
Appears in the 13th Workshop on Interaction between Compilers and Computer Architecture (Interact-13)
held in conjunction with 15th IEEE International Symposium on High-Performance Computer Architecture, February 2009.

Coherence Miss Classification for Performance Debugging in Multi-Core Processors

Guru Venkataramani Christopher J. Hughes Sanjeev Kumar Milos Prvulovic
Georgia Tech Intel Corp Facebook Inc Georgia Tech

guru@cc.gatech.edu

Abstract

Multi-core processors offer large performance potential
for parallel applications, but writing these applications is no-
toriously difficult. Tuning a parallel application to achieve
scalability, referred to as performance debugging, is often
more challenging for programmers than conventional debug-
ging for correctness. Parallel programs have several per-
formance related issues that are not seen in sequential pro-
grams. In particular, increased cache misses triggered by data
sharing (coherence misses) are a challenge for programmers.
Data sharing misses can stem from true or false sharing and
the solutions for the two types of misses are quite different.
Therefore, to minimize coherence misses, it is not just suffi-
cient for programmers to only identify the source of the extra
misses. They should also have information about the type of
coherence misses that are hurting performance.

In this paper, we propose a programmer-centric defini-
tion of false sharing misses for use in performance debug-
ging. We describe our algorithm to classify coherence misses
based on this definition, and explore a practical and low cost
solution that keeps no state at all. We find that the low
cost solution can suffer from considerable inaccuracy that
might mislead programmers in their performance debugging
efforts.

1. Introduction

As architects design multi-core and many-core architec-
tures, programmers take advantage of the available resources
and develop applications with better performance. The end-
users are enticed by the newer applications and invest in buy-
ing new hardware. However, if the programmers cannot ef-
fectively utilize multiple cores on the chip, they fail to deliver
newer and scalable applications to the end-user. As a result,
it is important for architects to focus on techniques that will
aid programmers in their performance debugging efforts.

To a certain degree, hardware manufacturers already un-
derstand that making processors with increased raw per-
formance is not enough. They want customers to see a
real performance difference when running their applications.
This is not a trivial task for application programmers and
therefore, many hardware manufacturers currently provide

support through hardware performance counters [1]. Per-
formance counters help programmers to find certain com-
mon performance bottlenecks such as branch mispredictions,
cache misses, etc. It is significantly harder to realize the
performance potential of multi-core and many-core proces-
sors and additional support will be needed for performance
debugging in such processors. Ideally, this support would
include performance counters for additional multi-core and
many-core events, and hardware to detect those events and
provide feedback to programmers, dynamic optimizers or
compilers.

Hardware support for performance debugging brings sig-
nificant value given the wide variety of software-only per-
formance debugging tools available. Tools that interact with
the performance counters are considered very useful because
they can collect information on a variety of performance lim-
iters and present it in a usable way for programmers. They
are also very fast and accurate. In contrast, software-only
tools typically measure a small set of events since they must
have reasonable trade off between execution time overhead
and the amount of information to be collected. Such tools are
generally slow even when only measuring a small number of
events (e.g., MemSpy [12] incurs up to 57.9x slowdown over
native execution and SM-prof [4] reports up to 3000x slow-
down depending on the amount of shared data references).
Above all, software tools are not reliably accurate because
in many cases they tend to perturb the program execution
with the program’s natural execution (e.g., via software in-
strumentation). Building a performance debugging tool that
is fast, accurate, and that can still measure a number of events
of interest is extremely valuable. Therefore, we explore addi-
tional hardware support that can significantly aid multi-core
and many-core performance debugging.

1.1. Coherence Misses

Scalability of an application can be limited by the amount
of parallelism available in the underlying algorithm or by the
hardware that executes the application. Some of the impor-
tant hardware-related scaling limiters are those that increase
cache miss rates when using multiple threads. To eliminate or
alleviate these cache misses, the application developer must
identify the underlying cause of these misses to make neces-
sary modifications to the code. In order to do so, information

on the type of miss is necessary because different fixes are ap-
plied to the code for different types of cache misses. Misses
caused by true and false sharing, collectively known as co-
herence misses, are especially problematic (See Section 2).
The two types of coherence misses often have similar symp-
toms, but the methods for alleviating them are very different.
False sharing is often easily addressed by separating affected
data in memory, e.g. by adding padding. True sharing misses
are typically reduced only through more extensive changes,
such as changes to assignment of tasks to threads or using
a different parallel algorithm. Both types differ from other
types of cache misses (e.g., capacity and conflict) that are
typically addressed by trying to fit data into the cache more
effectively by managing the working set.

Coherence misses do not occur in uniprocessors, so, many
programmers are not familiar with them. To understand the
cause of these misses the developer must have a working
knowledge and understanding of the coherence protocol and
how it interacts with caches. Without suitable tools, pro-
grammers need to guess whether an increase in misses is
caused by coherence and whether such misses are caused by
true or false sharing. In our experience, false sharing often
surprises programmers—without sufficient knowledge of the
underlying hardware, the presence of these misses is mys-
terious and even frustrating. Instead, profiling infrastructure
should detect true and false sharing misses, attribute it to par-
ticular points in the code, and report them to the program-
mer. With such an infrastructure, the developer can focus on
solving the performance problem rather than figuring out the
hardware mechanisms that cause it.

1.2. Our Contributions

This paper makes the following contributions:

1. We provide several real-world examples of false sharing
and illustrate the performance impact on real applica-
tions.

2. We present a programmer-centric definition of false
sharing misses based on definition provided by Dubois
et al. [7] and develop an oracle algorithm (o-FSD) to
detect false sharing based on this definition.

3. We provide two different hardware implementations for
false sharing detection with very different cost and ac-
curacy tradeoffs. We evaluate these implementations
against our o-FSD algorithm using Splash-2 [18] and
PARSEC [3] benchmarks.

2. False Sharing and its implications

In this section, we explore a programmer-centric defini-
tion for false sharing and true sharing misses and then show
several real-world examples where false sharing misses oc-
cur and how removing these misses improves scalability.

