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Abstract

Both rigorous formal methods and intuitive graphical notations can greatly enhance the
development of complex computer systems. Formal methods guarantee non-ambiguity and
support powerful analysis techniques. Intuitive graphical notations facilitate the commu-
nications between engineers preveniing errors due to misunderstandings.

Unfortunately, tools and techniques based on formal methods do not usually support
adequate graphical notations; while tools and methods based on powerful graphical nota-
tions often lack formal foundations.

This paper proposes a technique that allows kernel formalisms to be accessed through
powerful graphical notations. The proposed technique allows graphical notations to be
tatlored to the needs of the specific application domain. This paper focuses on the tool
support and describes the experiences gained so far in accessing different formal kernels
through commercial and ad-hoc CASE tools.

Keywords: formal methods, graphical notations, CASE tools, customization.

1 Introduction

The development of large and complex computer systems can be improved by using intu-
itive graphical notations and unambiguous formal methods. Intuitive graphical notations
facilitate the communications between software engineers by capturing the complex rela-
tions among components, separating concerns, supporting different views of the system,
and providing powerful browsing facilities [26]. Formal methods add rigor to the pro-
duced models, avoiding problems of interpretation and improving readability by providing

*This work has been partially sponsored by the ESPRIT project EP 8593 IDERS and by Progetto
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a unique non-ambiguous interpretation. Moreover, formal methods support powerful se-
mantic analysis capabilities that include animation, reachability analysis, model checking
and theorem proving [19, 5].

Unfortunately, the graphical notations supported by formal methods and tools are of-
ten simple and primitive and retain only few of the advantages of graphical approaches [2,
1]. On the other hand, most powerful graphical notations are ambiguous and provide
analysis capabilities limited to syntactic aspects [31, 14, 8]. In the past, the benefits
of formal methods and rich graphical notations have been joined by either enriching the
essential graphics of formal methods or by giving formal semantics to rich graphical nota-
tions through a mapping to a kernel formalism. Example of the former approach are [17];
examples of the latter are [23]. The aforementioned approaches solve the problem for
specific graphical notations and formal methods, but do not provide a general solution.
Each solution imposes a specific graphical notation and kernel formalism, that cannot be
easily adapted to fit different classes of users and problems. Moreover, these approaches
require substantial reengineering of existing tools or the development of a new generation
of CASE tools.

This paper presents a general solution that allows new graphical notations to be
mapped to the required kernel formalism. This approach does not impose a specific
notation nor a specific formalism. Users can go using their familiar formalism and, in
some cases, even the interface of their favorite CASE tool. The approach of this paper
offers the opportunity to animate and analyze graphical specifications through execution
and analysis of a kernel operational formalism. Moreover, the proposed approach do not
require the development of new CASE tools, but can be based on the existing mature
CASE technology.

The proposed techniques relies on two components:

e A customization editor, that allows the definition of a mapping between the chosen
graphical notation and a kernel operational formalism.

e A Run-Time semantic Translator, hereafter RTT, that translates input models into
the kernel formalism referring to the mapping introduced through the customization
editor; the produced representation can be executed and analyzed; all the significant
events are translated into events of the end-user notation and presented in a suitable
fashion.

This paper is organized as follows. Section 2 illustrates the general approach. Sec-
tion 3 presents the customization process. Section 4 gives an insight of the RTT archi-
tecture. Section 5 describes the current status of the prototype used for experimenting
the approach. Section 6 presents the experiences with different notations used as case
studies to test and validate the methodology. Section 7 concludes discussing future plans.

2 The Approach

The ultimate goal of the proposed approach is to provide a tool that can be customized
for different graphical notations and kernel formalisms to better fit the specific needs of
the application domain.

The tool itself provides neither specific graphical notations nor kernel formalisms, but
relies on existing CASE tools supporting either the required graphical notation or kernel



formalism. Given a graphical notation and/or a kernel formalism no changes to the tool
itself are required, but only the definition of a set of rules that customize the tool to work
for the chosen notation and kernel formalism. The technique for integrating the tool with
existing CASE tools and the few related requirements are discussed in Section 4.

