
Dytan: A Generic
Dynamic Taint Analysis

Framework
James Clause, Wanchun (Paul) Li,

and Alessandro Orso
College of Computing

Georgia Institute of Technology

Partially supported by:
NSF awards CCF-0541080 and CCR-0205422 to Georgia Tech,

DHS and US Air Force Contract No. FA8750-05-2-0214

C

A

B Z

C

A

B

3
1

2

Z

C

A

B

3
1

2

Z

3

Dynamic taint analysis
(aka dynamic information-flow analysis)

Dynamic tainting applications

Information policy enforcement

Attack detection / prevention

Testing

Data lifetime / scope

Dynamic tainting applications

Information policy enforcement

Attack detection / prevention

Testing

Data lifetime / scope

Attack detection / prevention
Detect / prevent attacks such as SQL injection, buffer overruns,

stack smashing, cross site scripting
e.g., Suh et al. 04, Newsome and Song 05,

Halfond et al. 06, Kong et al. 06, Qin et al. 06

Dynamic tainting applications

Information policy enforcement

Attack detection / prevention

Testing

Data lifetime / scope

Information policy enforcement
ensure classified information does not leak outside the system

e.g.,Vachharajani et al. 04, McCamant and Ernst 06

Dynamic tainting applications

Information policy enforcement

Attack detection / prevention

Testing

Data lifetime / scope

Testing
Coverage metrics, test data generation heuristic, ...

e.g., Masri et al 05, Leek et al. 07

Dynamic tainting applications

Information policy enforcement

Attack detection / prevention

Testing

Data lifetime / scopeData lifetime / scope
track how long sensitive data, such as passwords or account

numbers, remain in the application
e.g., Chow et al. 04

Motivation
Ad-hoc taint analysis

implementation
Results

Ad-hoc taint analysis
implementation

Ad-hoc taint analysis
implementation

Results

Results

Ad-hoc taint analysis
implementation

Results

Motivation

•Flexible

• Easy to use

•Accurate

Configuration

Dytan Generic
Framework

Custom Dynamic
Taint Analysis Results

Outline

! Motivation & overview

• Framework (Dytan)

• flexibility

• ease of use

• accuracy

• Empirical evaluation

• Conclusions

Framework: flexibility

Taint

sources

Propagation

policy

Taint

sinksConfiguration

Framework: flexibility

Taint

sources

Propagation

policy

Taint

sinks

Framework: flexibility

Taint

sources

Taint

sources

Propagation

policy

Taint

sinks

Which data to tag, and how to tag it

Framework: flexibility

Propagation

policy

Taint

sources

Propagation

policy

Taint

sinks

How tags should be propagated at runtime

Framework: flexibility

Taint

sinks

Taint

sources

Propagation

policy

Taint

sinks

Where and how tags should be checked

Taint sources

What to tag How to tag
Identify what program data
should be assigned tags

• Variables (local or global)

• Function parameters

• Function return values

• Data from an input stream
network, filesystem,
keyboard, ...

• Specific input stream
141.195.121.134:80,
a.txt,...

Describe how tags should be
assigned for identified data

• Single tag

• One tag per source

• Multiple tags per source

• ...

a.txta.txt

Taint sources
What to tag: a.txt

How to tag: single tag

a.txt

1 1 1 1 1 1

a.txta.txt

Taint sources
What to tag: a.txt

a.txt

1 1 1 1 1 12 31 4 5 n

How to tag: multiple tags

Affecting data Mapping function
Data that affects the outcome of a
statement through

• Data dependencies

• Control dependencies

A policy can consider both or
only data dependencies

Define how tags associated with
affecting data should be combined

• Union

• Max

• ...

Propagation policy

3

B

A

1
2

3C

3

if(X) {

 C = A + B;

}

1 2

Propagation policy

Affecting data:

control dependence

Mapping function:

data dependence

union

max

3

if(X) {

 C = A + B;

}

1 2

Propagation policy

Affecting data:

control dependence

Mapping function:

data dependence!

union

max
!

!

1 2

3

if(X) {

 C = A + B;

}

1 2

Propagation policy

Affecting data:

control dependence

Mapping function:

data dependence!

union

max

!

!

3

Where to check What to check
Location in the program to
perform a check

• Function entry / exit

• Statement type

• Specific program point

The data whose tags should
be checked

• Variables

• Function parameters

• Function return value

Taint Sinks

How to check
Set of conditions to check and a set of actions to perform if
the conditions are not met.