2.1. Definition of False Sharing

In cache coherent CMPs, data sharing between threads
primarily manifests itself as coherence misses which can fur-
ther be classified as true sharing and false sharing misses.

True sharing misses are a consequence of actual data shar-
ing amongst cores and is intuitive to most programmers—
e.g., a consumer (reader) of the data must suffer a cache miss
to obtain the updated version of the data from the producer
(writer). The scalability issues stemming from true sharing
misses can typically be addressed only by changing the algo-
rithm, distribution of the work among cores, or synchroniza-
tion and timing.

In contrast, false sharing misses are an artifact of data
placement and a cache block holding multiple data items.
Scalability issues arising from false sharing are often rel-
atively easy to alleviate by changing alignment or adding
padding between affected data items. A false sharing miss
occurs if a block contains two data items (A and B), core M
accesses item A, another core N uses item B and invalidates
the block from M’s cache, and then core M accesses item A
again. The resulting cache miss is a false sharing miss be-
cause that access would be a cache hit if A and B were in
different cache blocks. In fact, the definition of false sharing
can be made more precise. Specifically, if after the coherence
miss on an item A, core M accesses item B before the block
is evicted or invalidated again, the miss is in fact a true shar-
ing miss. As shown in Figure 1, in this situation, the cache
miss is not avoided by placing A and B in separate blocks,
and hence, the miss on A is not a false sharing miss. This
definition of false sharing is based on Dubois et al. [7], and
it differs from earlier definitions [8, 17] in that it attempts
to classify coherence misses according to whether they are
“necessary” (true sharing) or “unnecessary” (false sharing).
We adopt this definition as a baseline because it more accu-
rately captures whether or not the miss can be eliminated (not
just traded for another miss) by separating data items into dif-
ferent blocks which, in the end, is what really matters for the
programmer’s performance debugging efforts.

Rd A

Rd A

Wr B

Wr A

Rd B

inv

inv

(miss)

(hit)

If A, B in the same block

Core M Core N

Rd A

Rd A

Wr B

Wr A

Rd B

(hit)

(miss)

If A, B in different blocks

Core M Core N

Miss
not avoided

Figure 1. The miss on A is a not a false sharing miss — it is

only replaced by another miss if A and B are placed in separate

blocks.

2

/ / Each t h r e a d p r o c e s s e s i t s own
/ / sequence o f i n p u t e l e m e n t s
i n t p a r t i a l r e s u l t [NUMTHREADS] ;
/ / Th i s i s t h e work done i n p a r a l l e l
. . .
i n t i n p u t e l e m e n t = . . . ;
p a r t i a l r e s u l t [t h r e a d i d] + = i n p u t e l e m e n t ;
. . .

Figure 2. A parallel reduction showing false sharing on an array

of counters (one-per-thread). The merging of partial results is

omitted for brevity.

/ / Count o c c u r r e n c e s o f v a l u e s i n p a r a l l e l
/ / Each t h r e a d p r o c e s s e s i t s own range o f
/ / i n p u t e lemen ts , upd a t i ng t h e shared
/ / occu r rence coun t f o r each e lemen t ’ s v a l u e

d e f i n e MAXIMUM 255
i n t c o u n t e r a r r a y [MAXIMUM+ 1] ;
/ / Th i s i s t h e work done i n p a r a l l e l
. . .
i n t i n p u t e l e m e n t = . . . ;

c o u n t e r a r r a y [i n p u t e l e m e n t]++ ;
. . .

Figure 3. A parallel histogram computation illustrating false shar-

ing on an indirectly accessed array. Locking of counter array

elements is omitted for brevity.

2.2. Real-World examples of False Sharing limiting Scal-
ability

We provide examples, taken from code written by expe-
rienced programmers, to illustrate some common situations
where false sharing occurs and its sometimes devastating im-
pact on parallel scalability.

Our first example involves an array of private counters or
accumulators (one per-thread), which is often used when par-
allelizing reductions as shown in Figure 2. There is no true
sharing in this code because each thread is reading and writ-
ing a unique array element. False sharing occurs when two
threads’ counters lie in the same cache block. This kind of
code is common in web search, fluid simulation, and human
body tracking applications. A common fix is to add padding
around each counter. We use a real-world example of a loop
in OneNewtonStepTowardSteadyStateCG Helper II()
function in facesim from the PARSEC-1.0 benchmark suite.
The benchmark authors spent multiple days identifying false
sharing from this loop as the primary source of performance
problems. We ran the facesim benchmark with the native
input on an 8-core Intel Xeon machine and observed that
without padding, false sharing limits the benchmark’s
parallel scaling to 4x. After adding padding, the benchmark
achieves linear scaling (8x). A profiling tool that automati-
cally identifies and reports false sharing misses would have
greatly helped the programmer.

/ / The t a s k o f each t h r e a d i s t o upda te
/ / one row o f t h e g r i d
. . .
f o r (i = (i t e r a t i o n\%2); i < wid th ; i + = 2) {

f l o a t v a l = g r i d [t a s k i d] [i] +
g r i d [t a s k i d] [i −1] +
g r i d [t a s k i d] [i +1] +
g r i d [t a s k i d −1][i] +
g r i d [t a s k i d +1] [i] ;

g r i d [t a s k i d] [i] = v a l / 5 . 0 ;
}
. . .

Figure 4. A red-black Gauss-Seidel-style array update showing

false sharing on a finely partitioned array.

