi) = Ex(Seed2). By XORing both sides of C1 = P; &
Er(Seedi)and Cy = Po®FEk (Seeds), we obtain the relationship
of Cy @& C2 = P; ® P,, which means that if any three variables are
known, the other can be known, too. Since ciphertexts are known
by the attacker, if one plaintext is known or can be guessed, then the
other plaintext can be obtained. Therefore, the security requirement
for seeds is that they must be globally unique, both spatially (across
blocks) and temporally (versions of the same block over time).

The performance of counter-mode encryption depends on
whether the seed of a code/data block that misses in the cache is
available at the time the cache miss is determined. If the seed is
known by the processor at the time of a cache miss, the pad for the

code/data block can be generated in parallel with the off-chip data
fetch, hiding the overhead of memory encryption.

Two methods to achieve the global uniqueness of seeds have
been studied. The first is to use a global counter as the seed for
all blocks in the physical memory. This global counter is incre-
mented each time a block is written back to memory. The global
counter approach avoids the use of address as a seed component.
However, when the counter reaches its maximum value for its size,
it will wrap around and start to reuse its old values. To provide
seed uniqueness over time, counter values cannot be reused. Hence,
when the counter reaches its maximum, the secret key must be
changed, and the entire physical memory along with the swap mem-
ory must be decrypted with the old key and re-encrypted with the
new secret key. This re-encryption is very costly and frequent for
the global counter approach [24], and can only be avoided by us-
ing a large global counter, such as 64 bits. Unfortunately, large
counters require a large on-chip counter cache storage in order to
achieve a good hit rate and overlap decryption with code/data fetch.
If the counter for a missed code/data cache block is not found in
the counter cache, it must first be fetched from memory along with
fetching the code/data cache block. Decryption cannot begin until
the counter fetch is complete, which exposes decryption latency and
results in poor performance.

To avoid the fast growth of global counters which leads to
frequent memory re-encryption, prior studies use per-block coun-
ters [19, 23, 24, 25], which are incremented each time the corre-
sponding block is written back to memory. Since each block has its
own counter, the counter increases at an orders-of-magnitude slower
rate compared to the global counter approach. To provide seed
uniqueness across different blocks, the seed is composed by con-
catenating the per-block counter, the block address, and chunk id '.
This seed choice also meets the performance criterion since block
addresses can be known at cache miss time, and studies have shown
that frequently needed block counters can be effectively cached on-
chip [23, 24, 25] or predicted [19] at cache miss time.

However, this choice for seed composition has several signifi-
cant disadvantages due to the fact that block address, which was
designed as an underlying component of memory management, is
now being used as a component of security. Because of this con-
flict between the intended use of addresses and their function in a
memory encryption scheme, many problems arise for a secure pro-
cessor when block address (virtual or physical) is used as a seed
component.

4.2. Problems with Current Counter-Mode Memory En-
cryption

Most general purpose computer systems today employ virtual
memory, illustrated in Figure 2. In a system with virtual memory,
the system gives an abstraction that each process can potentially use
all addresses in its virtual address space. A paging mechanism is
used to translate virtual page addresses (that a process sees) to phys-
ical page addresses (that actually reside in the physical and swap
memory). The paging mechanism provides process isolation by
mapping the same page address of different processes to different
physical pages (circle (2)), and sharing by mapping virtual pages

YA chunk refers to the unit of encryption/decryption in a block cipher,
such as 128 bits (16 bytes). A cache or memory block of 64 bytes contains
four chunks. Seed uniqueness must hold across chunks, hence the chunk
id, referring to which chunk being encrypted in a block, is included as a
component of the seed.



of different processes to the same physical page (circle (1)). The
paging mechanism often extends the physical memory to the swap
memory area in disks in order to manage more pages. The swap
memory holds pages that are not expected to be used soon (circle
(3)). When a page in the swap memory is needed, it is brought in to
the physical memory, while an existing page in the physical memory
is selected to be replaced into the swap memory.

Process 1’s Virtual Address Space

0x00..0 OxF..F 0x00..0 OxF..F

Process 2’s Virtual Address Space

G

Physical Memory

Swap Memory

Figure 2. Virtual Memory management allows virtual
pages of different processes to map to a common physical
page for sharing purpose (1), the same virtual pages in
different processes to map to different physical pages (2),
and some virtual pages to reside in the swap memory in
the disk (3).

The use of physical address in the seed causes the following
complexity and possible security problems. The mapping of a vir-
tual page of a process to a physical frame may change dynami-
cally during execution due to page swaps. Since the physical ad-
dress changes, the entire page must be first decrypted using the old
physical addresses and then re-encrypted using the new physical
addresses on a page swap. In addition, pages encrypted based on
physical address cannot be simply swapped to disk or pad reuse
may occur between blocks in the swapped out page and blocks lo-
cated in the page’s old location in physical memory. This leaves an
open problem as to how to protect pages on disk.

