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Abstract

Detection of memory-related bugs is a very important aspect of the
software development cycle, yet there are not many reliable and ef-
ficient tools available for this purpose. Most of the tools and tech-
niques available have either a high performance overhead or require
a high degree of human intervention. This paper presents HeapMon,
a novel hardware/software approach to detecting memory bugs, such
as reads from uninitialized or unallocated memory locations. This new
approach does not require human intervention and has only minor stor-
age and execution time overheads.

HeapMon relies on a helper thread that runs on a separate processor
in a CMP system. The thread monitors the status of each word on the
heap by associating state bits with it. These state bits indicate whether
the word is unallocated, allocated but uninitialized, or allocated and
initialized. The state bits associated with a word are updated when
the word is allocated, initialized, or deallocated. They are checked
on reads or writes. Bugs are detected as illegal operations, such as
writes to unallocated memory regions and reads from unallocated or
uninitialized regions. When a bug is detected, its type, PC, and ad-
dress are logged to enable developers to precisely pinpoint the bug’s
nature and location. The hardware support for HeapMon consists of
augmenting each cached word with one extra state bit, communica-
tion queues between the application thread and the helper thread, and
a small private cache for the helper thread. We test the effectiveness of
our approach with existing and injected memory bugs. Our experimen-
tal results show that HeapMon effectively detects and identifies most
forms of heap memory bugs. To study the performance overheads of
the new mechanism, we test it on SPEC 2000 benchmarks. Our results
show that the overhead of our approach is significantly lower than that
imposed by existing tools. The storage overhead is 3.1% of the cache
size and 6.2% of the allocated heap memory size. Although architec-
tural support for HeapMon is simple, its execution time overhead is
only 8% on average, and less than 26% in the worst case.

1 Introduction

1.1 Motivation

Memory bugs, such as reads from uninitialized memory, reads
or writes using dangling pointers, memory leaks, etc., are very
common and costly. The National Institute for Standards and
Technology (NIST) has recently estimated that inadequate in-
frastructure for software testing costs the US economy $22.2
billion annually [16]. It was also estimated that Purify, a
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memory bug detection tool, improves debugging productiv-
ity by a factor of ten, and saves $7,000 in development costs
per programmer per year [10]. Memory bugs are not easy
to find via code inspection because a memory bug may in-
volve several different code fragments which can even be in
different files or modules. The compiler is also of little help
in finding heap-related memory bugs because it often fails to
fully disambiguate pointers [18]. As a result, detection and
identification of memory bugs must typically be done at run-
time [1, 2, 3, 4, 6, 7, 8, 9, 11, 13, 14, 18]. Unfortunately, the
effects of a memory bug may become apparent long after the
bug has been triggered. For example, a value read from an
uninitialized location can be used in other computation and the
error only becomes apparent when the application eventually
displays the final result or crashes. Finally, memory bugs can
be difficult to identify because their occurrence may depend
on the input set or the particular system environment, and may
take a long time to manifest. For example, a slow but steady
memory leak exhaust the available virtual memory only after
a long time, and this time depends on the performance of the
system, the configured size of the swap file, etc. Meanwhile,
a bug could be introducing a performance penalty, such as ex-
cessive page faults due to a memory leak.

Dealing with a software problem typically involves several
steps: detection, identification, and repair. Detection occurs
when the existence of a problem is determined (”something
is wrong”, e.g. the program crashes). Identification involves
finding out what is wrong (e.g. the program has a memory
leak). Finally, repair involves figuring out how to eliminate the
problem and changing the code accordingly. It is often easy to
detect a bug - we can notice that results are wrong or that the
application has crashed. However, it may be difficult and time
consuming to repeat a bug and identify it. Tools such as Pu-
rify [11] can be used during the development cycle to identify
memory bugs. However, the high overhead imposed by such
tools prevents their use in production environments. Problems
that are manifested only with certain input combinations, in-
termittently, or only in long runs can easily survive debugging
and remain in production code, where the existing tools can not
be used to find them. Therefore, there is a need for a system
can identify memory bugs with very low-overhead and without
human intervention. Such a system can remain active even in
production runs to identify bugs whenever and wherever they
may occur.

1.2 State of the Art

A variety of dynamic bug detectors have previously been
proposed, such as Purify [11], Valgrind [14], Intel thread
checker [4], DIDUCE [3], Eraser [13], CCured [7], Stack-



guard [2], iWatcher [18], and others [1, 6, 8, 9]. Many of these
dynamic bug checkers add instrumentation into the source or
object code. This instrumentation is often added conserva-
tively due to lack of information at instrumentation time. A
conservative checker must add instrumentation code wherever
a memory reference can not be proved to always be correct -
which is very difficult to prove. As a result, checking and mon-
itoring code greatly adds to the execution time, making these
dynamic checkers unsuitable for use in the production environ-
ment. For example, various dynamic checkers are reported to
cause slow-downs of 6 to 30 times [3, 13, 18].

The Intelligent Watcher (iWatcher) [18] is an approach
based on architectural support to monitor dynamic execution.
iWatcher associates program-specified monitoring functions
with memory locations. iWatcher adds an overhead of 66-
174% when it monitors 20% of dynamic loads, which is much
better than Purify. However, iWatcher requires much more hu-
man intervention in inserting the watch points into the data
memory region. The effectiveness of the technique is depen-
dent on how accurately and correctly the user inserts the watch-
points. Another important drawback of iWatcher is that it re-
quires customized, fixed-functionality hardware.