Our second example involves an indirectly accessed data
array, as shown in Figure 3 and often occurs in histogram
computation, used in image processing applications and in
some implementations of radix sort. The pattern of indirec-
tions is input-dependent, so the programmer and compiler
cannot predetermine how many accesses will occur to each
element, and which threads will perform them. This exam-
ple involves both true and false sharing. True sharing occurs
when two threads update the same element. False sharing
occurs when two threads access two different elements in the
same cache block, which occurs much more frequently. For
example, with 64-byte blocks and 4-byte elements, a block
contains 16 elements; With a completely random access pat-
tern, false sharing would occur 15 times more likely than true
sharing. A common fix is to either add padding around each
element or use privatization (use a separate array for each
thread and then merge partial results at the end). Without pri-
vatization, a histogram benchmark from a real-world image
processing application achieves only a 2x parallel speedup
when run on a 16-core Intel Xeon machine. With privatiza-
tion, the benchmark achieves near-linear scalability.

Our final example of false sharing involves finely par-
titioned arrays, such as one might see in red-black Gauss-
Seidel computation as shown in Figure 4. In many applica-
tions, a data array is partitioned such that each partition will
only be written to by a single thread. However, when up-
dating elements around the boundary of a partition, a thread
sometimes needs to read data across the boundary (i.e., from
another partition). In our example, synchronization on each
element is avoided by treating the data as a checkerboard,
with alternating red and black elements. Even-numbered
passes update red cells, and odd-numbered passes update
black cells. An update involves reading the Manhattan-
adjacent neighbors, which are guaranteed to be a different
color than the cell being updated. Thus, even if those neigh-
bors belong to another partition, they will not be updated dur-
ing the current pass.

Both true and false sharing occurs in this example. The
first time a thread accesses a cache block across a partition

3

boundary, it is reading data written by another thread dur-
ing the previous pass. Thus, it incurs a true sharing miss.
However, if that other thread is actively updating elements
in the same cache block, this will trigger additional misses
that are all due to false sharing. This situation is most likely
when partitions are small; for example, if a parallel task is
to update one row, and the tasks are distributed to threads
round-robin. This kind of computation is common in sci-
entific codes (i.e., applications that involve solving systems
of differential equations). We ran an early real-world imple-
mentation of red-black Gauss-Seidel with the above task dis-
tribution on an 8-core Intel Xeon processor. Parallel scaling
is limited to 3x. Padding around each cell can eliminate false
sharing, but with significant loss in spacial locality. A better
solution is to group multiple rows together to be processed
by the same thread, or to use a two separate arrays, one for
red and one for black cells. In our case, using separate arrays
and grouping rows improved the scaling to almost 6x.

3. Coherence Miss Classification

In this section, we first describe the relatively simple
mechanism for distinguishing coherence misses from non-
coherence misses, then discuss an oracle False Sharing De-
tector (o-FSD) mechanism that further classifies coherence
misses into those caused by false sharing and those caused
by true sharing. Finally, we show why o-FSD is impractical
to implement in real hardware.

3.1. Identification of Coherence Misses

Coherence misses can be distinguished from other (cold,
coherence, or conflict) misses by checking if the cache block
is already present in the cache. For non-coherence misses,
the block either never was in the cache (cold miss) or was
replaced by another block (capacity or conflict miss). In con-
trast, a coherence miss occurs when the block wasinvali-
datedor downgradedto allow another core to cache and ac-
cess that block. Coherence misses are easily detected with a
minor modification to the existing cache lookup procedure.
A cache miss is detected as a coherence miss if a block does
have a matching tag but does not have a valid state. Con-
versely, if no block with a matching tag is found, we have a
non-coherence miss.

This relatively simple mechanism to detect coherence
misses can err in two ways. First, on power-up or after a
page fault, the state of a block’s state is set to invalid, but the
tag need not be initialized. This could sometimes result in a
tag accidentally matching to that of a requested block. How-
ever, this would be quite rare and random enough that they
do not attribute in significant numbers to any particular piece
of code. Second, cache replacement policy could prioritize
replacement of invalidated blocks, which can destroy the ev-
idence of a coherence miss. For highly contended blocks
involved in sharing patterns, there is little time for the block
to be replaced between the invalidation and the subsequent

miss, so replacement priority is unlikely to obscure enough
coherence misses to hide a scalability problem. It should also
be noted that the inaccuracy caused by replacement priority
is very costly to avoid: it requires the cache to track the tags
of blocks thatwould bein the cache were it not for replace-
ment priority, e.g. using a duplicate set of tags.

3.2. Oracle False Sharing Detector (o-FSD)

Using the definitions of false and true sharing from Sec-
tion 2, coherence misses can be classified into false sharing
misses and true sharing misses as described in our algorithm
shown in Figure 5. Coherence miss classification involves
two parts: 1) From the time a cache block is invalidated or
downgraded in a core’s cache until the time when coherence
miss happens, we need information about which words were
read from or written to by other cores. 2) From the time of co-
herence miss until when the block is invalidated/downgrad-
ed/replaced again, we need to determine whether an access
to any word in the block overlaps with an access by another
core. True sharing is detected when a memory word is be-
ing produced and consumed by two different cores. If we do
not detect any true sharing, then the coherence miss is a false
sharing miss.

A read access is a true sharing access if the word’s last
write was not done by this core and if this core has not al-
ready read the word since it was last written by another core.
A write access is a true sharing access if the word’s last write
was not done by this core or if it was read by another core
since it was last written. A coherence miss is classified as
a true sharing miss if any access by a thread, starting with
the one that causes the miss and ending with the subsequent
replacement or invalidation of the block, is a true-sharing ac-
cess. Conversely, the miss is categorized as a false sharing
miss if no true sharing access occurs in this interval.

For implementing o-FSD, there are two major data struc-
tures: a)global state maintained for every word that
tracks last writer core and subsequent readers until the next
write. This tracks the reads and writes performed by all the
cores in a central structure. Note that, tracking granularity
is a matter of cost-performance tradeoff. In our experiments,
we didn’t observe significant coherence activity on sub-word
accesses. Hence we chose word-granularity for our algo-
rithm. We note that byte-granularity can be achieved with
the same algorithm with relatively straightforward modifica-
tions. b)local state that is maintained for every private
cache block stores the following information: 1) Two bit vec-
tors which record reads and writes performed by other cores
to the cache block prior to the coherence miss being classi-
fied. 2) Program Counter at the time of coherence miss for
attribution to the program code that caused the miss. 3) Two
flags, one to track whether the cache block suffered coher-
ence miss and the other to track whether the all the accesses
to the cache block are false sharing accesses. 4) Two bit vec-
tors that track read and write accesses by local core to update

4

Rd x

Wr y

Wr x

down

(miss)

Core A Core B

Wr x

x and y are in the same cache block

inv

Core C Core D

inv

Rd y

down

inv

inv

Figure 6. Example of multiple producers and multiple consumers

for a cache block.