The use of virtual address has its own set of critical problems.
Seeds based on virtual address are vulnerable to pad reuse since dif-
ferent processes use the same virtual addresses and could easily use
the same counter values. Adding process ID to the seed solves this
problem, but creates a new set of system-level issues. First, process
IDs can now no longer be reused by the OS, and current OSes have a
limit on the range of possible process IDs. Second, shared-memory
IPC mechanisms cannot be used. Consider that a single physical
page may be mapped into multiple virtual pages in either a single
process or in multiple processes. Since each virtual page will see
its own process ID and virtual address combination, the seeds will
be different and will produce different encryption and decryption
results. Consequently, mmap/munmap (based on shared-memory)
cannot be supported, and these are used extensively in glibc for file
I/O and memory management, especially for implementing threads.
This is a critical limitation for secure processors, especially in the
age of CMPs. Third, other OS features that also utilize page sharing
cannot be supported. For example, process forking cannot utilize
the copy-on-write optimization because the page in the parent and
child are encrypted differently. This also holds true for shared li-
braries. Finally, since virtual addresses are often not available be-
yond the L1 cache, extra storage may be required for virtual ad-
dresses at the lowest level on-chip cache.

One may attempt to augment counter-mode encryption with spe-
cial mechanisms to deal with paging or IPC. Unfortunately, they
would likely result in great complexity. For example, when physi-

cal address is used, to avoid seed/pad reuse in the swap memory, an
authentic, secure OS running on the secure processor could encrypt
and decrypt swapped pages in software. However this solution is
likely not desirable since it makes the secure processor’s hardware-
based security mechanisms contingent on a secure and uncompro-
mised OS. OS vulnerabilities may be exploited in software by at-
tackers to subvert the secure processor. Alternatively, we could rely
on hardware to re-encrypt swapped pages, however this solution has
its own set of problems. First, this requires supporting two encryp-
tion methods in hardware. A page that is swapped out must first
be decrypted (using counter mode) and then encrypted (using direct
mode) before it is placed in the swap memory, while the reverse
must occur when a page is brought from the disk to the physical
memory. Second, there is the issue of who can request the page
re-encryptions, and how these requests are made, which requires an
extra authentication mechanism. Another example, when virtual ad-
dress is used, is that shared memory IPC and copy-on-write may be
enabled by encrypting all shared pages with direct encryption, while
encrypting everything else with counter-mode encryption. How-
ever, this also complicates OS handling of IPC and copy-on-write,
and at the same time complicates the hardware since it must now
support two modes of encryption. Therefore, it is arguably better
to identify and deal with the root cause of the problem: address is
used as a fundamental component of memory management, and us-
ing the address also as a basis for security intermingles security and
memory management in undesirable ways.

4.3. Address Independent Seed Encryption

In light of the problems caused by using address as a seed com-
ponent, we propose a new seed composition mechanism which we
call Address-Independent Seed Encryption (AISE), that is free from
the problems of address-based seeds. The key insight is that rather
than using addresses as a seed component alongside a counter, we
use logical identifiers instead. These logical identifiers are truly
unique across the entire physical and swap memory and over time.

Conceptually, each block in memory must be assigned its own
logical identifier. However, managing and storing logical identifiers
for the entire memory would be quite complex and costly (similar to
global counters). Fortunately, virtual memory management works
on the granularity of pages (usually 4 Kbytes) rather than words or
blocks. Any block in memory has two components: page address
which is the unit of virtual memory management, and page offset.
Hence, it is sufficient to assign logical identifiers to pages, rather
than to blocks. Thus, for each chunk in the memory, its seed is the
concatenation of a Logical Page IDentifier (LPID), the page offset
of the chunk’s block, the block’s counter value, and the chunk id.

To ensure complete uniqueness of seeds across the physical and
swap memory and over time, the LPID is chosen to be a unique
value assigned to a page when it is first allocated by the system. The
LPID is unique for that page across the system lifetime, and never
changes over time. The unique value is obtained from an on-chip
counter called the Global Page Counter (GPC). Once a value of the
GPC is assigned to a new page, it is incremented. To provide true
uniqueness over time, the GPC is stored in a non-volatile register
on chip. Thus, even across system reboots, hibernation, or power
optimizations that cut power off to the processor, the GPC retains
its value. Rebooting the system does not cause the counter to reset
and start reusing seeds that have been used in the past boot. The
GPC is also chosen to be large (64 bits), so that it does not overflow
for millenia, easily exceeding the lifetime of the system.



One may have concerns for how the LPID scheme can be used in
systems that support multiple page sizes, such as when super pages
(e.g. 16 MBs) are used. However, the number of page offset bits
for a large page always exceeds the number of page offset bits for a
smaller page. Hence, if we choose the LPID portion of the seed to
have as many bits as needed for the smallest page size supported in
the system, the LPID still covers the unit of virtual memory manage-
ment (although sometimes unnecessarily covering some page offset
bits) and provides seed uniqueness for the system.

The next issue we address is how to organize the storage of
LPIDs of pages in the system. One alternative is to add a field for
the LPID in page table entries and TLB entries. However, this ap-
proach significantly increases the page table and TLB size, which is
detrimental to system performance. Additionally, the LPID is only
needed for accesses to off-chip memory, while TLBs are accessed
on each memory reference. Another alternative would be to store
the LPIDs in a dedicated portion of the physical memory. However
this solution also impacts performance since a memory access now
must fetch the block’s counter and LPID in addition to the data, thus
increasing bandwidth usage. Consequently, we choose to co-store
LPIDs and counters, by taking an idea from the split counter orga-
nization [24]. We associate each counter block with a page in the
system, and each counter block contains one LPID and all block
counters for a page.