• validate presence of tags (exit or log)

• ensure absence of tags (exit or log)

• ...

Taint Sinks

cmd = read(file);

args = read(socket);

cmd = trim(cmd + args);

...

tok[] = parse(cmd);

exec(tok[0], tok[1]);

2

3

validate presence of:

validate absence of:

Taint Sinks

function: exec, param: 0

Where / what to check:

How to check:

Result:

cmd = read(file);

args = read(socket);

cmd = trim(cmd + args);

...

tok[] = parse(cmd);

exec(tok[0], tok[1]);

2
3

2

3

validate presence of:

validate absence of:

Taint Sinks

function: exec, param: 0

Where / what to check:

How to check:

Result:

cmd = read(file);

args = read(socket);

cmd = trim(cmd + args);

...

tok[] = parse(cmd);

exec(tok[0], tok[1]);

"

2
3

2

3

2 3

Framework: ease of use

• Basic

• Select sources, propagation policies, and
sinks from a set of predefined options

• XML based configuration

• Advanced

• Suitable for more esoteric applications

• Extend OO implementation

Provide two ways to configure the framework

Framework: accuracy

• Dytan operates at the binary level

• consider the actual program semantics

• transparently handle libraries

• Dytan accounts for both data- and control-
flow dependencies

• Address Generators

add %eax, %ebx // A = A + B
consumed: %eax, [%ebx] , %ebx

Two common examples:

• Implicit operands

add %eax, %ebx // A = A + B
produced: %eax , %eflags

Framework: accuracy
The most common source of inaccuracy is

incorrectly identifying the information
produced and consumed by a statement

 [] *

Outline

! Motivation & overview

! Framework

! flexibility

! ease of use

! accuracy

• Empirical evaluation

• Conclusions

Empirical evaluation

• RQ1: Can Dytan be used to (easily)
implement existing dynamic taint analyses?

• RQ2: How do inaccurate propagation
policies affect the analysis results?

• In addition: discussion on performance

RQ1: flexibility

• Selected two techniques:

• Overwrite attack detection [Qin et al. 04]

• SQL injection detection [Halfond et al. 06]

• Used Dytan to re-implement both techniques

• Measure implementation time

• Validate against the original implementation

Goal: show that Dytan can be used to (easily)
implement existing dynamic taint analyses

RQ1: results

• Implementation time:

• Overwrite attack detection: < 1 hour

• SQL injection detection: < 1 day

• Comparison with original implementations:

• Successfully stopped same attacks as the
original implementations

RQ2: accuracy impact

• Selected two subjects:

• Gzip (75kb w/o libraries)

• Firefox (850kb w/o libraries)

• Use Dytan to taint program inputs and measure
the amount of heap data tainted at program exit

• Compare Dytan against inaccurate policies

• no implicit operands (no IM)

• no address generators (no AG)

• no implicit operands, no address generators
(no IM, no AG)

Goal: measure the effect of inaccurate propagation
policies on analysis results

RQ2: results

0%

25%

50%

75%

100%

Firefox (1 page) Firefox (3 pages) Gzip

Dytan No IM No AG No IM, no IG

Performance

• In line with existing implementations

• Designed for experimentation

• Favors flexibility over performance

• Implementation can be further optimized

• Measured for gzip:

!30x for data flow

 !50x for data and control flow

• High overhead, but...

Related work

• Existing dynamic tainting approaches
[Suh et al. 04, Newsome and Song 05, Halfond et al. 06, Kong et al. 06, ...]

• Ad-hoc

• Other dynamic taint analysis frameworks
[Xu et al. 06 and Lam and Chiueh 06]

• Focused on security applications

• Single taint mark

• No control-flow propagation

• Operate at the source code level

Conclusions

• Dytan

• a general framework for dynamic tainting

• allows for instantiating and experimenting with
different dynamic taint analysis approaches

• Initial evaluation

• flexible

• easy to use

• accurate

Future directions

• Tool release (documentation, code cleanup)

http://www.cc.gatech.edu/~clause/dytan/

(pre-release on request)

• Optimization (general and specific)

• Applications

• Memory protection

• Debugging

Questions?

http://www.cc.gatech.edu/~clause/dytan/