1.3 Our HeapMon Approach

This paper presents HeapMon, a novel hardware/software ap-
proach to detecting memory bugs, such as reads from unini-
tialized or unallocated memory locations. HeapMon does not
require human intervention and has only minor storage and ex-
ecution time overheads. The approach relies on a helper thread
that runs on a separate processor in a Chip Multi-Processor
(CMP) system. The helper thread monitors the status of each
word on the heap by associating state bits with it. These state
bits indicate whether the word is unallocated, allocated but
uninitialized, or allocated and initialized. The state bits as-
sociated with a word are updated when the word is allocated,
initialized, or deallocated. They are checked on reads or writes.
Bugs are detected as illegal operations, such as writes to unal-
located memory regions and reads from unallocated or unini-
tialized regions. When a bug is detected, its type, PC, and
address are logged to enable developers to precisely pinpoint
the bug’s nature and location.

The main advantages of HeapMon are: (1) no human interven-
tion is required, either to insert breakpoints or watchpoints;
(2) the bug detector is written in software, hence it is pro-
grammable, i.e., new functionality can easily be added; (3) the
overhead imposed by this technique is very low, enabling its
use in production environments to detect and identify bugs;
finally, (4) no compiler support is needed beyond re-linking
the application with a new static library, or simply running
it with a new dynamically-linked library. Hardware support
for HeapMon consists of augmenting each cached word with
one extra state bit, communication queues between the appli-
cation thread and the helper thread, and a small private L2
cache for the helper thread. We test the effectiveness of our
approach with existing and injected memory bugs. Our ex-
perimental results show that HeapMon effectively detects and
identifies most forms of heap memory bugs. To study the per-
formance overheads of the new mechanism, we test it on SPEC
2000 benchmarks. Our results show that the overhead of our
approach is significantly lower than that imposed by existing
tools. The storage overhead is 3.1% of the cache size and 6.2%
of the allocated heap memory size. Although architectural sup-

port for HeapMon is simple, its execution time overhead is
only 8% on average, and less than 26% in the worst case.

1.4 Paper Organization

The paper is organized as follows: Section 2 discusses the
functionality provided by HeapMon, Section 3 presents the ar-
chitectural support for HeapMon, Section 4 details the eval-
uation setup, Section 5 presents and discusses the evaluation
results, Section 6 summarizes our findings and conclusions.

2 HeapMon Functionality

Each application is associated with a HeapMon handler, which
is implemented as a helper thread. Using a helper thread re-
duces the amount of dedicated hardware and storage, and re-
duces the execution time overhead due to HeapMon. In appli-
cations that do not need HeapMon functionality, such as legacy
FORTRAN applications without dynamic memory allocation,
the processor (or a thread context in an Simultaneous Multi-
Threading (SMT) system that would be running HeapMon can
be used for other tasks, no memory is allocated to keep Heap-
Mon state, and there are no HeapMon checks.
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Figure 1. Possible locations for running the HeapMon
helper thread: on a single processor (i), a separate SMT
thread context or CMP core (ii), or a processor near or in
the main memory chips (iii).

Figure 1 shows possible locations for running the HeapMon
helper thread. Each circle in the figure shows a processor, or a
thread context in an SMT. HeapMon helper thread can run on
the same processor on which the application runs (case i), in
which case the application and the helper thread switch con-
texts to share the processor. The helper thread in this case
should be implemented as a user-level thread to reduce context
switch overheads. Another possible location for the HeapMon
helper thread is on a separate processor in a CMP system, or
a separate thread context in an SMT system (case ii). In this
case, context switching is no longer necessary and both threads
can be running at the same time. Finally, the helper thread can
be run on an intelligent memory, i.e. on a simple processor lo-
cated near or in the main memory (case iii). In this case Heap-
Mon does not pollute the main processor’s caches and can run
more efficiently if the helper thread requires low latency and
high bandwidth access to the main memory.

Figure 2 shows the general mechanism of HeapMon check-
ing. Each heap memory request proceeds in three steps. First,
the request from the main processor is forwarded to the main
memory (step 1a) and the HeapMon helper thread (step 1b).
Requests are events of interest: memory allocation, dealloca-
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Figure 2. Overall mechanism of the proposed system.

tion, and heap memory accesses. Extra information, such as
process id, is piggybacked to the request to give HeapMon
enough information to perform the necessary checks. On a
read request, the main memory replies with data (step 2a). The
tag processor reads the state for the requested word (step 2b)
and performs a bug check by finding whether the request type
is allowed for the current state of the word. The result of the
bug check is then reported to the main processor (step 3a) and
the state is updated if necessary (step 3b).

The bug check report is positive if the request is allowed by the
current state of the word. The report is negative when a bug is
detected. Because bug detections are relatively rare, the re-
porting mechanism should not have a significant impact on the
application’s performance. In this paper, we assume that neg-
ative reports are not sent to the main processor. Instead, they
are logged and later reported to the programmer. However, it is
possible to modify the system to create a precise exception in
the application thread. In this case, to avoid stalls while wait-
ing for a bug report, the application processor can speculatively
consume data replies without waiting for the bug check report.
If a negative report does arrive later, a precise exception is still
possible using appropriate recovery action, such as a pipeline
flush or a rollback.

2.1 Bug Checking Mechanism and Scope

To detect bugs, HeapMon allocates and maintains two bits of
state for each word in the heap area. Instead of using special
dedicated hardware to store these state bits, HeapMon keeps
them in main memory as a software data structure.

