
A Framework for Testing Object-Oriented Components
�

Ugo Buy
�
, Carlo Ghezzi � , Alessandro Orso � , Mauro Pezzè � and Matteo Valsasna �

�
EECS Dept. (M/C 154) � Dip. di Elettronica e Informazione
University of Illinois Politecnico di Milano

851 South Morgan Street,Chicago, IL 60607 P.za Leonardo da Vinci, 32, I-20133 Milano, Italy
Phone: (312) 413-2296, Fax: (312) 413-0024 Phone: +39-02-2399-3638, Fax: +39-02-2399-3411

buy@eecs.uic.edu [ghezzi|orso|pezze|valsasna]@elet.polimi.it

1 Introduction
The terms “component” and “component-based software engineering” are relatively recent. Although
there is broad agreement on the meaning of these terms, different authors have sometimes used slightly
different interpretations. Following Brown and Wellnau [4], here we view a component as “a replace-
able software unit with a set of contractually-specified interfaces and explicit context dependencies
only.” A component is a program or a set of programs developed by one organization and deployed
by one or more other organizations, possibly in different application domains.

To date, many component systems are designed and developed using object technology. The same
is true of middleware architectures that support the deployment of components, such as Java Beans [3],
CORBA [1], and DCOM [5]. Although there is consensus that the issues in component-based software
engineering cannot be solved merely by object technology [4, 14], these technologies will clearly play a
fundamental role in the production of software components [15]. It is quite likely that developers will
use with increasing frequency object technologies in the design and implementation of components.
For this reason, in the sequel we focus on testing of components that consist of an object or a set of
cooperating objects. In addition, we consider messages sent to a component as method invocations on
the objects contained in the component.

Programs developed with object technologies have unique features that often make traditional test-
ing techniques inadequate. An important feature of these programs is that the behavior of a method
may depend on the state of the method receiver. Since the state of an object at a given time reflects the
sequence of messages received by the object up to that time, erroneous behaviors may be revealed by
exercising specific sequences of messages. Component testing should identify sequences of messages
whose execution is likely to show the existence of faults; however, traditional unit and integration
testing techniques do not produce this kind of information [2]

Our method uses various kinds of structural analyses in order to produce sequences of method in-
vocations for the component under test. A byproduct of these analyses is the definition of formal spec-
ifications in the form of preconditions and postconditions for the methods contained in the component
under test. When performing integration testing, the method sequences resulting from the analysis of
single components are then used jointly.

Developers and users of a component have different needs and expectations from testing activities.
Our framework for component testing can benefit both parties involved. On the one hand, the method
sequences we identify can be used as test cases to be applied during the development of the component
under test. On the other hand, during integration testing component users can combine sequences gen-
erated for single components to validate groups of components and their interactions. In addition, the
set of formal specifications produced by symbolic execution can be extremely valuable to prospective
users of a component as they evaluate alternative implementations for a given task.

���
This work has been partially supported by ESPRIT Project TWO (Test Warning Office - EP n.28940) and by Italian Ministero

dell’Università e della Ricerca Scientifica e Tecnologica (MURST) in the framework of the MOSAICO (Design Methodologies and
Tools of High Performance Systems for Distributed Applications) Project.

1

Many other techniques have been defined that can produce method sequences for object or compo-
nent testing (e.g., [9, 6, 11]). In contrast with some of those techniques, we do not require the existence
of formal specifications in order to produce method sequences [9, 6]. In this regard, our approach is
similar to the technique defined by Kung et al. [12]. An advantage of our approach is that we can pro-
duce a meaningful set of method sequences even when symbolic execution and automated deduction
techniques cannot be fruitfully applied to the component code. If these sequences are not sufficient,
the user can be asked to complement the information obtained by the automatic techniques, to pro-
duce a better set of invocation sequences. An additional advantage is that in our case the integration of
method sequences obtained for different components is relatively straightforward.