Virtual Address
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Virtual Page Address Page Offset
TLB
Physical Page Address
Counter Cache [LPID] [ ]] ...
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Seed ‘LPID Counter | Page Offset | Chunk ID | Padding ‘

Figure 3. Organization of logical page identifiers.

Figure 3 illustrates the organization, assuming 32-bit virtual ad-
dresses, a 4-Kbyte page size, 64-byte blocks, 64-bit LPID, and a
7-bit counter per block. A virtual address is split into the high 20-
bit virtual page address and 12-bit page offset. The virtual page
address is translated into the physical address, which is used to in-
dex a counter cache. Each counter block stores the 64-bit LPID of a
page, and 64 7-bit counters where each counter corresponds to one
of the 64 blocks in a page. If the counter block is found, the LPID
and one counter are used for constructing the seed for the address,
together with the 8 high order bits of the page offset (6-bit block
offset and 2-bit chunk id). Padding is added to make the seed 128
bits, which corresponds to the chunk size in the block cipher. Note
that the LPID and counter block can be found using simple indexing
for a given physical address.

In contrast to using two levels of counters in [24], we only use
small per-block (minor) counters. We eliminate the major counter
and use the LPID instead. If one of the minor counter overflows, we
need to avoid seed reuse. To achieve that, we assign a new LPID
for that page by looking up the GPC, and re-encrypt only that page.
Hence, the LPID of a page is no longer static. Rather, a new unique

value is assigned to a page when a page is first allocated and when
a page is re-encrypted.

4.4. Dealing with Swap Memory and Page Swapping

In our scheme, no two pages share the same LPID and hence
seed uniqueness is guaranteed across the physical and swap mem-
ory. In addition, once a unique LPID value is assigned to a page,
it does not change until the page needs to be re-encrypted. Hence,
when a page is swapped out to the disk, it retains a unique LPID and
does not need to be re-encrypted or specially handled. The virtual
memory manager can just move a page from the physical memory
to the swap memory together with swapping its LPID and block of
counters.

When an application suffers a page fault, the virtual memory
manager locates the page and its block of counters in the disk, then
brings it into the physical memory. The block of counters (including
LPID) are placed at the appropriate physical address in order for
the block to be directly indexable and storable by the counter cache.
Therefore, the only special mechanism that needs to be added to the
page swapping mechanism is proper handling of the page’s counter
blocks. Since no re-encryption is needed, moving the page in and
out of the disk can be accomplished with or without the involvement
of the processor (e.g. we could use DMA).

4.5. Dealing with Page Sharing

Page sharing is problematic to support if virtual address is used
as a seed component, since different processes may try to encrypt
or decrypt the same page with different virtual addresses. With our
LPID scheme, the LPID is unique for each page and can be directly
looked up using the physical address. Therefore, all page sharing
uses can naturally be facilitated without any special mechanisms.

4.6. Advantages of AISE

Our AISE scheme satisfies the security and performance criteria
for counter-mode encryption seeds, while naturally supporting vir-
tual memory management features and IPC without much complex-
ity. The LPID portion of the seed ensures that the blocks in every
page, both in the physical memory and on disk are encrypted with
different pads. The page offset portion of the seed ensures that each
block within a page is encrypted with a different pad. The block
counter portion of the seed ensures that the pad is unique each time
a single block is encrypted. Finally, since the global page counter is
stored in non-volatile storage on chip, the pad uniqueness extends
across system boots.

From a performance perspective, AISE does not impose any ad-
ditional storage or runtime overheads over prior counter-mode en-
cryption schemes. AISE allows seeds to be composed at cache miss
time since both the LPID and counter of a block are co-stored in
memory and cached together on-chip. Storage overhead is equiv-
alent to the already-efficient split counter organization, since LPID
replaces the major counter of the split counter organization and does
not add extra storage. On average, a 4 Kbyte page only requires 64
bytes of storage for the LPID and counters, representing a 1.6%
overhead. Similar to the split counter organization, AISE does not
incur entire-memory re-encryption when a block counter overflows.
Rather, it only incurs re-encryption of a page when overflow occurs.

From a complexity perspective, AISE allows pages to be
swapped in and out of the physical memory without involving page
re-encryption (unlike using physical address), while allowing all
types of IPC and page sharing (unlike using virtual address).



To summarize, memory encryption using our AISE technique
retains all of the latency-hiding ability as proposed in prior schemes,
while eliminating the significant problems that arise from including
address as a component of the cryptographic seed.