The bug detection mechanism in HeapMon is similar to that
used in Purify [11]. The possible states and transitions between
them are shown in Figure 3. Initially, all words in the heap that
are currently not allocated have an Unallocated state. When
an object is allocated (via malloc or an equivalent function),
the helper thread changes the state of all words of the object
to Allocated&Uninitialized state. When a word in the object
is written/initialized, the state of the word changes to Allo-
cated&Initialized. Finally, when an object is deallocated (via
free or equivalent functions), the state of each of its words is
changed back to Unallocated.

To perform these state transitions, the HeapMon helper thread
must be notified of two types of events. The first type of events
includes memory allocation and deallocation, for which noti-
fications are sent to HeapMon by a modified memory alloca-
tion and deallocation library. With this approach, no program-
mer’s intervention is needed beyond re-linking the application
to the modified memory management library. Even this can
be avoided if a dynamically-linked library is used. The second
type of events are reads and writes to the heap by the applica-
tion’s processor. They occur very frequently, so we propose a
filtering mechanism to reduce the frequency of HeapMon no-
tifications. This filtering mechanism, described in Section 3,
exploits the fact that all read/write accesses to words which are

already in the Allocated&Initialized state will result in positive
reports. Since most words will be used many times after being
allocated and initialized, this filtering can reduce the number
of bug checks significantly.

A final type of events of interest are changes in the size of the
heap region. When the memory manager in an application runs
out of heap space, it may request a heap size increase from the
OS. At that time, the HeapMon helper thread must follow suit
by allocating new state bits for new words in the heap region
and initializing these state bits to Unallocated. These events
are infrequent and should not noticeably affect performance.
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Figure 3. State transition diagram for each word, and a
table showing the allowed requests and detectable bugs for
each state.

We now discuss the bugs that can be detected by keeping the
state of each heap memory word. The table in Figure 3 shows
which requests are allowed for each current state. By compar-
ing the type of the request with the allowed requests for the
current state of the word, memory bugs can be detected.

The bug checking conditions shown in Figure 3 can detect
many types of memory-related bugs. For example, access to a
dangling pointer usually occurs due to not updating the pointer
when the object being pointed to has been deallocated . Fig-
ure 4a shows a code section that illustrates this bug. In this
code, a node pointed by nodeToDelete is removed from a
linked list structure and deallocated. Elsewhere in the same
application, currentNode is dereferenced. The two point-
ers may never be equal (they point to different locations) in
test runs of the program. If, however, certain input combina-
tions in a production environment result in currentNode and
pNodeToDelete that point to the same location, dereferencing
currentNode after the node’s memory is deallocated is a bug.
This bug is detected by HeapMon because the free function
changes the state of the word to Unallocated and any subse-
quent access to this word is detected as bug. This example
also illustrates the importance of architectural support for low-
overhead bug detection: certain bugs may be manifested only
with some input combinations that may be hard to foresee.

Another class of bugs detected by HeapMon are reads to unini-
tialized structures on the heap. Figure 4b shows a code section
that illustrates this bug. When the node newNode is allocated,
its next field is left uninitialized. Later in the code, the pro-
grammer incorrectly assumes that newNode->next should ei-
ther have a NULL value or point to a location that corresponds
to another node. However, newNode->next has actually not
been initialized. This type of bug often arises when the pro-
grammers forget the assumptions made in parts of the code
responsible for setting up the initial values of a variable. This



...

if (pNodeToDelete->data == mydata) {

unlink(pNodeToDelete, list);

free(pNodeToDelete);

}

...

x = currentNode->data;

(a)
typedef struct{

int data;

node* next;

} node;

...

node* newNode = malloc(sizeof(node));

newNode->data = x;

...

if (newNode->next == NULL) {

newNode->next = head;

head = newNode;

} else

mergeList(newNode,head);

(b)

Figure 4. Bug example where there is an access to an un-
allocated location (a), and a read to an uninitialized location
(b).

situation can easily arise when multiple code developers are in-
volved, or when the code is not written in the same time frame.
HeapMon detects this bug by recording the fact that the pointer
has not been initialized (its state is Allocated&Uninitialized).
When a read is attempted, the bug is detected.

Yet another class of bugs detected is doubly deallocating an
object. Again, HeapMon detects it because the first deallo-
cation instance changes the state to Unallocated, resulting in
detecting the second deallocation instance as a bug. Finally, a
memory leak can be detected if, at the end of program execu-
tion, there are words in the heap region that are still in one of
the Allocated states.

3 Architecture Support

This section describes architectural mechanisms needed to im-
plement the proposed scheme, as well as some optimizations
we use to improve its performance.

3.1 Bug Check Filtering

Performing a bug check for every heap memory access can
be costly due to the high frequency of such accesses, espe-
cially since bug checks are performed in software. To re-
duce the number of checks, we keep Bug Report (BRP) bits
as part of the cache state in the application’s processor. Ev-
ery cached word has a BRP bit associated with it. This bit
indicates whether or not an access to the word should result
in a bug check request to HeapMon. If the BRP bit is ’1’ for a
cached word, any read or write access to that word can proceed
without a bug check. Otherwise, the access results in a request
for bug check to the HeapMon helper thread. When a cache
line is replaced, its BRP bits are discarded. On a cache miss, a
bug check request is generated to the HeapMon helper thread,
which returns the bug check report, as well as the BRP bits for
each word in the line, which are placed in the cache together
with the corresponding line.