The paper is organized as follows. Section 2 gives an overview of the proposed testing method-
ology. Section 3 introduces the vending machine example used to illustrate relevant portions of the
methodology. Sections 4, 5, and 6 discuss the techniques for data flow analysis, symbolic execution
and automated deduction. An example of the technique for integration testing is provided in Section 7.
Finally, conclusions and future research directions are discussed in Section 8.

2 Overview of Testing Framework
The approach to the generation of message sequences for component testing is based on two kinds of
analyses. The first phase considers each component in isolation. This phase leads to the definition of
a set of method sequences for each component under test (CUT). The second phase considers a set of
interacting components by combining the method sequences for each of the interacting components.

The first phase is based on the following paradigm. First data-flow analysis is applied to the meth-
ods contained in the CUT. Second, symbolic execution is applied to these methods to derive formal
specifications for each method. Third, automated deduction is used to derive sequences of method
invocations from the information produced in the previous two steps. The CUT is tested by executing
all method sequences identified in this manner.

The second phase considers incremental integration of components according to the following strat-
egy. First it identifies an order of integration that minimizes the need for scaffolding by analyzing
dependencies among components. The algorithm for defining the integration order is discussed else-
where [13]. Next it performs pairwise integration of components according to this integration order.

Consider, for instance, the integration of two components, a client and a server. This integration
can follow many strategies for generating test cases. The tradeoff is between the number of test cases
generated and the completeness of the test set. At one extreme the test cases for the component group
can be the cross-product of the set of method sequences of the two components. Suppose that a method
sequence � for the client contains calls to the server. The outcome of these calls is likely to depend on
the state of the server. Thus, a sequence � should be repeatedly executed on different server states to
detect potential defects. To accomplish this effect, we explicitly invoke each method sequence of the
server, which can lead to a distinct server state, before we execute sequence � . In this way, we test all
combinations of method sequences of the client and the server.

At the opposite extreme, we only exercise each method sequence � of the client with one method
sequence for the server. This strategy is especially appropriate when the server has no other clients than
the client under test. In this case, the server is first initialized (e.g., by executing a suitable constructor).
Next, each method sequence � of the client is executed once.

3 The Automated Vending Machine Example
Our automated vending machine extends an example originally introduced by Kung et al. to illustrate
their technique for generating test cases [12]. In their formulation, the example consists of a class
CoinBox, which models an automatic vending machine. We believe that this class is quite appealing
because it contains a fault that will manifest itself only when an instance of the class is in a particular
state and a specific method is invoked. In our version of the example we use component CoinBox to
illustrate our technique for unit testing. We also define a client component to discuss our technique for
component integration.

The code for the CoinBox class is listed in Figure 1. Similar to Kung et al. [12], we assume that
the vending machine requires at least two coins before a sale can occur. The class CoinBox has three

2

class CoinBox {
unsigned totalQtrs; void ReturnQtrs() {
unsigned curQtrs; curQtrs = 0;
unsigned allowVend; }

public: unsigned isAllowedVend() {
CoinBox() { return allowVend;
totalQtrs = 0; }
allowVend = 0; void Vend() {
curQtrs = 0; if (isAllowedVend()) {

} totalQtrs = totalQtrs + curQtrs;
void AddQtr() { curQtrs = 0;
curQtrs = curQtrs + 1; allowVend = 0;
if (curQtrs > 1) }

allowVend = 1; }
} };

Figure 1: Code for component CoinBox.

instance variables, namely totalQtrs, curQtrs, and allowVend. Variable totalQtrs keeps track of all coins
collected for items sold by the machine. Variable curQtrs keeps track of coins entered since the last sale.
Variable allowVend determines whether enough coins have been entered for a sale to take place.

This class contains a fault in method returnQtrs(), that does not reset variable allowVend. The
sequence consisting of the invocations CoinBox(), addQtr(), addQtr(), returnQtrs(), and vend() will
result in a successful sale when it should not.