5. Memory Integrity Verification

The goal of a memory integrity verification scheme is to ensure
that a value loaded from some location by a processor is equal to
the most recent value that the processor last wrote to that location.
There are three types of attacks that may be attempted by an attacker
on a value at a particular location. Attackers can replace the value
directly (spoofing), exchange the value with another value from a
different location (splicing), and replay an old value from the same
location (replay). As discussed in XOM [5], if for each memory
block a MAC is computed using the value and address as its input,
spoofing and splicing attacks would be detectable. However, replay
attacks can be successfully performed by rolling back both the value
and its MAC to their older versions. To detect replay attacks, Merkle
Tree verification has been proposed [4]. A Merkle Tree keeps hier-
archical MACs organized as a tree, in which a parent MAC protects
multiple child MACs. The root of the tree is stored on-chip at all
times so that it cannot be tampered by attackers. When a memory
block is fetched, its integrity can be verified by checking its chain
of MAC values up to the root MAC. When a cache block is writ-
ten back to memory, the corresponding MAC values of the tree are
updated. Since the on-chip MAC root contains information about
every block in the physical memory, an attacker cannot modify or
replay any value in the physical memory.

5.1. Extended Merkle Tree Protection

Previously proposed Merkle Tree schemes which only cover the
physical memory, as shown in Figure 4(a), compute MACs on mem-
ory events (cache misses and write backs) generated by the proces-
sor. However, I/0 transfer between the physical memory and swap
memory is performed by an I/0 device or DMA and is not visible to
the processor. Consequently, the standard Merkle Tree protection
only covers the physical memory but not the swap memory. This
is a significant security vulnerability since by tampering with the
swap memory in the disk, attackers can indirectly tamper with the
main memory. We note that it would be possible to entrust a secure
OS with the job of protecting pages swapped to and from the disk in
software. However, this solution requires the assumption of a secure
and untampered OS which may not be desirable. Also, as discussed
in [22], it would be possible to compute the Merkle Tree over the
virtual address space of each process to protect the process in both
the memory and the disk. However this solution would require one
Merkle Tree and on-chip secure root MAC per process, which re-
sults in extra on-chip storage for the root MACs and complexity in
managing multiple Merkle Trees.

This security issue clearly motivates the need to extend the
Merkle Tree protection to all off-chip data both in the physical and
swap memory, as illustrated in Figure 4(b). To help explain our so-
lution, we define two terms: Page Merkle Subtree and page root.
A Page Merkle Subtree is simply the subset of all the MACs of the
Merkle Tree which directly cover a particular page in memory. A
page root is the top-most MAC of the Page Merkle Subtree. Note
that the Page Merkle Subtree and page root are simply MAC values
which make up a portion of the larger Merkle Tree over the entire
physical memory.
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Figure 4. Our novel Merkle Tree organization for extending pro-
tection to the swap memory in disk.

To extend Merkle Tree protection to the swap memory, we make
two important observations. First, for each page, its page root is suf-
ficient to verify the integrity of all values on the page. The internal
nodes of the Page Merkle Subtree can be re-computed and verified
as valid by comparing the computed page root with the stored, valid
page root. Secondly, the physical memory is covered entirely by
the Merkle Tree and hence it provides secure storage. From these
two observations, we can conclude that as long as the page roots of
all swap memory pages are stored in the physical memory, then the
entire swap memory integrity can be guaranteed. To achieve this
protection, we dedicate a small portion of the physical memory to
store page root MACs for pages currently on disk, which we refer
to as the Page Root Directory. Note that while our scheme requires
a small amount of extra storage in main memory for the page root
directory, the on-chip Merkle Tree operations remain the same and
a single on-chip MAC root is still all we require to maintain the in-
tegrity of the entire tree. Furthermore, as shown in Figure 4(b), the
page root directory itself is protected by the Merkle Tree.

To illustrate how our solution operates, consider the following
example. Suppose that the system wants to load a page B from
swap memory into physical memory currently occupied by a page
A. The integrity verification proceeds as follows. First, the page
root of B is looked up from the page root directory and brought on
chip. Since this lookup is performed using a regular processor read,
the integrity of the page root of B is automatically verified by the
Merkle Tree. Second, page A is swapped out to the disk and its page
root is installed at the page root directory. This installation updates
the part of the Merkle Tree that covers the directory, protecting the
page root of A from tampering. Third, the Page Merkle Subtree of A
is invalidated from on-chip caches in order to force future integrity



verification for the physical frame where A resided. Next, the page
root of B is installed in the proper location as part of the Merkle
Tree, and the Merkle Tree is updated accordingly. Finally, the data
of page B can be loaded into the physical frame. When any value in
B is loaded by the processor, the integrity checking will take place
automatically by verifying data against the Merkle Tree nodes at
least up to the already-verified page root of B.

5.2. Bonsai Merkle Trees

For our final contribution, we introduce Bonsai Merkle Trees
(BMTs), a novel Merkle Tree organization designed to significantly
reduce their performance overhead for memory integrity verifica-
tion. To motivate the need for our BMT approach, we note a com-
mon optimization that has been studied for Merkle Tree verification
is to cache recently accessed and verified MAC values on chip [4].
This allows the integrity verification of a data block to complete as
soon as a needed MAC value is found cached on-chip. The rea-
son being, since this MAC value has previously been verified and
is safe on-chip, it can be trusted as if it were the root of the tree.
The resulting reduction in memory bandwidth consumption signifi-
cantly improves performance compared to fetching MAC values up
to the tree root on every data access. However, the sharing of on-
chip cache between data blocks and MAC values can significantly
reduce the amount of available cache space for data blocks. In fact,
our experiments show that for memory-intensive applications, up to
50% of a IMB L2 cache can be consumed by MAC values during
application execution, severely degrading performance. It is likely
that MACs occupy such a large percentage of cache space because
MAC:s in upper levels of a Merkle Tree have high temporal locality
when the verification is repeated due to accesses to the data blocks
that the MAC covers.