Rd X

Rd X

Wr Y

Rd Z

inv

(miss)

(hit, true sharing detected)

Core A Core B

Wr Z

Replaced (no longer in any cache)

Figure 7. Accurate classification requires us to keep access in-

formation even for blocks that are no longer in any cache.

the global state at the time of cache block invalidation/down-
grade/replacement. This is needed for other cores to perform
coherence miss classification correctly.

Dubois et al. [7] have proposed an algorithm for detecting
false sharing misses. In their scheme, the core producing the
value notifies all the other cores (potential consumers) that a
new value has been written to a word. When a core consumes
that new value, it sets a local bit that denotes that the value
has been read. When the producer suffers a coherence miss, it
checks if any other core consumed the last generated value by
checking the local caches of other cores that currently have a
valid copy of the cache block.

Our o-FSD algorithm has two key differences with the al-
gorithm proposed by Dubois et al. [7]. First, o-FSD classifies
coherence misses both on the producer and consumer side
whereas Dubois’ scheme does coherence miss classification
only on the producer side. In asingle producer-multiple con-
sumerpattern (See Gauss-Siedel example in Section 2.2),
coherence misses are highly likely to happen in multiple
cores (producer and the respective consumers). Dubois’
scheme could underestimate the effect of false sharing in
such situations and the programmer might consequently ig-
nore or oversee the lines of code involved in such patterns be-
cause of lack of understanding of its impact. Second, Dubois’
scheme checks only for read-sharers with valid blocks in
their caches to gather information for determining the type
of coherence miss on the writer side. This is problematic es-
pecially when there are multiple producers and multiple con-
sumers sharing a cache block (See histogram example Sec-
tion 2.2). Figure 6 shows an example where four cores
A, B, C and D share a cache block. Core B consumes the

value of x produced by core A and later on, core D consumes
the value of y produced by core C. When core A writes to
x again, it suffers coherence miss. Since Dubois’ scheme
would only check the information in core D which currently
holds a ’valid’ copy of the block, it will detect that x had
not been consumed by core D and would declare false shar-
ing. However, our o-FSD algorithm would have information
about ’read x by core B’ in its global state and hence, will
correctly detect true sharing.

Additionally, we maintain the local state that records reads
and writes by local core and update the global state only on
replacements and invalidations. Dubois’ scheme directly up-
dates its global state on all accesses which is suitable for sim-
ulators but cannot be incorporated in real hardware.

3.3. Suitability of o-FSD for On-Line Miss Classification

There are a number of problems that make the oracle
False Sharing Detector unsuitable for on-line implementa-
tion needed to drive hardware performance counters or other
hardware performance debugging and attribution mecha-
nisms. The most significant of these problems are:

1. The o-FSD has a high implementation cost which does
not scale well. Theper-wordglobal state for the o-
FSD structure shown in Figure 5 isP + log2P where P
is the number of cores. With 4 cores and 32-bit words
this state represents a 19% storage overhead, and with
32 cores the storage overhead is already 116%.

2. The state needed for the o-FSD can be very large (re-
quires keeping state for all words ever touched). Al-
though, it may be tempting to not keep track state for a
word that is no longer present in any core’s cache. How-
ever, information about currently evicted blocks from
cache might be relevant for classifying future coherence
misses to these blocks. For example, to accurately clas-
sify the true-sharing miss to data item X on Core A in
Figure 7, we must know that the subsequently accessed
data item Z has last been written by Core B, even though
the write on Z occurred long ago and the block was
evicted from cache at some point between that write on
Core B and then later read on Core A.

3. Changes are needed to the underlying cache coherence
protocol and extra network traffic is required to update
the o-FSD state and/or propagate it to the cores that
need to classify their coherence misses. In particular,
global state information for a memory word should be
kept in a central repository. As seen in Figure 5, the co-
herence protocol needs to be modified to trigger reads
and writes of the global state information at appropriate
times. To enforce that, the central repository needs to
ensure updates sent by the cores replacing/invalidating/-
downgrading the cache block are reflected in the global
state before the core suffering the coherence miss reads

5

/ / P= t o t a l number o f co res , W=number o f words i n a cache b lock
/ / A= c u r r e n t d a t a add ress , B=cache b lock h o l d i n g a d d r e s s A
/ / c= c u r r e n t co re

g l o b a l s t a t e f o r eve ry word i n memory :
G l o b a l W r i t e r I D / / Las t W r i t e r ID (l e n g t h = log (P) b i t s)
G l o b a l R e a d e r v e c t o r / / Readers s i n c e l a s t w r i t e (l e n g t h =P b i t s)

l o c a l s t a t e f o r each p r i v a t e cache b lock :
W r i t e v e c t o r o f o t h e r s / / Words mod i f i ed by o t h e r c o r e s (l e n g t h =W b i t s)
R e a d v e c t o r o f o t h e r s / / Words read by o t h e r c o r e s (l e n g t h =W b i t s)
L o c a l W r i t e v e c t o r / / Words mod i f i ed by t h i s co re (l e n g t h =W b i t s)
L o c a l R e a d v e c t o r / / Words read by t h i s co re (l e n g t h =W b i t s)
Miss PC / / Program Counter c a u s i n g cohe rence miss
C o h e r e n c eM i s s f l a g / / Assumed f a l s e by d e f a u l t ; Se t on cohe rence miss
F a l s e S h a r i n g f l a g / / Assumed t r u e by d e f a u l t ; Rese t on True s h a r i n g d e t e c t i o n