The customization approach offers the following advantages:

e it supports evolution of the CASE platform. Changes in the end-user notation do
not require re-implementation of the environment from scratch, but simple changes
to the set of customization rules.

e As the effort to customize an environment is much less than the one to develop a
new environment, customization can support applications that would benefit from
formal methods but do not own a market wide enough to justify the development
of specific tools.

o It allows the experimentation of new notations, while existing tools tend to restrict
the range of the used formalism to the ones that obtain a positive answer from the
market, thus limiting the creativity and the growth of new formal methods.
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Figure 1: A High-Level View of the Environment

Figure 1 gives an high-level view of the environment. The main components are:

Customization Editor, that supports the construction of the rules that define a graph-
ical notation with respect to a specific kernel formalism. Details on the data to be



provided are given in Section 3. Graphical editing can improve the customization
editor, however customization data can be given textual form. A general-purpose
text editor (vi, emacs) provides all the functionalities of a customization editor.
The rules produced during the customization activity are stored in the Repos-
itory, that represents the interface between the off-line definition of a graphical
notation and the run-time semantic translator.

Customized Environment, that constitutes the run-time support of the customiza-
tion process. It comprises:

End-User Interface, which is the CASE tool chosen by the end-users to interact
with the environment and to design their own models, using the formalism
they prefer.

RTT, which is the run-time support for executing and analyzing users’ models.
Roughly speaking, it can be seen as a two-way translator. During model
construction, it receives data from the modeling tool and transforms them
to build the kernel representation. During kernel execution, it maps firings
and states of the kernel model to the end-user interface, according to the
notation in use. The rules to perform the translations are retrieved from the
Repository. Although the mapping from the kernel model to the graphical
end-user interface can involve both execution and analysis results in terms of
firings and states of the kernel model, in this paper we concentrate only on
animation based on firings to simplify the presentation.

Kernel, which is the actual formal engine. It creates the kernel formalism rep-
resentation of the current model, executes it and analyzes it. Although in
principle the approach described in this paper can refer to a generic opera-
tional formalism, so far we experimented only with high-level timed Petri nets
(HLTPNs [4]) to take advantage from the available tools within the project.
For simplicity, hereafter we assume HLTPNs as the kernel formalism.

The two main components outlined so far lead to two different kind of users:

Super-users, that are the experts of the customization. They provide the rules that
describe end-user notations.

End-users, that are the experts of the applications and of the notation the environment
is customized for. They use the environment through the end-user interface.

3 The Customization Process

The customization process produces all the information needed to tailor the RTT for
the chosen graphical notation. This activity produces a formal definition of syntax and
semantics of the selected notation in terms of the kernel formalism. The formal definition
of the syntax of a well known graphical notation is a matter of assessing the interpreta-
tions of common practice. The experimentations carried on so far reveal a tedious but
straightforward process. The definition of the semantics often requires careful exami-
nation of all the details of the graphical notation and can result in a complex activity.
The semantics can be defined either before starting the production of the rules, or it



can be obtained as a side effect of the customization process. From the authors’ point
of view the first solution is to be preferred, since it avoids rules reworking each time a
change in the definitions happens. However in absence of a clear and unique view of the
semantics an incremental definition which flows in parallel with the customization can
help the super-user in evaluating different solutions. The choice does not depend on the
RTT, but is up to super-users. Another aspect is the definition of the appearance of
notation symbols, i.e., the concrete syntax. This customization depends on the end-user
interface. Since we add formality and executability to notations already supported by
existing CASE tools, a concrete syntax already exists.
The customization activity consists mainly in defining two appropriate graph-grammars,

as illustrated in [6], however the complete set of rules needed for a complete mapping
are:

Abstract Actions-Rules Mapping, that states the correspondences between end-user
actions and graph-grammar productions. The abstract actions-rules mapping as-
sociates a rule, i.e.; a pair of graph grammar productions, for each legal end-user
action. The absence of an entry for non legal end-user actions is signaled as an
error.

Abstract Syntax Graph-Grammar (ASGG) Productions, that define the syntax
of the chosen notation by specifying the actions of a syntax directed editor that
creates the abstract model according to the chosen notation. A detailed explanation
on the use of graph-grammars can be found in [10]; a similar approach is in [25].

Semantic Graph-Grammar (SGG) Productions, that define the semantics of the
notation, i.e., how the kernel model is modified with respect to the changes in the
end-user model made by the application of the related ASGG production.

Animation Rules, that translate events of the kernel model into suitable animations
of the end-user notation. Animation Rules are associated with transition “types”.
When a transition is added to the kernel model, it is assigned a “type”, depending
on the role played with respect to the semantics of the user symbol it translates. For
instance the kernel representation of a Data Transformation' could comprise two
transitions, that model the start and termination of the transformation. Animation
Rules relate transition firings to changes of the corresponding syntax symbols. For
example the firing of transitions “start” of Data Transformations can be related to
the change of the state of the transformation from idle to executing?.