Before we describe our BMT approach, we motivate it from a
security perspective. BMTs exploit certain security properties that
arise when Merkle Tree integrity verification is used in conjunc-
tion with counter-mode memory encryption. We make two obser-
vations. First, the Merkle Tree is designed to prevent data replay at-
tacks. Other types of attacks such as data spoofing and splicing can
be detected simply by associating a single MAC value with each
data block. Second, in most proposed memory encryption tech-
niques using counter-mode, each memory block is associated with
its own counter value in memory [18, 19, 23, 24, 25]. Since a
block’s counter value is incremented each time a block is written to
memory, the counter can be thought of as a version number for the
block. Based on these observations, we make the following claim:

In a system with counter-mode encryption and Merkle Tree
memory integrity verification, data values do not need to be
protected by the Merkle Tree as long as (1) each block is
protected by its own MAC, computed using a keyed hashing
function (e.g. HMAC based on SHA-1), (2) the block’s MAC
includes the counter value and address of the block, and (3)
the integrity of all counter values is guaranteed.

To support this claim, we provide the following argument. Let
us denote the plaintext and ciphertext of a block of data as P and C,
its counter value as ctr, the MAC for the block as M, and the secret
key for the hash function as K. The MAC of a block is computed
using a keyed cryptographic hash function H with the ciphertext
and counter as its input, i.e. M = Hg(C,ctr). Integrity verifi-

cation computes the MAC and compares it against the MAC that
was computed in the past and stored in the memory. If they do not
match, integrity verification fails. Since the integrity of the counter
value is guaranteed (a requirement in the claim), attackers cannot
tamper with ctr without being detected. They can only tamper with
C to produce C’, and/or the stored MAC to produce to produce M.
However, since the attacker does not know the secret key of the hash
function, they cannot produce a M’ to match a chosen C’. In ad-
dition, due to the non-invertibility property of a cryptographic hash
function, they cannot produce a C’ to match a chosen M’. Hence,
M’ # Hg(C', ctr). Since, during integrity verification, the com-
puted MAC is Hg (C', ctr), while the stored one is M’, integrity
verification will fail and the attack detected. In addition, attackers
cannot replay both C' and M to their older version because the old
version satisfies M°'% = Hy (C°'¢, ctr°'?), while the integrity ver-
ification will compute the MAC using the fresh counter value whose
integrity is assumed to be guaranteed (H x (C°'¢, ctr)), which is not
equal to Hx (Com, ctr“ld). Hence replay attacks would also be de-
tected.

The claim is significant because it implies that we only need the
Merkle Tree to cover counter blocks, but not code or data blocks.
Since counters are a lot smaller than data (a ratio of 1:64 for 8-bit
counters and 64-byte blocks), the Merkle Tree to cover the block
counters is substantially smaller than the Merkle Tree for data. Fig-
ure 5(a) shows the traditional Merkle Tree which covers all data
blocks, while Figure 5(b) shows our BMT that only covers coun-
ters, while data blocks are now only covered by their MACs.
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Figure 5. Reduction in size of Bonsai Merkle Trees compared to
standard Merkle Trees.

Since the size of the Merkle Tree is significantly reduced, and
since each node of the Merkle Tree covers more data blocks, the
amount of on-chip cache space required to store frequently accessed
Bonsai Merkle Tree nodes is significantly reduced. To further re-
duce the cache footprint, we do not cache data block MACs. Since
each data block MAC only covers four data blocks, it has a low de-
gree of temporal reuse compared to upper level MACs in a standard



Merkle Tree. Hence, it makes sense to only cache Bonsai Merkle
Tree nodes but not data block MACs, as we will show in Section 7.

Overall, BMTs achieve the same security protection as in pre-
vious schemes where a Merkle Tree is used to cover the data in
memory (i.e. data spoofing, splicing, and replay protection), but
with much less overhead. Also note that BMTs easily combine with
our technique to extend Merkle Tree based protection to the disk.
When a page of data is swapped out to disk, the counters must al-
ways be swapped out and stored as well. Therefore we simply keep
a portion of memory to store the page roots for Bonsai Page Merkle
Subtrees on the disk as described in the previous section.