In principle, the HeapMon helper thread returns a BRP bit of
1 only when it is sure that any subsequent bug checks to the
word will generate a positive report, i.e. no bug will be de-
tected. The only state of a word that allows both reads and
writes is Allocated&Initialized, therefore HeapMon returns a
BRP bit of 1 for words in that state. The other two states
require HeapMon activity. Read or write accesses to Unal-
located words are bugs and should be detected, so the BRP
bit remains 0 for words in this state. When the state of the
word is Allocated&Uninitialized, a read to it is a bug. A
write to such a word is an initialization, and should update
the state to Allocated&Initialized. Therefore, the HeapMon
helper thread must return the BRP bit of 0 for words in the
Allocated&Uninitialized state.

In a bug-free application, the fraction of heap accesses whose
bug checks can be eliminated is roughly equal to the global hit
rate (for heap data) of the lowest level cache. For example, on
a system with two cache levels, it equals to the number of L1
and L2 hits divided by the total number of accesses (to the heap
region). This is because a bug check request is only initiated
when there is an L2 cache miss and on initialization writes,
which are usually cache misses. Since most words will be used
many times after being allocated and initialized, this filtering
can reduce the number of bug checks significantly. However,
the effectiveness of the filtering will depend on the applica-
tion’s L2 cache miss rate, and traditional techniques that re-
duce the number of L2 cache misses, such as victim caches,
higher associativity, etc., will also reduce the number of bug
check requests.

There are several other implementation details. First, when the
state of a word changes, we assume a hardware support that
enables HeapMon to send a command that updates the corre-
sponding BRP bits in the cache. Second, BRP bits only filter
read and write accesses, and do not filter heap allocation and
deallocation requests. Third, in memory locations that Heap-
Mon is not interested in, such as code, global data, and stack
regions, the BRP bit is always 1.

3.2 HeapMon Helper Thread Operation

Figure 5 shows the operation of the HeapMon helper thread.
The figure shows the application’s processor, the HeapMon
processor, and the hardware communication interface between
them.

Communication Buffer. While communication between the
two processors can also be implemented completely in soft-
ware through shared memory, considering the frequency of
bug check request, this may add a significant overhead in the
application’s thread, as well as add significant latency to the
time needed to perform the check. For this reason, we use a
hardware 64-entry FIFO Request Queue to buffer bug check
requests and an 8-entry Report Queue to buffer bug check re-
ports 1. The figure also shows the BRP bits in L1 and L2 caches
of the application’s processor. In a symmetric system (e.g. a
chip-multiprocessor), any processor could be a HeapMon pro-
cessor or an application processor, so each processor is ex-

1Since most bug check requests are due to L2 cache misses, the
Request Queue is designed to have slightly more entries than the max-
imum number of outstanding misses that the L2 cache can support.
This way the application processor almost never blocks due to the Re-
quest Queue being full. The Report Queue does not need as many
entries because they are handled by hardware.



tended with a request queue, a report queue, and BRP bits in
L1 and L2 caches. For illustration purposes, the figure shows
each processor with a private L2 cache, although physically the
processors may share a single L2 cache.

In this first design we assume that a processor (or a thread con-
text in an SMT processor) is dedicated to running the Heap-
Mon thread. However, as shown in the evaluation, the utiliza-
tion of the HeapMon processor is typically very low, making it
possible to interleave its execution with other tasks.

Bug Check Requests. When the application’s processor calls
an allocation or deallocation function, the function uses spe-
cial instructions to put the request in the Request Queue (cir-
cle 1a in Figure 5), a FIFO buffer. Bug check requests are
also automatically placed into this queue by the hardware of
cache misses and when there is a cache hit to a word with a
0 BRP bit (circle 1b in Figure 5). A request contains the ap-
plication’s process id, PC of the requesting instruction, request
type, virtual starting address, and request size. The application
thread and the HeapMon thread run in the same address space,
so heap addresses passed to the HeapMon thread are virtual
addresses. Using a virtual address, in addition to avoiding se-
curity concerns, has two other advantages. The first advantage
is that the index computation to locate the state bits is simpler,
because the application’s heap is a contiguous range of virtual
addresses instead of a scattered collection of physical pages.
The second advantage of using virtual addresses is that nor-
mal paging mechanisms can be used for both the application’s
memory and the memory used by HeapMon. Finally, it should
be noted that this scheme is based on the assumption that Heap-
Mon has knowledge of the starting address of the heap region.
However, this information can be easily obtained from the li-
brary which manages the heap region. A Heap Filter contains
the start and the end address of the heap region. The filter en-
sures that only heap memory requests are placed in the queue.
HeapMon does not keep any state bits for non-heap data.

After placing requests in the Request Queue, the application
thread immediately resumes execution. This overlaps Heap-
Mon checks with execution of the application and hides the la-
tency of bug detection. Our current version of HeapMon only
logs the requests for which a negative report has been gener-
ated. Therefore, an error log entry only contains information
present in the request and does not include, for example, the
snapshot of the stack, although this snapshot could provide a
more detailed information for debugging. However, we con-
servatively assume that the processor can not consume data
loaded from memory until both the data and the report (BRP
bits) are available in the processor’s cache. Therefore, Heap-
Mon causes stalls in the application processor in only two sit-
uations: (1) read misses can be delayed due to the HeapMon’s
latency of checking state bits and generating BRP bits, and (2)
the Request Queue can become full.

Maintaining Heap Request Ordering. To avoid detection
of spurious bugs and failing to detect some true bugs, Heap-
Mon assumes that program ordering of heap memory requests
is preserved in the Request Queue. To preserve the ordering,
we use memory fences in the modified memory management
libraries.