The animations are currently related to transition “types” only, while, in future,
they will consider also the values of the tokens consumed and produced by the
firing.

We refer to abstract animations since we do not consider a specific format that
depends on the concrete user-interface. The translation of abstract animations into
the concrete end-user interface format is up to the Abstract to Concrete Converter
(see Figure 2).

1Represented by a bubbly in usual Data Flow Diagrams.
2Tt is often modeled by the bubbly changing color



4 The Run-Time semantic Translator

Figure 2 shows the architecture of the Run-Time semantic Translator. Boxes represent
functional components: doubly bordered boxes indicate external components; gray boxes
represent elements specific to the particular external tools; white boxes indicate compo-
nents that do not depend on specific tools, customized for the selected notation. Gray
boxes are the only domain-specific components, that must be re-designed to interact
with a different CASE tool. Arcs indicate data flows and open boxes stand for data
repositories, either provided by the Customization Editor or internal to the RTT.

The chosen architecture well supports a distributed environment, in which the End-
User Interface, RTT and the Kernel are three distinct processes, that run on different
machines.

END-USER INTERFACE

Concrete to Abstract Abstract to Concrete
— Converter Converter —
RTT
Abstract Actions- Rule " RTTAbstract
Rules - Selector Model \
Animation Rule
Executor
ASGG ASGG Production "Abstract-Kernel
Productions ™ Executor Corraoondenca
Animation Rule Animation
Selector Rules
SGG SGG Production " RTTKeme
Productions ™ Executor M odel
L | Abstract to Kernel Kernel to Abstract ||
Converter Converter

KERNEL

Figure 2: RTT Architecture

The End-User Interface is not constrained by RTT. Any CASE tool can be used,
provided that it allows end-user actions to be exported. The only intrinsic limitation on
the End-User Interface is related to the definition of a mapping of the supported end-
user notation to the kernel formalism. Although there exist no theoretical limitations, the
mapping can be complex, especially if the end-user notation and the kernel formalism do
not present any homogeneity. Moreover, the experiments recalled in Section 6 provide



enough evidence of the feasibility of the approach at least for CASE tools supporting
operational end-user notations.

The Kernel must support the required kernel operational formalism, must react to
external requests and must return execution and analysis results. Basically they both
must be service-based tools (see [24] for a complete explanation). Details on the CASE
tools used so far as End-User Interface and Kernel are given in Section 6.
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Figure 3: A Usage Example

The Concrete to Abstract Converter translates legal end-user actions into correspond-
ing abstract actions. Legal actions to be triggered and converted concern either model
construction, e.g., adding or deleting new elements, or “general services”, e.g., loading,
saving models or quitting the application. The implementation of this component strictly
depends on the communication mechanism adopted to connect the End-User Interface
and the RTT. The experience gained so far is presented in Section 6.

The Rule Selector selects from the Abstract Actions-Rules repository the rule corre-
sponding to the abstract action identified by the Concrete to Abstract Converter, i.e.,
identifies a couple of ASGG and SGG productions, and return their identifiers.

The ASGG Production Ezecutor retrieves the production, identified by the Rule
Selector, from the ASGG Productions repository and executes it. The execution of
ASGG productions modifies the two repositories referred to as RTT Abstract Model
and Abstract-Kernel Correspondences, that are the RTT internal representation of the
current end-user model and a mapping between end-user symbols and kernel elements
respectively.

The SGG Production Frecutor executes the semantic production, extracted from
the SGG Productions repository. Since the computation of the attributes of an SGG



production can refer to elements of the corresponding ASGG production, the SGG Pro-
duction Ezecutor needs to access the RTT Abstract Model. The execution of a semantic
production modifies the RTT Kernel Model, adds the identifiers of the new objects to
the Abstract-Kernel Correspondences, completing the mapping between RTT Abstract
Model and RTT Kernel Model element(s), and produces a set of directives for the Kernel
indicating the modifications.

The Abstract to Kernel Converter is part of the RTT interfaces: it translates messages
from the RTT format to the Kernel format. The RTT produces these messages according
to a general abstract format, that can be different from the interface of the underlying
Kernel. The experience of integrating with different kernels is described in Section 6.