01 entry CoinBox()

02 totalQtrs=0

03 allowVend=0

04 curQtrs=0

09 exit CoinBox()

00 Virtual Node

10 entry void ReturnQtrs()

11 curQtrs=0

12 exit ReturnQtrs()

13 entry void AddQtr()

14a tmp=curQtrs + 1

14b curQtrs=tmp

15 if(curQtrs>1)

16 allowVend=1

T

17 exit AddQtr()

F

18 entry void Vend()

19 if(allowVend)

20a tmp=totalQtrs+curQtrs

T

23 exit Vend()

F

20b totalQtrs=tmp

21 curQtrs=0

22 allowVend=0

class CoinBox

Figure 2: CCFG for class CoinBox.

4 Data-flow analysis
Our data flow analysis identifies a set of so-called du-pairs for the CUT. A du-pair for a variable v
consists of two statements, ��� and ��� , subject to the following two conditions. First, ��� and ��� are both
contained in a component C. Second, ��� modifies (i.e., writes) the value of v and ��� uses (i.e., reads) v’s

3

value. In this case, we denote the methods containing � � and � � by � � and � � , and we write
�

� ��� � �������
to denote the du-pair.

Our data-flow analysis is characterized by two main features. First, we consider all methods in
a component together while defining du-pairs. As a result, the two instructions forming a du-pair
can belong to different methods. A similar view was taken by Harrold and Rothermel [10]. Second, we
consider only instance variables, as opposed to method parameters, for our data-flow analysis. Instance
variables retain their values between method executions, thus defining the state of each component
instance.

We use a structure called a Class Control Flow Graph or CCFG for our intermethod data-flow analy-
sis. Graph nodes represent single-entry, single-exit regions of executable code. Edges represent possible
execution branches between code regions. The CCFG of a component consists of a set of Control Flow
Graphs (CFGs), one graph for each method in the CUT, and two additional nodes. Each CFG has an
entry node and an exit node, both labeled with the name of the corresponding method. One of the addi-
tional nodes is the entry node for the CUT. It is connected by an out arc with the entry nodes of all the
constructors for the CUT. The second node captures the fact the methods of the CUT can be invoked in
an arbitrary order by the clients. It has an in arc from the exit node of the CFG of every method and out
arc to the entry node of the CFG of every method. The CCFG of the component CoinBox is shown in
Figure 2.

The CCFG representation allows us to apply standard techniques for data-flow analysis. For the
CoinBox component, we obtain the du-pairs shown in Table 1. As with traditional data-flow testing,
for each du-pair

�
��� � � � ����� we try to identify a feasible, def-clear path from � � to ��� . A def-clear path for

du-pair
�

� �	� � �
����� is a path that does not contain definitions of v after � � .

variable
�� (node#)
�� (node#)
01 curQtrs CoinBox (4) AddQtr (14a)
02 curQtrs CoinBox (4) AddQtr (15)
03 allowVend CoinBox (3) Vend (19)
04 totalQtrs CoinBox (2) Vend (20a)
05 curQtrs ReturnQtrs (11) AddQtr (14a)
06 curQtrs ReturnQtrs (11) AddQtr (15)
07 curQtrs ReturnQtrs (11) Vend (20a)
08 curQtrs AddQtr (14b) AddQtr (14a)
09 curQtrs AddQtr (14b) AddQtr (15)
10 curQtrs AddQtr (14b) Vend (20a)
11 allowVend AddQtr (16) Vend (19)
12 totalQtrs Vend (20b) Vend (20a)
13 curQtrs Vend (21) AddQtr (14a)
14 curQtrs Vend (21) AddQtr (15)
15 curQtrs Vend (21) Vend (20a)
16 allowVend Vend (22) Vend (19)
17 curQtrs CoinBox (4) Vend (20a)

Table 1: du-pairs of CoinBox component.

5 Symbolic Execution
We use symbolic execution to capture three relevant aspects of method behavior: (1) the conditions
associated with the execution of paths in the method’s control flow, (2) the relationship between input
and output values of a method, and (3) the set of variables defined along each path. Both kinds of spec-
ifications are expressed as a set of propositional formulas involving the values of method parameters
and component attributes before and after a method is executed.