HeapMon Helper Thread Invocation and Suspension. If
the HeapMon thread is inactive (e.g. its processor is in a sleep
mode), it is activated by the Interface Logic when its queue re-
ceives a request (circle 2 in Figure 5). A special instruction is
then used to read the parameters of the request into registers

App

Interface L
ogic L1$

L2$

H
eap Filter

L2$

B
R

P

Report Q

ProcessorProcessor

HeapMon

DMA

Request Q

1b

2

4

3

Main Memory State
BitsLog

Bug
5b

5b

L1$

B
R

P

1a

5a

Figure 5. HeapMon operation and communication. For il-
lustration purposes, the figure shows each processor with
a private L2 cache, although physically the processors may
share a single L2 cache.

on the HeapMon processor, and the HeapMon thread proceeds
with the bug check. Once the check is complete and the Heap-
Mon thread is ready to process a new request, it first attempts to
get the next request from the queue. If no request is available,
the thread becomes inactive (e.g. puts its processor into sleep
mode). It would also be possible to busy-wait by polling the
queue until a request arrives. However, busy-waiting would
needlessly expend power and increase heat dissipation prob-
lems. Such energy efficiency concerns are beyond the scope
of this paper. Regardless, we use the sleep/wake model in
our simulation experiments because a busy-waiting processor
slows down simulation considerably.

Reading and Maintaining the State Bits. When the helper
thread obtains a bug check request, it reads the state bits for
the requested words. HeapMon stores these state bits in mem-
ory, in a software data structure. This data structure maintains
two state bits per word in the application’s heap area. With
two bits of state per word, the storage overhead of using Heap-
Mon is 6.25% of the total allocated memory in the heap area.
HeapMon allocates the state bit structure in large chunks incre-
mentally and dynamically. It detects the application’s request
to increase its heap segment size by intercepting the applica-
tion’s call to brk and sbrk.

When HeapMon receives a bug check request, it uses simple
indexing to locate the state bits for the requested address. Then
it reads the state of the word from its data structure (circle 4 in
Figure 5) and, based on the type of the request and the state
of the word, determines whether or not the access is a bug. If
the access is not a bug, HeapMon puts the BRP bits to the Re-
port Queue (circle 4 in Figure 5). These bits will be placed
alongside the cache line in the application processor’s cache.
Finally, if the access results in a state change, the helper thread
performs a state change (circle 5a in Figure 5) and sends a sig-
nal to update the BRP bits of the application processor caches.
Since the updated state bits were recently read by the helper
thread, they are most likely still resident in the cache of the
HeapMon processor.

3.3 HeapMon Optimizations

DMA Bulk State Update. In some cases, many state bits have
to be updated at once. This is especially the case for memory
allocation/deallocation requests when large blocks of memory
may be affected. If the helper thread performs the state changes



completely in software, it may have a large latency. To avoid
that, when the helper thread needs to initialize/update more
than one page of state bits, the HeapMon helper thread pro-
grams the DMA to do that (circle 5b in Figure 5) [12]. It
first specifies the physical pages (or virtual pages with some
DMAs) that should be mapped as the DMA’s memory. Then
it supplies a small write string pattern, representing the state
that should be written for the entire pages, to the DMA, and
suspends itself. The DMA repeatedly transfers the write string
pattern and writes it directly to the memory. Once the trans-
fer is completed, it sends an interrupt to wake up the HeapMon
helper thread. This functionality already exists since many sys-
tems already have DMAs. We model DMA overheads in the
evaluation.

Separate L2 Cache. Sharing the L2 cache between the Heap-
Mon processor and the application processor may produce an
undesirable cache contention that invariably slows down the
application. Unfortunately, the impact of cache contention is
easily magnified due to the inter-dependencies between the ap-
plication and the HeapMon helper thread. For example, if due
to cache contention the application suffers extra cache misses,
the helper thread will have to perform more bug checks, and
since the application needs to wait for BRP bits to be produced,
it is slowed down further, and so on. Therefore, we also evalu-
ate the case where the HeapMon processor has a small private
L2 cache.

3.4 Limitations of HeapMon

Since HeapMon only monitors heap memory requests, it can-
not detect bugs in stack and global data segments. However,
this is not a fundamental limitation. Since the bug detection is
implemented in software, the helper thread can be modified to
also track other segments. This functionality can be useful to
detect other classes of bugs, such as accessing non-initialized
stack variables.

It should also be noted that currently HeapMon does not detect
buffer overflow bugs. However, it can be easily and directly
enhanced to detect them, without extra hardware support. For
example, the memory allocation and deallocation routine can
be modified to leave a small unallocated block between two
consecutive allocated regions. A buffer overflow would result
in an access to this unallocated block and would be detected by
HeapMon. In addition to helping find programming errors, de-
tection of buffer overflow in production code would also boost
security by detecting attacks that exploit such errors.

Finally, keeping one state per 32-bit word imposes a limita-
tion in tracking byte-sized locations. For example, a read to
an uninitialized 1-byte char may not be detected if the neigh-
boring byte has been initialized. However, since most mem-
ory bugs involve uninitialized pointers instead of smaller struc-
tures, and that the size of a pointer is 32 bits in our platform,
we can still detect most uninitialized pointer bugs.

4 Evaluation Setup

Applications.

To evaluate HeapMon, we use 14 applications, mostly from
Spec2000 [15]. The applications, their sources, input sets, L1
and L2 cache miss rates, number of allocations, average allo-
cation size, and the percentage of memory accesses that go to

the heap region are shown in Table 1. We omitted FORTRAN
benchmarks since they do not use dynamic memory allocation,
and C++ benchmarks due to limitations of our infrastructure.

Simulation Environment.