The components described so far are responsible for building the kernel model cor-
responding to the end-user model. An example of usage can described referring to Fig-
ure 3.A, that assumes a general data flow notation as end-user graphical notation and
Petri nets as the internal kernel. If an end-user draw a Data Transformation in the
canvas, the FEnd-User Interface traps this action and propagates it to the Concrete to
Abstract Converter. The Concrete to Abstract Converter translates the addiction of a
Data Transformation into a suitable RTT internal format. The Rule Selector retrieves
the rule, say addDT, associated with the incoming abstract action. The ASGG Produc-
tion Frecutor executes the ASGG production addDT, that adds a Data Transformation
to the RTT Abstract Model and initializes an entry in the Abstract-Kernel Correspon-
dences with the Data Transformation identifier. The SGG Production Ezecutor selects
the semantics production addDT and executes it. The execution of the semantic produc-
tion addDT creates two transitions, a place and two arcs in the RTT Kernel Model. The
identifiers of the created elements complete the entry in the Abstract-Kernel Correspon-
dences. Finally the Abstract to Kernel Converter sends suitable messages to the Kernel
to add the required transitions, places and arcs to the kernel model.

Once end-users terminate the construction of a model, they can choose to validate
the specification by visualizing the execution of its kernel representation.

The Kernel to Abstract Converter translates the data produced by the Kernel into
the format required by the RTT. In the current prototype the mapping is limited to the
identifier of the fired transition, a more complete mapping would take into account also
the enabling tuple and the tokens produced by the execution.

The Animation Rule Selector identifies the “type” of the fired transition accessing the
RTT Kernel Model, and retrieves the corresponding animation rule from the Animation
Rules repository.

The Animation Rule Ezecutor executes the animation rule identified by the Anima-
tion Rule Selector. The abstract object related to the fired transition is retrieved from the
Abstract-Kernel Correspondences repository, while the connected objects are retrieved
from the RTT Abstract Model.

Finally, the Abstract to Concrete Converter translates the animation events produced
by the Animation Rule Frecutor into the syntax used by the interface CASE tool, that
displays the results.

As an example, Figure 3.B illustrates the animation of the firing of transition start1
corresponding to the starting of execution of Data Transformation P1. The Kernel fires
transition startl of “type” StartDataTransformation. The event is notified to the
Animation Rule Selector after being filtered by the Kernel to Abstract Converter. The
Animation Rule Selector retrieves the animation rule associated with transition type



StartDataTransformation.

The Animation Rule Erecutor identifies the syntax elements involved in the anima-
tion action. For example, the animation rule shown in Figure 4 identifies the Data
Transformation P1 (0BJECT) and all its input flows (ALLINNODES), and associates the
retrieved objects with the corresponding animation events (Blacken P1 and Blink its
input flows).

The Abstract to Concrete Converter converts animations for the End-User interface,
that blinks all the flows entering the Data Transformation and blacken the Data Trans-
formation itself.

OBJECT cea EventType ¢‘Blacken’’
ALLINNODES Type=DataTransformation EventType ‘‘Blink’’

Figure 4: A Trial Animation Rule

5 A Prototype

A prototype of the Customization Environment has been implemented as part of the
ESPRIT Project IDERS. The prototype has been demonstrated in April 95 at the tools
fair of the International Workshop on Industrial-Strength Formal Techniques (WIFT95).
The first prototype focuses mostly on RTT and its interfaces with End-User Interfaces,
Kernels, and the customization editor, i.e., the Repository.

The support to super-users, i.e., the customization editor 1s provided by conventional
text editors (like vi or emacs). Abstract syntax and semantic graph-grammars produc-
tions as well as abstract action-rules mapping and animation rules are supplied to the
Repository in a textual format. The need of manually deriving this textual represen-
tation 1s a consistent drawback. We are currently designing and developing an ad-hoc
graph-grammar editor. We decided to implement a new editor instead of using existing
software, e.g., [11, 16, 28], because none of the quoted editors easily supports our graph-
grammar notation. The first step, still to be completed, is the design of a filter from a
widely available graphical editor, xfig, to the textual format used to provide the RTT
with graph-grammar productions. The lessons learned during this phase will be the base
of the development of our ad-hoc editor.

The currently available RTT prototype implements all the functionalities outlined
in Figure 2. It is implemented in C+4 and runs on UNIX platforms. The currently
available prototype is interfaced with several end-user interfaces and kernels to validate
the proposed mechanism against different case studies.

Currently available end-user interfaces include commercially available CASE tools,
such as Software through Picture (StP) [30], and in-house tools based on Motif [15] and
tcl-tk [20]. The communication mechanism adopted in the three cases are different and
are worth some comments.