6 Experimental Setup

We use SESC [10], an open source execution driven simulator,
to evaluate the performance of our proposed memory encryption
and integrity verification approaches. We model a 2GHz, 3-issue,
out-of-order processor with split L1 data and instruction caches.
Both caches have a 32KB size, 2-way set associativity, and 2-cycle
round-trip hit latency. The L2 cache is unified and has a 1MB size,
8-way set associativity, and 10-cycle round-trip hit latency. For
counter mode encryption, the processor includes a 32KB, 16-way
set-associative counter cache at the L2 cache level. All caches have
64B blocks and use LRU replacement. We assume a 1GB main
memory with an access latency of 200 processor cycles. The en-
cryption/decryption engine simulated is a 128-bit AES engine with
a 16-stage pipeline and a total latency of 80 cycles, while the MAC
computation models HMAC [6] based on SHA-1 [1] with 80-cycle
latency [11]. Counters are composed of a 64-bit LPID concatenated
with a 7-bit block counter. So a counter cache block contains one
LPID value along with 64 block counters (enough for a 4KB mem-
ory page). The default authentication code size used is 128 bits.

We use 21 C/C++ SPEC2K benchmarks [21]. We only omit
Fortran 90 benchmarks, which are not supported on our simulator
infrastructure. For each simulation, we use the reference input set
and simulate for 1 billion instructions after fast forwarding for 5
billion. In each figure, we show individual result for benchmarks
that have L2 miss rates higher than 20%, but the average is calcu-
lated across all 21 benchmarks. In our experiments, we ignore the
effect of page swaps as the overhead due to page swaps with our
techniques is negligibly small.

Finally, for evaluation purpose, we use timely but non-precise in-
tegrity verification, i.e. each block is immediately verified as soon
as it is brought on chip, but we do not delay the retirement of the
instruction that brings the block on chip if verification is not com-
pleted yet. Note that all of our schemes (AISE and BMT) are com-
patible with both non-precise and precise integrity verification.

7 Evaluation

To evaluate our approach, we first present a qualitative compar-
ison of AISE against other counter-mode encryption approaches.
Then we present quantitative results and analysis of AISE+BMT
compared to prior approaches.

7.1. AISE: Qualitative Evaluation

Table 1 qualitatively compares AISE with other counter-mode
encryption approaches, in terms of IPC support, cryptographic la-
tency hiding capability, storage overheads, and other miscellaneous
overheads. The first scheme, Global Counter, was discussed in
Section 4.1. Like AISE, this scheme supports all forms of IPC

and requires no special mechanisms to protect swap memory. How-
ever, global counters need to be large (64 bits) to avoid overflow and
frequent entire-memory re-encryption (32-bit counters cause entire
memory re-encryption every few minutes [24]). Thus, these large
counters cache poorly, and predicting counter values is difficult be-
cause the values are likely non-contiguous for a particular block
over time, resulting in little latency-hiding opportunity (we evaluate
this in Section 7.2). In addition, the memory storage overhead for
using 64-bit counters per-block is high at 12.5%.

The next two configurations represent counter-mode encryp-
tion using either physical (Counter (Phys Addr)) or virtual address
(Counter (Virt Addr)) plus per-block counters to compose seeds.
As shown in the table, while AISE is amenable to all forms of
IPC, including shared-memory, virtual address based schemes can-
not support this popular type of communication. In addition, vir-
tual address schemes require this address to be stored in the lowest
level cache so that it can be readily accessed, and physical address
schemes require page re-encryption on page swaps. Finally, while
AISE will work well with proposed counter caching and prediction
schemes and require only small storage overheads, virtual and phys-
ical address schemes depend on the chosen counter size.

7.2. Quantitative Evaluation

In our first experiment, we compare AISE+BMT to another
memory encryption and integrity verification scheme which can
provide the same type of system-level support as our approach
(e.g. shared memory IPC, virtual memory support, etc.). Fig-
ure 6 shows these results of AISE+BMT compared to the 64-
bit global counter scheme plus standard Merkle Tree protection
(global64+MT), where the execution time overhead is shown nor-
malized to a system with no protection. While the two schemes
offer similar system level benefits, the performance benefit of our
AISE+BMT scheme is tremendous. The average execution time
overhead of global64+MT is 25.9% with a maximum of 151%,
while the average for AISE+BMT is a mere 1.8% with a maximum
of only 13%. This figure shows that our AISE+BMT approach over-
whelmingly provides the best of both worlds in terms of support of
system-level issues and performance overhead reduction, making it
more suitable for use in real systems.
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Figure 6. Performance overhead comparison of AISE with BMT
vs. Global counter scheme with traditional Merkle Tree

To better understand the results from the previous figure, we
next present figures which break the overhead into encryption vs.
integrity verification components. Figure 7 shows the normalized
execution time overhead of AISE compared to the global counter
scheme with 32-bit and 64-bit counters (note that only encryption
is being performed for this figure). As the figure shows, AISE by



Table 1. Qualitative comparison of AISE with other counter-mode encryption approaches

[[ Encryption Approach || Global Counter [ Counter (Phys Addr) [ Counter (VirtAddr) | AISE |

IPC Support Yes Yes No shared-memory IPC Yes

Latency Hiding Caching: Poor, Prediction: Difficult | Depends on counter size | Depends on counter size Good

Storage Overhead High (64-bit: 12.5%) Depends on counter size | Depends on counter size | Low (1.6%)