The information we extract for a component method consists of a set of formulas in the following
form:���
�����������! #"$ $����% & '(�*)�"$"$�� (+-,�"(�.%

’=
�

�0/��
+1��23 $�4��5!�
���

� �

 $���6%87�9�
�

��"(�	:;����:� #������)<"$"$�� (+-,�"(�
�

%

4

Each precondition is a predicate on attributes and method parameters that leads to the execution
of a given path traversing the method. The set of defined attributes includes all the attributes that are
defined along such path. The symbolic expression defines the new value of an attribute after a method is
executed. This expression involves method parameters and the old values of the attributes.

Due to the inherent complexity of this kind of static analysis techniques, our algorithms for symbolic
execution can take advantage of programmer provided information (e.g., loop invariants). Details on
these algorithms are described in [8].

For our example, the specifications extracted for component CoinBox are shown in Table 2.

CoinBox
(�������) � ���	��
���
������������
def= � totalQtrs,curQtrs,allowVend � ������
������ � ���

 �!���	"�#$�&%(' � ���
AddQtrs
(������
������*)+�) � ���	��
���
������ � �����	��
���
������
def= � curQtrs,allowVend � �,����
��-��� � �.�,����
��-���0/�1

 �!���	"�#$�&%(' � �21
(������
������3�����) � ���	��
���
������ � �����	��
���
������
def= � curQtrs � ������
����������21
Vend
(
 �!���	"*#$�&%4'65�7�) � ���	��
���
������ � �����	��
���
������8/9�,����
��-���
def= � totalQtrs,curQtrs,allowVend � ������
������&�����

 �!���	"�#$�&%(' � ���
(
 �!���	"*#$�&%4':���7�) �
 �!���	"*#:�&%4' � ���
def= ���
ReturnQtrs
(�������) � ���	��
���
������ � �����	��
���
������
def= � curQtrs � ������
������������

Table 2: Information extracted for component CoinBox.

6 Sequence Generation Technique for Unit Testing
We use the specifications obtained through symbolic execution to derive sequences of method invo-
cations that cover the du-pairs identified by data-flow analysis. Each test case exercises one or more
du-pairs with a sequence of method invocations that starts with a constructor, and contains a du-path
for each of the du-pairs exercised.

Our technique is based on backward-chained deductions, starting from method � � and the path
condition ;

'
� �

7
associated with the execution of statement � � in � � . Next, we match ;

'
� �

7
with the

postconditions of all methods in the CUT, in an effort to find a method subsequence that makes ;
'

� �

7
true. In general, we will find one or more methods that satisfy this condition. Therefore, we incremen-
tally build a tree of method invocations.

The root of the tree is a node
�
� that corresponds to method � � and condition ;

'
���

7
. In general,

given a node
�
< corresponding to a method � < , the children of

�
< represent methods whose execution

does not bring the component in a state that is in contradiction with the path condition of
�
< . Consider

a child
�
= of

�
< . The postconditions of the method, � = , corresponding to

�
= must not contradict the

path condition of
�
< . The path condition of

�
= is built from the path condition of

�
< by removing the

clauses satisfied by the postconditions of � = and by adding the preconditions on the execution of � = .
The process of tree construction can terminate in three possible ways:

1. No nodes can be added to the tree before a feasible du-path is found. In this case, the du-pair is
deemed infeasible.

2. The depth of the tree reaches a given threshold, without finding a feasible du-path. In this case,
our analysis is inconclusive and we report this fact to the user of our framework.

5

3. A feasible du-path is found. This happens when (1) a leaf node in the tree corresponds to a
constructor, (2) the path from the root to the leaf contains a node

�
� that corresponds to the

execution of statement ��� by method � � , and (3) the path contains no nodes in which variable v
is defined between

�
� and the root.

In this case, the path from the root to the leaf represents the reverse of the sequence of method
invocations that exercises the given du-pair.