MAIN
ON Wr i te a c c e s s t o A DO

IF (cache miss AND B i s p r e s e n t i n INVALID or READONLY s t a t e) THEN
CALL SUB r e c o r d c o h e r e n c em i s s ;

IF (C o h e r e n c eM i s s f l a g = = t r u e AND F a l s e S h a r i n g f l a g = = t r u e) THEN
/ / True s h a r i n g i f a n o t h e r co re had read (consumer) / w r i t t e n (p ro du ce r) t o t h i s word
IF (W r i t e v e c t o r o f o t h e r s [A] = = 1 OR R e a dv e c t o r o f o t h e r s [A] = = 1) THEN

F a l s e S h a r i n g F l a g = f a l s e ;
L o c a l W r i t e v e c t o r [A] = 1 ;
L o c a l R e a d v e c t o r [A] = 0 ;

ON Read a c c e s s t o A DO
IF (cache miss AND B i s p r e s e n t i n INVALID s t a t e) THEN

CALL SUB r e c o r d c o h e r e n c em i s s ;
IF (C o h e r e n c eM i s s f l a g = = t r u e AND F a l s e S h a r i n g f l a g = = t r u e) THEN

/ / True s h a r i n g i f a n o t h e r co re had w r i t t e n (p ro du ce r) t o t h i s word
IF (W r i t e v e c t o r o f o t h e r s [A] = = 1) THEN F a l s eS h a r i n g F l a g = f a l s e ;

L o c a l R e a d v e c t o r [A] = 1 ;

ON I n v a l i d a t i o n / Downgrade / Replacement r e q u e s t f o r B DO
FOR each word a d d r e s s K i n B DO

IF (L o c a l W r i t e v e c t o r [K] = = 1) THEN
G l o b a l W r i t e r I D = c ;
G l o b a l R e a d e r v e c t o r ={0} ;

IF (L o c a l R e a d v e c t o r [K] = = 1) THEN
G l o b a l R e a d e r v e c t o r [c] = 1 ;

DONE
IF (C o h e r e n c eM i s s f l a g = = t r u e) THEN

Record MissPC and F a l s eS h a r i n g f l a g ; / / Output t o P r o f i l e r
END MAIN

SUB r e c o r d c o h e r e n c em i s s
WAIT ON c u r r e n t s h a r e r s o f B t o upda te G l o b a lW r i t e r I D and G l o b a l R e a d e r v e c t o r
Se t C o h e r e n c eM i s s f l a g t o t r u e ;
Se t F a l s e S h a r i n g f l a g t o t r u e ; / / Rese t on o b s e r v i n g f i r s t t r u e s h a r i n g on t h e b lock
Record t h e c u r r e n t PC i n t o MissPC ;
W r i t e v e c t o r o f o t h e r s = R e a dv e c t o r o f o t h e r s = {0} ;
FOR each word a d d r e s s K i n B DO

/ / Wr i t es c l e a r G l o b a lR e a d e r v e c t o r . G l o b a l R e a d e r v e c t o r [c] = 1 d e n o t e s NO i n t e r v e n i n g w r i t e
IF (G l o b a l W r i t e r I D != c AND G l o b a l R e a d e r v e c t o r [c] ! = 1) THEN W r i t e v e c t o r o f o t h e r s [K] = 1 ;
IF (a b i t o t h e r t han c i s s e t i n G l o b a lR e a d e r v e c t o r) THEN R e a dv e c t o r o f o t h e r s [K] = 1 ;

DONE
END SUB

Figure 5. False Sharing Detection Algorithm (o-FSD).

the information from the central repository and updates
its local state to perform coherence miss classification.

4. A coherence miss may be classified as a true or false
sharing miss many cycles after the instruction caus-
ing the miss has retired from the core’s pipeline (Sec-
tion 3.2). This delay in classification makes it more

6

difficult and costly to attribute false and true sharing
misses to particular instructions, especially if perfor-
mance counters support precise exceptions for events,
such as PEBS (Precise Event Based Sampling) mecha-
nism available in recent Intel processors [2]. For accu-
rate attribution, the PC of the instruction that caused a
coherence miss must be kept until the miss is eventually
classified. This increases the cost of the classification
mechanism, and also makes it more difficult for pro-
filers to extract other information about the miss (e.g.,
what was the data address or value) [2].

To provide a realistically implementable scheme for on-
line classification of coherence misses, we need to overcome
some (preferably all) of the above problems, while sacrificing
as little classification accuracy as possible. When choosing
which aspects of classification accuracy to sacrifice, we keep
in mind the primary purpose of our classification mechanism:
giving the programmer an idea of how much performance is
affected by true and false sharing cache misses, and pinpoint-
ing the instructions (and from there, lines of code) that suf-
fer most of these misses. Armed with this, the programmer
should be able to make an informed decision about how best
to reduce the performance impact of these misses.

4. Implementation of False Sharing Detectors

In this section, we explore two different hardware imple-
mentations for False Sharing Detectors. First, we describe
how o-FSD can be realized in hardware with reduced global
state. Then, we show a practical mechanism that can classify
coherence misses at almost zero cost and discuss the draw-
backs associated with such a scheme. Finally, we briefly talk
about issues relating to coherence miss classification for non-
primary caches.

4.1. Hardware implementation of o-FSD (HW1)

Section 3.3 enumerated a number of issues that limit o-
FSD from being implemented in real machines. The key
to overcoming these problems is to reduce the amounts of
both global and local state. In particular, o-FSD is very ex-
pensive because it maintains the global state for the entire
memory throughout the program execution. The amount of
global state grows in proportion to the number of cores and
the memory overhead increases as a percentage of data mem-
ory with the number of cores. This lack of scalability makes
this solution impractical for many-core systems.