The evaluation is performed using SESC, a detailed cycle-
accurate execution-driven simulator capable of simulating
CMP and intelligent memory architectures. This simulator
has recently been developed at the University of Illinois and
is based on MINT [17] and other published work [5]. Table 2
shows the parameters used for each component of the archi-
tecture. Each CMP core is an aggressive out-of-order super-
scalar processor with private L1 instruction and data caches.
In CMPs, the L2 cache can be configured to be per-processor
private or shared among processors. The memory hierarchy
below the L2 cache is always shared by all CMP cores.

Four different configurations are used to evaluate the perfor-
mance of HeapMon. IM represents an intelligent memory with
the memory processor integrated into the memory controller. It
has half the memory latency of the main processor, but does not
have any bandwidth advantage due to its location outside the
DRAM chips. CMP+L2shr is a dual-core CMP with a shared
L2 cache. CMP+L2prv is a dual-core CMP with a private L2
cache for each processor. However, we vary the HeapMon pro-
cessor’s L2 cache from small (64KB) to as large as the applica-
tion processor’s L2 cache (1MB). None of the configurations
uses DMA support, except CMP+enh, which uses DMA to
perform bulk state updates, and includes a 128KB private L2
cache for the HeapMon helper thread.

Bug Injection. Since Spec2K applications have been heavily
debugged, at least for the supplied input sets, we inject mem-
ory bugs to evaluate whether HeapMon is able to detect them.
We inject three types of bugs. alloc-bug is an injected bug
where at random memory allocation requests, we reduce the
allocation size by 8 bytes. dealloc-bug is an injected bug where
at random time, we deallocate the randomly selected heap ob-
jects. Finally, noinit-bug is an injected bug where we skip ran-
dom initialization writes to a location. No memory leak bugs
were injected to the benchmarks as they already existed in most
cases. All benchmarks were run from start to completion with-
out skipping or fast-forwarding through any instructions.

5 Evaluation Results

In this section we evaluate the execution time overhead of
HeapMon (Section 5.1) and its bug detection capability (Sec-
tion 5.2). Finally, we characterize HeapMon’s performance
(Section 5.3).

5.1 Performance Overhead

To be useful in production runs, a bug detection mechanism
must not slow down programs too much. This is a limitation
in existing tools, where various dynamic checkers are reported
to slow down programs between 6 to 30 times [3, 13, 18]. By
using thread level speculation and custom hardware, iWatcher
gets the overhead down to the 66-174% range, when it moni-
tors 20% of all dynamic loads. However, even this lower over-
head may still be too much to allow use in production runs. We
will now discuss the execution time overhead of HeapMon.

Figure 6 shows the execution time overhead of HeapMon for
various machine configurations. The figure shows four bars



Benchmark Source Input L1 Cache L2 Cache Num Alloc. Avg. Alloc. % Heap Accesses
Set Miss Rate Miss Rate Size (Bytes)

ammp Specfp2000 test 17.90% 0.43% 34,764 2,676 36.52%
art Specfp2000 test 8.29% 5.42% 30,488 60 27.75%
bzip2 SpecInt2000 test 0.85% 1.06% 10 1,138,631 3.95%
crafty SpecInt2000 test 2.95% 0.16% 40 21,001 0.42%
equake Specfp2000 test 1.01% 48.42% 316,851 25 34.63%
gcc SpecInt2000 test 1.38% 0.78% 4,302 3,509 18.84%
gzip SpecInt2000 test 2.91% 2.57% 243 27,944 4.26%
mcf SpecInt2000 test 8.66% 13.51% 6 12,074,701 24.15%
mesa Specfp2000 test 0.08% 37.21% 66 307,088 15.87%
mst Olden 1024 nodes 1.75% 36.22% 419 32,487 41.6%
perlbmk SpecInt2000 test 1.19% 13.98% 421 19,954 37.37%
twolf SpecInt2000 test 1.10% 0.08% 9,400 56 28.62%
vortex SpecInt2000 test 0.91% 6.15% 186,436 357 19.42%
vpr SpecInt2000 test 2.29% 0.01% 1,589 106 25.55%

Table 1. Applications used in our evaluation.
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Figure 6. Overhead imposed by HeapMon on various machine configurations.

per application and their average, where each bar represents
the execution time overhead for a different machine configu-
ration: Intelligent Memory (IM), CMP with a shared 1-MB
L2 cache (CMP+L2shr), CMP with a per-processor private
1-MB L2 cache (CMP+L2prv), and CMP with enhancements
(CMP+enh) which include a 128-KB private L2 cache for the
HeapMon processor, use of DMA for bulk state updates, and
using 8-byte state update granularity when possible.

CMP+enh is clearly the best scheme, delivering an average
execution time overhead of only 8%, with the worst case of
slightly less than 26% (mcf). CMP+L2prv, followed by IM and
CMP+L2shr have higher average execution overheads (17%,
38%, and 62%, respectively). Comparing results from dif-
ferent configurations gives us insight into the execution over-
head. For example, the difference in performance overheads
of CMP+L2shr and CMP+L2prv comes from the fact that in
CMP+L2prv, the application and the helper thread do not con-
tend for the L2 cache. The figure shows that cache contention
has a very strong effect on overhead: the average overhead in
CMP+L2shr is considerably higher than in CMP+L2prv. In
three applications, the difference in execution overhead is very
large: 457% vs. 2% in ammp, 87% vs. 15% in art, and 198%
vs. 155% in mcf. The reason for such large differences is that
the impact of cache contention can easily be magnified due to
the inter-dependencies between the application and the Heap-
Mon helper thread. For example, if due to cache contention
the application suffers extra cache misses, the helper thread is
also slower because it has to perform more bug checks, which
in turn stalls the application’s processor more because read
misses from the processor wait for both the data and the BRP
bits to be produced. However, note that even in CMP+L2prv,
mcf still suffers a very large overhead (155%). Therefore, there
is still at least one performance problem in addition to cache

contention. We found that this additional source of overhead
is due to large memory allocations which occupy the helper
thread for a long time and stall the application’s processor sig-
nificantly (see Section 5.3 for a detailed analysis).