Other Issues None Re-enc on page swap VA storage in L2 None
itself is significantly better from a performance perspective than the 30% 4% 35‘2’ 63.%
global counter scheme (1.6% average overhead vs. around 4% and 25% AISE B AISE + MT W AISE - BMT
6% for 32 and 64-bit global counters). Recall also that 64-bit coun- 20%
ters, which should be used to prevent frequent entire-memory re- 15%

encryptions [24], require a 12.5% memory storage overhead. Note
that we do not show results for counter-mode encryption using ad-
dress plus block counter seeds since the performance will be essen-
tially equal to AISE if same-sized block counters are used. Since
AISE supports important system level mechanisms not supported
by address-based counter-mode schemes, and since the performance
and storage overheads of AISE are superior to the global counter
scheme, our AISE approach is an attractive memory encryption op-
tion for secure processors
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Figure 7. Performance overhead comparison of AISE versus the
global counter scheme

To see the overhead due to integrity verification, Figure 8 shows
the overhead of AISE only (the same as the AISE bar on the pre-
vious figure), AISE plus a standard Merkle Tree (AISE+MT), and
AISE plus our BMT scheme (AISE+BMT). Note that we use AISE
as the encryption scheme for all cases so that the extra overhead
due to the different integrity verification schemes is evident. Our
first observation is that integrity verification due to maintaining and
verifying Merkle Tree nodes is the dominant source of performance
overhead, which agrees with other studies [16, 24]. From this fig-
ure, it is also clear that our BMT approach outperforms the stan-
dard Merkle Tree scheme, reducing the overhead from 12.1% in
AISE+MT to only 1.8% in AISE+BMT. Even for memory inten-
sive applications such as art, mcf, and swim, the overhead using our
BMT approach is less than 15% while it can be above 60% with the
standard Merkle Tree scheme. Also, for every application except
for swim, the extra overhead of AISE+BMT compared to AISE is
negligible, indicating that our BMT approach removes almost all of
the performance overhead of Merkle Tree-based memory integrity
verification. We note that [24] also obtained low average overheads
with their memory encryption and integrity verification approach,
however for more memory-intensive workloads such as art, mcf,
and swim, their performance overheads still approached 20% and
they assumed a smaller, 64-bit MAC size. Since our BMT scheme
retains the security strength of standard Merkle Tree schemes, the
improved performance of BMTs is a significant advantage.
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Figure 8. Performance overhead comparison of AISE with our
Bonsai Merkle Tree vs. AISE with the Standard Merkle Tree

To understand why our BMT scheme can outperform the stan-
dard Merkle Tree scheme by such a significant amount, we next
present some important supporting statistics. Figure 9 measures
the amount of “cache pollution” in the L2 cache due to storing fre-
quently accessed Merkle Tree nodes along with data. The bars in
this figure show the average portion of L2 cache space that is occu-
pied by data blocks during execution. For the standard Merkle Tree,
we found that on average data occupies only 68% of the L2 cache,
while the remaining 32% is occupied by Merkle Tree nodes. In ex-
treme cases (e.g. art and swim), almost 50% of the cache space
is occupied by Merkle Tree nodes. Note that for 128-bit MACs,
the main memory storage overhead incurred by Merkle Tree nodes
stands at 25%, so if the degree of temporal locality of Merkle Tree
nodes is equal to data, then only 25% of the L2 cache should be
occupied by Merkle Tree nodes. Thus it appears that Merkle Tree
nodes have a higher degree of temporal locality than data. Intu-
itively, this observation makes sense because for each data block
that is brought into the L2 cache, one or more Merkle Tree nodes
will be touched for the purpose of verifying the integrity of the
block. With our BMT approach, on the other hand, data occupies
98% of the L2 cache, which means that the remaining 2% of the L2
cache is occupied by Bonsai Merkle Tree nodes. This explains the
small performance overheads of our AISE+BMT scheme. Since the
ratio of the size of a counter to a data block is 1:64, the footprint of
the BMT is very small, so as expected it occupies an almost negli-
gible space in the L2 cache. Furthermore, since data block MACs
are not cached, they do not take up L2 cache space.

Next, we look at the (local) L2 cache miss rate and bus utiliza-
tion of the base unprotected system, the standard Merkle Tree, and
our BMT scheme, shown in Figure 10. The figure shows that
while the L2 cache miss rates and bus utilization increase signifi-
cantly when the standard Merkle Tree scheme is used (average L2
miss rate from 37.8% to 47.5%, bus utilization from 14% to 24%),
our BMT scheme only increases L2 miss rates and bus utilization
slightly (average L2 miss rate from 37.8% to 38.5% and bus uti-
lization from 14% to 16%). These results show that the impact of
reduced cache pollution from Merkle Tree nodes results in a sizable



£ 100% -
(=)
z 80% A
s
.% 60% -
§40%*
=) Unprotected System
s204+ - kK B AISE + MT
- W AISE + BMT
= 0% s
2 =2 7] 2 2 5 g B g 2 S
g e s T 3PP oE R oEE
A~ b5 ]

z <

Figure 9. L2 cache pollution

reduction in L2 cache miss rates and bus utilization and thus the
significant reduction of performance overheads seen in Figure 8.
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Figure 10. L2 cache miss rate and bus utilization of an unpro-
tected system, standard Merkle Tree, and our BMT scheme