In order to reduce the amount of global state, we maintain
information only for cache blocks in the on-die caches. This
can lead to misclassification of coherence misses to blocks
that are evicted from all of the on-die caches between an in-
validation/downgrade and the coherence miss. Evictions of
such lines are highly likely to be a small fraction of the evic-
tions, and thus this event should be quite uncommon. The
state can be kept with the lowest level shared cache, for sys-

tems that have one. For chips with only private caches, and
a separate mechanism for maintaining coherence such as a
directory, the state can be kept with the coherence state.

This implementation still preserves the local state needed
for every cache block. Also, the coherence protocol should
be changed to carry the extra information to update the global
state. However, since global state updates happen on cache
block invalidations and coherence misses, the information to
be relayed between local cache and the shared cache can be
piggybacked on existing coherence messages. Further op-
timizations such as sampling a specific set of cache blocks
or incorporating machine learning techniques are possible.
Such tools might reduce cost and still maintain an acceptable
accuracy for performance debugging. However, in this paper,
we do not study such optimizations.

4.2. Local False Sharing Detector (HW2)

A second False Sharing Detector implementationinfers
false and true sharing locally by comparing the stale value of
the data address suffering the coherence miss with the incom-
ing value. If the data value has changed, then true sharing
is detected because another core has produced a new value
that this core currently consumes. Otherwise, the coherence
miss is attributed to false sharing. This design does not main-
tain any state and requires only a trivial change in the cache
controller to perform data comparison. However, it has the
potential to overestimate false sharing misses in a program
because early classification would ignore true sharing access
on a block that might happen much after the point of coher-
ence miss (as discussed in Section 2.1). This technique of
detecting false sharing through data comparison was used by
Coherence Decoupling [10] to save cache access latency due
to false sharing misses.

Apart from the potential of overestimation, this imple-
mentation could misclassify in two situations: 1) Silent
stores [11] do not change the data value and hence, it is im-
possible to detect true sharing in such situations. However,
classifying silent stores itself is a murky area. Whether they
contribute to true or false sharing depends on specific situ-
ations. For example, lock variables have an initial value of
zero. A core grabs a lock by setting it to one. Later when the
lock is freed, it deposits a value of zero back. An external
core does not see change in lock value and effectively sees a
value of zero before and after the core operated on the lock.
Even though lock sharing is a form of true sharing, detect-
ing false sharing through data comparison would miss this
effect. At the same time, other silent writes that simply do
not communicate any new value can be eliminated through
algorithmic changes. 2) While readers would be able to de-
tect change in data value due to an external write, writers do
not detect true sharing as readers do not modify data. As long
as coherence misses are classified on the consumer side cor-
rectly, the programmer might still get a sufficient picture of
false sharing effects in the program. Note that, our first hard-

7

ware implementation (HW1) does not have the above prob-
lems, as it tracks the reader and writer information directly.

4.3. Non-primary Private Caches

Local state is relatively easy to update and check in a pri-
mary (L1) cache where all memory accesses are visible to
the cache controller. In lower-level caches, only cache line
addresses are visible. As a result, in systems where multi-
ple levels of cache may be involved in coherence (e.g., with
private L2 caches), information from a private non-primary
(L2) cache should be passed to the primary cache (L1) when
it suffers a cache miss. The L1 cache then keeps track of the
flags that track coherence miss and false sharing for the L2
cache and forwards the value of these flags back to L2 when
the block is replaced from the L1 cache.

5 Related Work

True and false sharing misses have been defined by Torrel-
las et al. [17], Eggers et al. [8], and Dubois et al. [7]. Foglia
et al. [9] proposed an algorithm for coherence miss classifi-
cation by maintaining false sharing transaction records on the
writer side to detect keep track of readers. Each of them also
describe an off-line classification algorithm. In contrast to
these schemes and definitions, the mechanisms we describe
in this paper are designed to be implemented in real hardware
for integration with existing on-line performance debugging
infrastructures. Tools such as MemSpy [12], SIGMA [6] and
SM-prof [4] are simulation-based performance debuggers to
study memory bottlenecks.

Coherence Decoupling [10] uses local data comparison to
detect false sharing. It speculatively reads values from the
invalid cache lines to hide latency of a cache miss caused by
false sharing. It then uses the incoming (coherent) data val-
ues to verify successful value speculation. If the values differ
(true sharing of data between the cores), recovery action is
triggered to recover from misspeculation.

Numerous research proposals have been made for improv-
ing the performance counter infrastructure [16], attribution of
performance-related events to particular instructions [5], and
for sampling and processing of profiling data [2, 13, 14, 19].
Our cache miss classification mechanisms are synergistic
with improvements in performance counters, sampling, and
profiling infrastructure. Our mechanisms provide on-line
identification of specific types of cache misses, and this iden-
tification can be used to drive performance counters, at-
tributed to particular instructions, and processed further to
gain more insight into program behavior and performance.
The better the profiling infrastructure, the more beneficial
the results of our classification are to the programmer. Con-
versely, our scheme enhances the value of a profiling infras-
tructure by providing additional event types that can be pro-
filed.

Benchmark Input Benchmark Input
Barnes 16K Cholesky tk29.0
FFT 64K FMM 16K
LU 512x512 Ocean 258x258
Radiosity -room Radix 256K
Raytrace car Volrend head
Water-sp 512 Water-n2 512

Table 1. Splash-2 benchmarks and their inputs.

Benchmark Input
Blackscholes 16k options
Bodytrack 4 cameras, 2 frames, 2000 particles, 5 layers
Facesim 80598 particles, 1 frame
Fluidanimate 100000 particles, 5 frames
Swaptions 32 swaptions, 10000 simulations

Table 2. PARSEC benchmarks and inputs.

6. Evaluation Setup

We evaluate o-FSD and our hardware implementations us-
ing SESC [15], a cycle-accurate execution-driven simulator.
The configuration we model is a 64-core chip multiproces-
sor. Each core is a 2.93GHz, four-issue, out-of-order proces-
sor with a 32KB, 4-way set-associative private L1 cache and
a 256KB, 16-way set-associative private L2 cache. All cores
share an 8MB, 32-way L3 cache, and the MESI protocol is
used to keep L2 caches coherent. The block size is 64 bytes
in all caches.