Although both IM and CMP+L2prv configurations avoid pol-
lution of the application processor’s L2 cache, IM does not per-
form as well as the CMP+L2prv configuration. This is mainly
because the memory processor in IM is a narrow-issue pro-
cessor without an L2 cache. Furthermore, the memory proces-
sor’s memory access latency advantage is not fully realized be-
cause state bits are stored in a very compact form – each cache
line can store 512 state bits (enough for 256 words). Lacking
enough spatial locality in the application’s thread, the L1 cache
of the IM processor is not used efficiently (many of the cached
bits are not used). With no L2 cache, no bandwidth advantage
due to its location outside the DRAM chips, and inefficiently
used L1 cache, the IM processor performs worse than a more
powerful CMP processor with an L2 cache. Therefore, this
kind of IM is not a good choice of processor to run the Heap-
Mon thread.

Finally, HeapMon characterization in Section 5.3 helps us to
find optimizations that are useful for HeapMon, resulting in the
CMP+enh configuration that has a very low execution over-
head across all the benchmarks tested.

5.2 Bug Detection Capability

We now present an evaluation of HeapMon’s bug detection ca-
pability. We ran the benchmarks through HeapMon and only
found memory leak bugs. This is not surprising since SPEC2K
benchmarks have existed for years and have gone through rig-
orous debugging and testing. Memory allocation bugs or reads



System Parameters

Each Main 4 GHz, 6-way OOO, 248-entry ROB
Processor Int, fp, ld/st FUs: 4, 4, 4
(Core) Branch penalty: 17 cycles

IL1: WB, LRU, 16KB, 2-way, 64B line, RT: 3
cyc
DL1: WB, LRU, 16KB, 2-way, 64B line, RT: 3
cyc

Main L2: WB, LRU, 1MB, 8-way, 64-B line, RT: 13
cyc

Processor Outstanding ld/st: 24/24 (DL1), 48/48 (L2).
(Memory) Mem bus: split-trans., 1GHz, 64-bit, 8 GB/sec

peak
RT memory latency: 400 cyc
DMA (optional): 2000 cyc per 4-Kbyte page

Memory 4 GHz 2-way OOO, 104-entry ROB
Processor Int, fp, ld/st FUs: 2, 2, 2
(Core) Branch penalty: 17 cycles

IL1: WB, LRU, 16KB, 2-way, 64B line, RT: 3
cyc

Memory DL1: WB, LRU, 16KB, 2-way, 64B line, RT: 3
cyc

Processor Outstanding ld/st: 24/24 (DL1), no L2 cache
(Memory) Uses the same memory bus with the Main Proc

RT memory latency: 200 cyc

Configurations

IM 1 Main Proc with L2 + 1 Mem Proc without L2
CMP+L2shr 2 Main Proc cores, one L2 shared by both procs
CMP+L2prv 2 Main Proc cores, App proc. with 1MB L2 cache

HeapMon proc. with various L2 sizes
2 Main Proc cores, App proc. with 1MB L2 cache

CMP+enh HeapMon proc. with 128KB L2 (9-cyc RT)
DMA is used for bulk state updates

Table 2. Parameters and configurations of the simulated
architecture. Latencies correspond to contention-free con-
ditions. RT stands for round-trip latency from the processor.

to uninitialized location most likely result in crash or wrong re-
sults, and therefore they would have been removed after rigor-
ous testing, at least for the input sets provided with the bench-
marks. What is surprising, however, is the extent of memory
leak problem in these heavily tested SPEC2K benchmarks.

Table 3 shows, for each benchmark, how many memory alloca-
tions are made, how many of them are not deallocated (both as
number and as a percentage of allocations), and the total leak
(number of bytes that remain allocated at the end the program
execution). The table shows that, except for mcf, every one of
the benchmarks has a leak. In fact, three benchmarks (bzip2,
equake, and mst) never perform any deallocation. Three other
benchmarks (ammp, art, and crafty) deallocate fewer than 5%
of their allocations. This prevalence of memory leaks is due
to several factors. First, they are hard to detect because, with
fixed and relatively small inputs used for benchmarking, the
system never runs out of memory due to these leaks. Second,
developers tend to be conservative in deallocating heap objects,
for fear that doing so will result in dangling pointers or deal-
locating an object multiple times, which could crash the appli-
cation. Third, developers may assume that their code would
not be re-used and hence choose not to de-allocate pointers
at the end of the application’s execution. Finally, developers
often work with tight deadlines and are not giving a priority
to resolving bugs, such as memory leaks, which only produce
intermittent or subtle effects.

Bench- Not Total Leak
mark Allocation Deallocated (%) (Bytes)

ammp 34,764 34,762 99.9% 13,263,552
art 30,488 30,487 99.9% 1,824,544
bzip2 10 10 100% 13,662,920
crafty 40 38 95% 872,824
equake 316,851 316,851 100% 8,190,248
gcc 4,302 1,178 27.4% 2,974,624
gzip 243 4 1.6% 6,600,704
mcf 6 0 0% 0
mesa 66 6 9.1% 17,232
mst 419 419 100% 13,676,552
perlbmk 421 325 77.2% 4,233,160
twolf 9,400 1,407 15% 51,728
vortex 186,436 40,600 21.8% 16,001,384
vpr 1,589 48 3% 69,352

Table 3. Detected memory leak in the benchmarks tested.