A complete description of our algorithm can be found in [7]. Here we report on the tree construction
activity for one of the du-pairs in the CoinBox component. We chose du-pair 7 from Table 1 because it
is a non-trivial case, and it reveals the fault in the component.

variable:
�1,
��� "$�

�

definition: �
��"$,������ "$�

� , node 11
use: �

�����
, node 20a

;
'

���

7
:

"$��,��
;
'

� �

7
:

)�2 2 ���
�
�������	�

To generate an invocation sequence that covers this du-pair, we start from the root of the tree, rep-
resented by a node for method �

�����
. The path condition ;

' �
�

7
of the root node is

')�2 2 ���
�
�������	

 7

because in this case the execution of ��� is governed by an if statement with that condition. The only
method that does not contradict the path condition and does not define

�1,
��� "$�
� is �

��"$,
����� "$�
�

' 7
, i.e.� � . After this node has been added, methods that define

�1,
��� "$�
� can be added. By further applying

our automated deductions, we obtain the tree shown in Figure 3. The resulting tree contains a leaf node
satisfying the conditions on a feasible du-path. The resulting method sequence is:

� �� #��� ��5 ' 7
, �

�<��� "$��' 7
, �

����� "$��' 7
, �

�0"$,������ "$�
�

' 7
, �

�0����' 7

Note that this sequence shows the erroneous behavior of component
� �� #��� ��5

because an item is
sold but no coins are collected by the machine.

Vend()
0

1
ReturnQtrs()

(allowVend != 0)

(allowVend != 0)

AddQtr() AddQtr()

(curQtrs > 0) (curQtrs > 0)(curQtrs == 0)

Vend()

(allowVend == 0)

5 6 7

2
ReturnQtrs()

3 4
AddQtr()AddQtr()

(curQtrs > 0)

(allowVend != 0)

(allowVend != 0)
(allowVend != 0)
(curQtrs == 0) &&

CoinBox()

8

(true)

Figure 3: Tree for du-pair 7.

7 Sequence Generation for Integration Testing
To illustrate our technique for integration testing we enrich the system with an additional component� �� #�������

, which uses services provided by the
� �� #��� ��5

component. In this case, we play the role of

6

class Drinker {
public:
Drinker();
void getThirsty();
void earn(int coins);
void drink();

}

Figure 4: Interface for component Drinker.

the user, who obtained the compiled component along with its specifications and the set of method
sequences exercising it. Therefore, in Figure 4 we only provide the interface of component

� �� #�������
in

a class declaration fashion.
In this case, the identification of the order of integration is trivial. We only have two components in

client-server relationship.

Table 3 shows a subset of the message sequences exercising the component. Messages between
square brackets represents indirect method invocations, i.e., messages sent by the client component to
the server component. Those invocations occur within methods of the client.

1 Drinker(), drink()
2 Drinker(), earn(3), drink(), [addQtr()], [addQtr()], [returnQtrs()], getThirsty(),

drink(), [addQtr()], [addQtr()], [Vend()]
3 Drinker(), getThirsty(), earn(5), drink(), [addQtr()], [addQtr()], [Vend()],

drink(), [addQtr()], [addQtr()], [Vend()], getThirsty()
4 ...

Table 3: Subset of sequences for component
� �� #�������

.

We integrate the components by following both approaches presented in Section 2. In the rest of this
section, we illustrate the sequences that are built during integration by suitably combining the sequence
identified in Section 6 for component

� �� #��� ��5
and the sequences shown in Table 3. Only a subset of

sequences are considered, in order to provide the reader with the essentials of the technique.
The first approach requires integration testing to be performed by simply trying to reproduce the

invocation sequences for component
� �� ��� �0�

involving component
� �� #��� ��5

on the subsystem com-
posed of the two components. We consider the subsystem as correct if

� indirect invocations take place as foreseen during unit testing,
� the outcomes of the invocation sequences are correct.