Being StP a commercial product we do not have access to the source code; thus all
the mechanisms have been implemented using the customization facilities provided with
the environment. The identified solution is based on QRL, the StP Query and Reporting
Language. An appropriate QRL script has been written for each relevant end-user action.
Each time an action is performed, the related script writes the relevant information on



the repository (a UNIX file, in this case). Alternatively, the relevant information could
be extracted from the StP repository. This solution is currently under investigation;
related problems are outlined in Section 7.

On the contrary, we had complete visibility of in-house tools. In these cases we
augmented the interfaces of in-house tools with a communication layer providing ad-
hoc message-exchange mechanisms. The interface and the RTT can communicate either
through the repository or through UNIX sockets.

The currently available kernels are all based on Petri nets. They include Cabernet, a
tool developed at Politecnico di Milano (Ttaly) presently licensed to more than forty sites
world wide [22] and TPTES, a CASE tool based on Petri nets developed as part of an
ESPRIT Project®. In both cases, we have enough access to the source code of the tools
to provide socket-based interfaces. Accessing the kernels do not imply specific conceptual
problems, being in both cases a simple invocation of methods of the object kernel.

6 Customization Experiences

The current prototype has been incrementally validated with several specific customiza-
tions. The first case study has been investigated for a preliminary version of the prototype
that included only semantic translation, but not animation. Its purpose was to experi-
ment the usage of graph-grammars in defining both the abstract syntax and the semantics
of a notation. In conducting these first trials we used StateCharts [12]. The transfor-
mation of StateCharts constructs into Petri nets is not trivial, and provides important
insides of the approach.

The first notation for which we provided full customization, i.e., semantic translation
and animation, has been FIFONets [27]: Petri nets with places in which tokens are
queued according to their production. In this case our aim was to study how to provide
users with the animation of their models; thus we chose a notation in which the mapping
between executions of the kernel model and front-end animations were straightforward,
to focus only on the problem of animation. We customized both StP and the in-house
editors to be used with FIFONets.

A third case study [9] refers to a design notation based on Petri nets. In this case
Petri nets were enriched with POSIX compliant constructs [18], i.e., messages, mailboxes,
semaphores, starved memories and tasks. This experiment provided important results,
being the first complex case study where end-user notation and kernel formalism are not
completely disjoint.

The formalism we are currently working on is an evolution of De Marco’s structured
analysis proposed by Hatley and Pirbhai [13]. This notation will be used within the
ESPRIT Project IDERS for modeling the requirements of a radar control system [21].
Presently, we defined most of the semantic translation rules and the converters for StP
and the in-house editors as end-user interfaces, and for Cabernet and TPTES as kernels.
The complete set of semantic transformations and animation rules will be available for
the specification and analysis of the radar control system by the end of July 95.

A positive side effect of this last case study is to provide formal semantics to the
Hatley and Pirbhai notation, often object of different interpretations. Such semantics

3The ESPRIT Project EP5570 IPTES: Incremental Prototyping Technology for Embedded Real-Time

Systems.
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is the most effective way of providing animation and analysis capabilities not supplied
within StP yet.

7 Conclusions

The experimentation conducted with the RTT presented so far revealed the usefulness
and the potentialities of the approach based on customization. Our experience in ESPRIT
suggests that customization of end-user graphic notations can be a winning strategy to
better support formal methods in industrial practice, allowing step by step migrations
instead of imposing drastic changes.

The experiments described in the previous sections highlights some limitations of the
current prototype and suggests future evolutions.

We plan to enhance the support to super-users by developing graphical editors specific
to the customization activity, to support easily design of graph-grammar productions.

We plan to define an end-user interface general framework and a way to customize it
for any specific notation. Basically the plan is to extend the customizable toolset up to
the concrete interface.

Further studies on graph-grammars and graph rewriting theory are needed to find
mechanisms allowing post-mortem translation of end-user models instead of imposing
on-line transformations, as it is currently done.

As user notations often own a textual part in addiction to the graphic one, it would
be useful offering customization services for this aspect too. It would vastly increase the
number of formalisms the RTT could be fully customized for. Finally, new notations will
be examined and all the customization rules produced. These case studies will help both
in testing and validating the prototypes and in raising new requirements to the RTT.
Planned applications are formalism to design an electricity network ([7]), to specify the
control of a robot arm ([3]) and to model a diagnostic process ([29]).
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