In order to evaluate HeapMon’s capability of detecting other
bugs, we inject bugs into selected SPEC 2000 benchmark ap-
plications. We use the data in Table 1 to choose a repre-
sentative application that has few but very large allocations
(mcf), few and small allocations (crafty), many small alloca-
tions (art), and a very high number of allocations (equake). As
mentioned in Section 4, we introduce three types of bugs into
the benchmarks: alloc-bug reduces randomly selected memory
allocation requests by 8 bytes, dealloc-bug deallocates some
randomly selected heap objects, and noinit-bug removes ran-
domly selected initialization writes. We inject multiple bugs
on each run. When a bug is detected, we reverse the impact of
the bug such that it does not crash the application, allowing the
HeapMon to detect other bugs that occur later.

Benchmark alloc-bug dealloc-bug noinit-bug

art 100% (of 20) 100% (of 5) 100% (of 20)
crafty 61% (of 13) 100% (of 4) 100% (of 20)
equake 100% (of 20) 100% (of 4) 100% (of 20)
mcf 100% (of 3) 100% (of 3) 100% (of 20)

Table 4. Bug detection capability of HeapMon, showing how
many number of bugs of each type is injected, and the
percentage of them that are detected.

Table 4 shows the percentage of bugs detected by HeapMon
for each type of injected bugs. HeapMon detected all injected
bugs except five alloc-bugs in crafty. The reason for this is that
the alloc-bugs reduce the allocation size by 8 bytes from heap
objects that are used as string character buffers. These buffers
have a fixed allocated size, but unless they store long strings,
most of the bytes at the end of the allocated region will not be
accessed, at least in the input set that we use. This illustrates
the difficulty of detecting memory bugs because they only oc-
cur with some input combinations that may occur only in pro-
duction environments that stress the application to its limits.
This emphasizes the importance of dynamic bug detection that
has low enough overhead to be used in production environ-
ments.

5.3 HeapMon Characterization

This subsection presents characterization results of the Heap-
Mon helper thread, running on the Cmp+L2shr configuration.
Figure 7 shows HeapMon’s execution time, broken down into
the time it is busy servicing allocation requests (Alloc), deallo-



cation requests (Dealloc), as well as read requests (Read) and
write requests (Write). Each bar is normalized to the applica-
tion’s execution time. Therefore, the height of the entire bar
for each application shows the fraction of time the HeapMon
helper thread is busy servicing requests.

HeapMon Execution Time Breakdown
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Figure 7. Breakdown of the HeapMon’s execution time for
servicing each request type.

The figure shows that for all but two applications, the Heap-
Mon processor is busy for less than 20% of the time. This illus-
trates that, although HeapMon helper thread runs on a separate
CMP processor, it does not occupy the processor all the time. It
can interleave its execution with other jobs, if the system aims
to maximize its throughput. However, it has to remain a high
priority thread because the application’s execution time over-
head is highly dependent on the helper thread’s service time.

For two applications (ammp and mcf), HeapMon helper thread
is busy 65% and 82% of the time, respectively. In mcf, most
of the helper thread’s time is spent on servicing allocation and
deallocation requests, which is why in Figure 6, the execu-
tion time overhead for mcf is still very large even when we use
private L2 caches in CMP+L2prv configuration. Upon closer
examination, it turns out that mcf has allocations that are very
large, which occupy the handler for a long time. Since bulk
state updates are involved, the handler can utilize DMA to ac-
celerate it. In ammp, the time spent in servicing read requests
is large, due to low hit rates of the BRP bits (Figure 8).
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Figure 8. Percentage of BRP bit accesses that hit in L1 or
L2.

Figure 8 shows the percentage of BRP bit accesses that are L1
or L2 cache hits. Since most of the time the BRP bits are not
zero, these hits do not usually result in bug checks. Therefore,
in general, the BRP bits are very effective in filtering/reducing
the number of bug check requests. In all but four applications,
more than 80% of heap reads or writes do not result in bug
check requests to the HeapMon helper thread. This explains
why the helper thread is only busy less than 20% of the time

for those applications (Figure 7). Three out of four applica-
tions that have low BRP hit rates (ammp, art, and mcf) also
have high execution overheads (Figure 6). This is due to the
shared L2 cache contention where the application’s data com-
petes with the helper thread’s data for cache space, produc-
ing undesirable effects where the the helper thread’s state bit
data replaces some of the application’s data. This increases
the application’s data and BRP-bit miss rates, which in turns
increases the helper thread’s occupancy. On the other hand, al-
though crafty suffers from a low BRP bit hit rate, HeapMon’s
execution time remains extremely small. This is due to the fact
that fewer than 0.5% of crafty’s memory accesses are to the
heap region as seen in Table 1.

6 Conclusions
This paper presents HeapMon, a user-level helper thread that
runs on a separate CMP processor and effectively detects mem-
ory bugs, such as reads from uninitialized or unallocated mem-
ory locations, and memory leaks. This new approach does not
require human intervention and has only minor storage and ex-
ecution time overheads. The storage overhead is 3.1% of the
cache size and 6.2% of the allocated heap memory size. Al-
though architectural support for HeapMon is simple, its execu-
tion time overhead is only 8% on average, and less than 26% in
the worst case. Such a low overhead is due to an efficient bug
check filtering mechanism, using a small L2 cache to reduce
contention between the application and the helper, and using
DMA for bulk state updates.
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