If the subsystem is behaving correctly, we can consider it as verified and proceed with the integra-
tion. In further steps of integration, the two components

� �� #��� ��5
and

� �� #�������
have to be considered

as a single component, whose interface simply consists in the interface of component
� �� #�������

. The
resulting invocation sequences are:

1
� ��� %��$���	��
 , � ��� %�
 � ����
 , �&
 �	%�����
 , ' ��� %�
���
����
 ' '
��-����
�� , �
 ' '
��-����
�� , � �����-���	%(
���������
�� , � ��������� ���,�� ���
 ,
' ��� %�
���
����
 ' '
��-����
�� , �
 ' '
��-����
�� , � # �&%4'!��
��

2
� ��� %��$���	��
 , � ��� %�
 � ����
 , � ��������� ���,�� ���
����&
 ��%"��#�
 , ' ��� %�
���
 , �
 ' '
����$��
�� , �
 ' '
����$��
�� , � #:�&%4'!��
�� ,
' ��� %�
���
����
 ' '
��-����
�� , �
 ' '
��-����
�� , � # �&%4'!��
�� , � ��������� ���,�� ���

The second approach requires the construction of invocation sequences by composition of the sets
of sequences exercising the client and the server, in order to exercise the client sequences for several
possible states of the server. Again, we consider the subsystem as correct if

� indirect invocations take place as foreseen during unit testing,
� the outcomes of the invocation sequences are correct.

7

If the subsystem is behaving correctly, we can consider it as verified and proceed with the integration.
In further steps of integration, the two components

� �� ��� ��5
and

� �� #�������
have to be considered as

a single component, whose interface consists in the union of the interfaces of both components. The
resulting invocation sequences are:

1
� ��� %��$���	��
 , � ��� %�
 � ����
 , �&
 �	%�����
 , ' ��� %�
���
����
 ' '
��-����
�� , �
 ' '
��-����
�� , � �����-���	%(
���������
�� , � ��������� ���,�� ���
 ,
' ��� %�
���
����
 ' '
��-����
�� , �
 ' '
��-����
�� , � # �&%4'!��
��

2
� ��� %��$���	��
 , � ' '
����$��
 , � ��� %�
��&����
 , �&
 �	%"����
��-' ��� %�
���
 , �
 ' '
��-����
�� , �
 ' '
��-����
�� , � ����������%(
��-������
�� ,
� �&������� ���,� ��
�� ' ��� %�
 ��
 , �
 ' '
��-����
�� , �
 ' '
��-����
�� , � # � %4'!��
��

3
� ��� %��$���	��
 , � ' '
��-����
 , � ' '
��-����
 , � ��� %�
��&����
�� �&
 �	%"����
 , ' ��� %�
���
 , �
 ' '
����$��
�� , �
 ' '
��-����
�� ,
� �����-���	%(
��-��� ��
������ �&������� ���,� ��
 , ' ��� %�
���
 , �
 ' '
��-����
�� , �
 ' '
��-����
�� , � #$�&%4'!��
��

4
� ��� %��$���	��
 , � ' '
����$��
 , � ' '
��-����
����*�&�����	%
���������
 , #��&%4'!��
 , � ��� %�
 � ����
 , �&
 �	%"����
 , ' ��� %
 ��
 ,
�
 ' '
��-����
������
 ' '
��-����
�� , � ���&�����	%
���������
�� , � �&������� ���,� ��
 , ' ��� %
 ��
 , �
 ' '
����$��
������
 ' '
��-����
�� , � # �&%('!��
��

5
� ��� %��$���	��
 , � ��� %�
 � ����
 , � ��������� ���,�� ���
����&
 ��%"��#�
 , ' ��� %�
���
 , �
 ' '
����$��
�� , �
 ' '
����$��
�� , � #:�&%4'!��
�� ,
' ��� %�
���
����
 ' '
��-����
�� , �
 ' '
��-����
�� , � # �&%4'!��
�� , � ��������� ���,�� ���

6
� ��� %��$���	��
 , � ' '
����$��
 , � ��� %�
 �&�$��
�� � ��������� ���,� ��
 , �&
 �	%"��#�
 , ' ��� %
 ��
 , �
 ' '
��-����
�� , �
 ' '
��-����
�� , � # � %4'!��
���� ' ��� %
 ��
 ,
�
 ' '
��-����
�� , �
 ' '
��-����
�� , � # �&%4'!��
�� , � ��������� ������ ��

7
� ��� %��$���	��
 , � ' '
����$��
 , � ' '
��-����
 , � ��� %
 �&����
�� � ��������� ���,�� ���
 , �&
 �	%"��#�
 , ' ��� %�
���
 , �
 ' '
����$��
�� , �
 ' '
��-����
�� ,
� # �&%4'!��
����-' ��� %�
���
 , �
 ' '
����$��
�� , �
 ' '
����$��
�� , � #$�&%4'!��
�� , � ����� �$� ���,� ��

8
� ��� %��$���	��
 , � ' '
����$��
 , � ' '
��-����
�������������%(
��-������
 , # �&%4'!��
 , � ��� %�
��&����
 , � ����� �$� ���,� ��
 , �&
 �	%���#�
 ,
' ��� %�
���
����
 ' '
��-����
�� , �
 ' '
��-����
�� , � # �&%4'!��
�� , ' ��� %�
 ��
 , �
 ' '
��-����
�� , �
 ' '
��-����
������ #$�&%4'!��
�� , � ����� �$� ���,� ��

A complete description of the technique, along with a fully developed example, can be found in [7].

8 Conclusions
This paper presents an approach for the automatic generation of test cases for unit and integration
testing of software components. The preliminary results of our investigations are quite promising. First,
our approach seems to be quite powerful in that the test cases we generate automatically can detect
subtle errors such as the ones contained the automated vending machine example. In addition, our
approach lends itself to the analysis of multiple integrated components. Our future investigation aims
at strengthening the techniques for symbolic execution and automated deduction. An implementation
of our approach is currently under way.

References
[1] The Common Object Request Broker: Architecture and Specification. Object Management Group, July

1996.

[2] S. Barbey, D. Buchs, and C. Péraire. A theory of specification-based testing for object-oriented
software. In Proceedings of EDCC2 (European Dependable Computing Conference), Taormina, Italy,
October 1996, LNCS (Lecture Notes in Computer Science) 1150, pages 303–320. Springer-Verlag,
1996.

[3] Javabeans documentation. http://java.sun.com/beans/docs/index.html.

[4] A. W. Brown and K. C. Wallnau. Enginnering of component-based systems. In A. W. Brown, editor,
Component-Based Software Engineering, pages 7–15. IEEE Press, 1996.

[5] N. Brown and C. Kindel. Distributed Component Object Model protocol: DCOM/1.0. Jan. 1998.

[6] M. Büchi and W. Weck. A plea for grey-box components. techreport 122, Turku Centre for Com-
puter Science, Turku, Finland, Sep 1997.

[7] U. Buy, A. Orso, and M. Valsasna. A framework for testing object-oriented components. Technical
report, Politecnico di Milano, Milan, Italy, December 1998.

[8] A. Coen-Porisini, F. De Paoli, C. Ghezzi, and D. Mandrioli. Software specification via symbolic
execution. IEEE Trans. Software Engineering, SE-17(9):884–899, Sept. 1991.

8

[9] R.-K. Doong and P. G. Frankl. The ASTOOT approach to testing object-oriented programs. ACM
Transactions on Software Engineering and Methodology, 3(2):101–130, Apr. 1994.

[10] M. J. Harrold and G. Rothermel. Performing data flow testing on classes. In 2nd ACM-SIGSOFT
Symposium on the foundations of software engineering, pages 154–163. ACM-SIGSOFT, December
1994.

[11] P. Jorgensen and C. Erickson. Object-oriented integration testing. Communications of the ACM,
37(9):30–38, September 1994.

[12] D. Kung, J. Gao, P. Hsia, Y. Toyoshima, C. Chen, Y.-S. Kim, and Y.-K. Song. Developing and oject-
oriented software testing and maintenance environment. Communications of the ACM, 38(10):75–86,
Oct. 1995.

[13] A. Orso. Integration Testing of Object-Oriented Software. PhD thesis, Politecnico di Milano, Milano,
Italy, 1998.

[14] C. Pfister and C. Szyperski. Why objects are not enough. In Proceedings, First International Compo-
nent Users Conference (CUC’96), Munich, Germany, jul 1996.

[15] C. Szyperski. Component Oriented Programming. Addison-Wesley, first edition, 1997. The book is
expected to be out in November 97.

9