We use two sets of benchmarks for our evaluation: the
Splash-2 benchmark suite [18] (Table 1) and a subset of
benchmarks from the PARSEC-1.0 [3] benchmark suite (Ta-
ble 2). Both benchmark suites are highly scalable and thor-
oughly tuned. Therefore, our experiments show the accuracy
of our hardware mechanisms with respect to o-FSD in these
applications, but we do not expect to find actual scalability
problems. We simultaneously perform attribution to individ-
ual program counters to measure how many true or false shar-
ing misses were contributed by a particular static instruction.
This enables us to achieve deeper insight into whether the
top set of offender instructions in a particular implementa-
tion match with the top offender instructions reported by o-
FSD. It helps determine whether the programmer would still
get a meaningful picture about false sharing patterns in the
program.

We note that performance overheads could arise out of
two scenarios: 1) when primary level cache needs to update
its local read/write vectors for every access, there is a 0.41%
additional latency for 32 KB L1 caches used in our exper-
iments and 2) when the shared bus becomes saturated with
extra traffic needed for reading and updating information in
the central repository or global state. We did not find any
instances of bus saturation in our experiments. All other la-
tencies for local state updates can be hidden by looking up
state in parallel with data accesses and/or updating state af-
ter data access completes. Therefore, we do not perform any
latency related experiments in our evaluation.

8

7. Evaluation

In this section, we examine the classification accuracy of
our hardware implementations with respect to o-FSD. We be-
gin by examining HW1, which is more accurate (with respect
to o-FSD) and expensive practical scheme that maintains
global and local states for all cache blocks. Then, we com-
pare HW2 against o-FSD that detects false sharing misses
locally through data comparison and examine how much ac-
curacy is offered by this scheme.

To examine how the approximations in hardware imple-
mentations affect their accuracy, we measure the percentage
of coherence misses that are correctly classified by the par-
ticular scheme. We refer to this metric simply as ’accuracy’.

Figure 8 shows the accuracy results for Splash-2 and
PARSEC benchmarks respectively. Each benchmark is eval-
uated for our two different hardware implementations. The
left bar shows the accuracy results for HW1 and the right bar
shows the accuracy results for HW2 scheme.

HW1 achieves perfect accuracy in all of our benchmarks
expect ocean where a small percentage (<1%) of coherence
miss classifications disagree with o-FSD. This inaccuracy re-
sults out of loss of global state that happens over very long
time intervals.

HW2 offers relatively good accuracy in some benchmarks
(fft, lu, ocean, blackscholes) but performs poorly in other
benchmarks with a minimum accuracy of 35%(radiosity).
Even for benchmarks where accuracy is lower, we find that
top ten static instructions seen as causing false sharing misses
by HW2 are similar to the top ten static instructions seen
by o-FSD, although they differ significantly in the number
of false sharing misses reported for the corresponding of-
fenders. A large percentage of inaccuracy observed in HW2
comes from not adopting programmer-centric definition of
false sharing as described in Section 2.1. HW2 performs
classification at the time of coherence miss.

Additionally, write misses in Radix, and to a lesser extent
Barnes and FMM are misclassified by HW2 due to lack of in-
formation about true sharing reads performed by other cores
(See Section 4.2). Hence, the writer cores incorrectly iden-
tify such misses as false sharing misses. Even with this lim-
itation, HW2 classifies writes correctly in many applications
mainly because a core that reads from a shared variable of-
ten writes to it as well, allowing other writers to identify true
sharing between their own and other’s writes even though
other’s reads are unknown. In Radix, however, most values
are read by a thread without being updated, so when a write
does occur and causes a coherence (upgrade) miss, that miss
is mistakenly classified as a false sharing miss. The same
behavior occurs, albeit less frequently, in Barnes, and FMM.
However, our results for all benchmarks (including Radix,
Barnes, and FMM) show that read misses tend to be a dom-
inant form of coherence misses. For example, in Radix it is
clear that the dominant problem is false sharing read misses

so the misclassification of write misses is not going to lead
the programmer into trying to solve a non-extant write-false
sharing problem.

We also investigated the cause of read miss misclassifi-
cation in Radiosity. When misses are attributed to individ-
ual static instructions, we find that a small number of in-
structions account for a very high percentage of true shar-
ing misses. A significant fraction (but not the majority) of
these misses get misclassified as false sharing misses in HW2
scheme due to idempotent writes (See Section 4.2) observed
by a core with respect to writes performed by other cores.
Radiosity uses dynamic scheduling with task queues. Nearly
all misclassified misses (and most of the correctly classified
ones) in this application occur in the scheduling code. The
idempotent writes occur in the following manner: when the
task queue is empty, threads that have completed their work
repeatedly check it to see if a new task has been inserted.
When a working thread does such an insertion (and invali-
dates cached copies kept by the waiting cores), some of these
waiting threads read the new values of the queue head and
related counters. These values have changed, so these read
misses are correctly classified as true sharing misses. One of
these threads then grabs the task from the queue and returns it
to an empty state (invalidating the other’s cached copies), so
subsequent read misses by the other waiting threads are again
correctly classified. However, some of the waiting threads
did not get a chance to examine the queue between the two
changes (the insertion and subsequent removal of a task). In-
stead, when they check the queue, it is already empty again,
and observe the same values they had previously observed
(empty queue). As a result, the stale cached values and the
incoming coherent values are equal and in HW2 scheme the
read miss is incorrectly classified as a false sharing miss. In
fact, two true-sharing writes have occurred, but the second
undoes the effect of the first. Note that these misclassified
read misses occur along with a large number of correctly
classified true sharing read misses (when both written val-
ues are observed). As a result, the majority of the misses
attributed to each instruction are still correctly classified, and
the dominant behavior (frequent true sharing as threads spin-
wait on empty task queues) is still clearly identified by HW2.