7.3. Sensitivity to MAC Size

In this section, we examine the sensitivity of the standard Merkle
Tree (MT) and our BMT schemes to MAC size variations. The level
of security of memory integrity verification increases as the MAC
size increases since collision rates decrease exponentially with ev-
ery one-bit increase in the MAC size. Security consortiums such
as NIST, NESSIE, and CRYPTREC have started to recommend the
use of longer MACs such as SHA-256 (256-bit) and SHA-384/512
(512 bits). However, it is possible that some uses of secure proces-
sors may not require a very high cryptographic strength, relieving
some of the performance burden. Hence, Figure 11 shows both the
average execution time overhead and fraction of L2 cache space oc-
cupied by data across MAC sizes, ranging from 32 bits to 256 bits.
The figure shows that as the MAC size increases, the execution time
overhead for MT increases almost exponentially from 3.9% (32-bit)
to 53.2% (256-bit). In contrast, for BMT, the overhead remains low,

ranging from 1.4% (32-bit) to 2.4% (256-bit). The overheads are re-
lated to the amount of L2 cache available to data, which is reduced
from 89.4% (32-bit) to 36.3% (256-bit) for MT, but is only reduced
from 99.5% (32-bit) to 94.9% (256-bit) for our BMT. Overall, it is
clear that while large MACs cause serious performance degradation
in standard Merkle Trees, they do not cause significant performance
degradation for our enhanced BMT scheme.
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Figure 11. Performance overhead comparison across MAC size

7.4. Storage Overheads in Main Memory

An important metric to consider for practical implementation
is the required total storage overhead in memory for implement-
ing a memory encryption and integrity verification scheme. For
our approach, this includes the storage for counters, the page
root directory, and MAC values (Merkle Tree nodes and per-block
MACs). The percentage of total memory required to store each of
these security components for the two schemes: global64+MT and
AISE+BMT across MAC sizes varying from 32-bits to 256-bits is
shown in Table 2.

Since each data block (64B) requires effectively 8-bits of counter
storage (one 7-bit block counter plus 1-bit of the LPID), the ratio of
counter to data storage is only 1:64 (1.6%) versus 1:8 (12.5%) if
64-bit global counters are used. This counter storage would occupy
1.23% of the main memory of the secure processor with 128-bit
MAGC:s. The page root directory is also small, occupying 0.31% of
main memory with 128-bit MACs. The most significant storage
overhead comes from Merkle Tree nodes, which grow as the MAC
size increases. The traditional Merkle Tree suffers the most, with
overhead as high as 25% of the main memory with 128-bit MACs
and 50% for 256-bit MACs. The overhead for our BMT is both
smaller and increases at a much slower rate as the MAC size in-
creases (i.e. 20% overhead for 128-bit MACs and 33% for 256-bit
MAC:s). The reason our BMT still has significant storage overheads
is because of the per-block MACs (BMT nodes themselves require
a very small storage). These overheads are still significant, however
our scheme is compatible with several techniques proposed in [4]
that can reduce this overhead, such as using a single MAC to cover
not one block but several blocks. However, the key point here is
that AISE+BMT is more storage-efficient than global64+MT irre-
spective of the MAC size used. AISE+BMT uses 1.6 x less memory
compared to global64+MT with 256-bit MACs with the gap widen-
ing to 2.3x with 32-bit MACs. Hence our scheme maintains a dis-
tinct storage advantage over global64+MT across varying levels of
security.



Table 2. MAC & Counter Memory Overheads

[ [ [ MT ] PageRoot | Counters [ Total |
256b global64+MT 49.83% 0.35% 5.54% 55.71%
MAC AISE+BMT 33.50% 0.51% 1.02% 35.03%
128b global64+MT 24.94% 0.26% 8.31% 33.51%
MAC AISE+BMT 20.02% 0.31% 1.23% 21.55%
64b global64+MT 12.48% 0.15% 9.71% 22.34%
MAC AISE+BMT 11.11% 0.17% 1.36% 12.65%
32b global64+MT 6.24% 0.08% 10.41% 16.73%
MAC AISE+BMT 5.88% 0.09% 1.45% 7.42%

8. Conclusions

We have proposed and presented a new counter-mode encryption
scheme which uses address-independent seeds (AISE), and a new
Bonsai Merkle Tree integrity verification scheme (BMT). AISE is
compatible with general computing systems that use virtual mem-
ory and inter-process communication, and it is free from other is-
sues that hamper schemes associated with counter-based seeds. De-
spite the improved system-level support, with careful organization,
AISE performs as efficiently as prior counter-mode encryption.

We have proposed a novel technique to extend Merkle Tree in-
tegrity protection to the swap memory on disk. We also found that
the Merkle Tree does not need to cover the entire physical mem-
ory, but only the part of the memory that holds counter values.
This discovery allows us to construct BMTs which take less space
in the main memory, but more importantly much less space in the
L2 cache, resulting in a significant reduction in the execution time
overhead from 12.1% to 1.8% across all SPEC 2000 benchmarks,
along with a reduction in storage overhead in memory from 33.5%
t0 21.5%.
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