8 Conclusions

Performance debugging of parallel applications is ex-
tremely challenging, but achieving good parallel perfor-
mance is critical to justify the additional expense of parallel
architectures. It is currently very difficult for programmers
to diagnose (and therefore fix) a common scalability prob-
lem: coherence misses. Programmers must not only find the
source of these misses, but in order to reduce them, must
know whether the misses are due to true or false sharing.

We examine two different hardware schemes for on-the-
fly detection and classification of coherence misses, and pro-
vide insights into the tradeoff between accuracy and cost. We

9

0
10
20
30
40
50
60
70
80
90

100

ba
rn

es

ch
ol

es
ky ff

t

fm
m lu

oc
ea

n

ra
di

os
ity

ra
di

x

ra
yt

ra
ce

vo
lre

nd

w
at

er
-n

2

w
at

er
-s

p

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k

fa
ce

si
m

flu
id

an
im

at
e

sw
ap

tio
ns

P
er

ce
n

ta
g

e
o

f
ac

cu
ra

cy

HW1

HW2

Figure 8. Accuracy of hardware false sharing detection schemes. For each benchmark, the left bar shows the accuracy results for HW1

implementation and the right bar shows the results for HW2 implementation.

evaluate our schemes on SPLASH-2 and PARSEC bench-
marks and find that the simplest scheme, which keeps no state
at all, achieves reasonable accuracy in some benchmarks but
yields poor results in others. Conversely, we find that a com-
prehensive and expensive scheme offers nearly perfect accu-
racy.

References
[1] Intel 64 and IA-32 Architectures Software Developer s Man-

ual Volume 3B: System Programming Guide, Part 2, Chapter
18: Debugging and Performance Monitoring. Intel Corpora-
tion, 2007.

[2] A. Alexandrov, S. Bratanov, J. Fedorova, D. Levinthal,
I. Lopatin, and D. Ryabtsev. Parallelization Made Easier with
Intel Performance-Tuning Utility.Intel Technology Journal,
2007.

[3] C. Bienia, S. Kumar, J. Singh, and K. Li. The PARSEC
Benchmark Suite: Characterization and Architectural Impli-
cations.Princeton University Tech. Rep. TR-811-08, 2008.

[4] M. Brorsson. Sm-prof: a tool to visualise and find cache
coherence performance bottlenecks in multiprocessor pro-
grams. InSIGMETRICS ’95/PERFORMANCE ’95: 1995
ACM SIGMETRICS joint international conference on Mea-
surement and modeling of computer systems, pages 178–187,
New York, NY, USA, 1995. ACM.

[5] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and
G. Z. Chrysos. Profileme : Hardware support for instruction-
level profiling on out-of-order processors. InIntl. Symp. on
Microarchitecture, pages 292–302, 1997.

[6] L. DeRose, K. Ekanadham, J. K. Hollingsworth, and
S. Sbaraglia. Sigma: a simulator infrastructure to guide mem-
ory analysis. InSupercomputing ’02: 2002 ACM/IEEE con-
ference on Supercomputing, pages 1–13, Los Alamitos, CA,
USA, 2002. IEEE Computer Society Press.

[7] M. Dubois, J. Skeppstedt, L. Ricciulli, K. Ramamurthy, and
P. Stenstrom. The Detection and Elimination of Useless
Misses in Multiprocessors.USC Tech. Rep. No. CENG 93-
02, 1993.

[8] S. Eggers and T. Jeremiassen. Eliminating false sharing. In
Intl. Conf. on Parallel Processing, pages 377–381, 1991.

[9] P. Foglia. An algorithm for the classification of coherence
related overhead in shared-bus shared-memory multiproces-
sors. InIEEE TCCA Newsletter, Los Alamitos, CA, USA,
2001. IEEE Computer Society Press.

[10] J. Huh, J. Chang, D. Burger, and G. S. Sohi. Coherence de-
coupling: making use of incoherence. InASPLOS, pages 97–
106, 2004.

[11] K. Lepak and M. Lipasti. Temporally Silent Stores. In10th
Intl. Conf. on Arch. Support for Prog. Lang. and Operating
Sys., 2002.

[12] M. Martonosi, A. Gupta, and T. Anderson. Memspy: ana-
lyzing memory system bottlenecks in programs. InSIGMET-
RICS ’92/PERFORMANCE ’92: 1992 ACM SIGMETRICS
joint international conference on Measurement and modeling
of computer systems, pages 1–12, New York, NY, USA, 1992.
ACM.

[13] H. Mousa and C. Krintz. Hps: Hybrid profiling support.
In PACT ’05: 14th Intl. Conf. on Parallel Architectures
and Compilation Techniques, pages 38–50, Washington, DC,
USA, 2005. IEEE Computer Society.

[14] P. Nagpurkar, H. Mousa, C. Krintz, and T. Sherwood. Effi-
cient remote profiling for resource-constrained devices.ACM
Trans. Archit. Code Optim., 3(1):35–66, 2006.

[15] J. Renau et al. SESC.http://sesc.sourceforge.net, 2006.
[16] S. S. Sastry, R. Bodı́k, and J. E. Smith. Rapid profiling via

stratified sampling. InISCA ’01: 28th annual international
symposium on Computer architecture, pages 278–289, New
York, NY, USA, 2001. ACM Press.

[17] J. Torrellas, M. J. Lam, and J. L. Hennessy. Shared data place-
ment optimizations to reduce multiprocessor cache misses. In
Intl. Conf. on Parallel Processing, pages 266–270, 1990.

[18] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The
splash-2 programs: Characterization and methodological con-
siderations. InIntl. Symp. on Computer Architecture, 1995.

[19] C. B. Zilles and G. S. Sohi. A programmable co-processor for
profiling. InHPCA ’01: 7th Intl. Symp. on High-Performance
Computer Architecture, page 241, Washington, DC, USA,
2001. IEEE Computer Society.

10

