A Technique for Enabling and Supporting Debugging of Field Failures

James Clause and Alessandro Orso
College of Computing
Georgia Institute of Technology
{clause, orso} @cc.gatech.edu

Abstract

It is difficult to fully assess the quality of software in-
house, outside the actual time and context in which it will
execute after deployment. As a result, it is common for
software to manifest field failures, failures that occur on
user machines due to untested behavior. Field failures are
typically difficult to recreate and investigate on developer
platforms, and existing techniques based on crash report-
ing provide only limited support for this task. In this pa-
per, we present a technique for recording, reproducing, and
minimizing failing executions that enables and supports in-
house debugging of field failures. We also present a tool
that implements our technique and an empirical study that
evaluates the technique on a widely used e-mail client.

1. Introduction

Quality-assurance activities, such as software testing and
analysis, are notoriously difficult, expensive, and time-
consuming. As a result, software products are often re-
leased with faults or missing functionality. In fact, real-
world examples of field failures experienced by users be-
cause of untested behaviors (e.g., due to unforeseen us-
ages), are countless. When field failures occur, it is im-
portant for developers to be able to recreate and investigate
them in-house. This pressing need is demonstrated by the
emergence of several crash-reporting systems, such as Mi-
crosoft’s error reporting systems [13] and Apple’s Crash
Reporter [1]. Although these techniques represent a first
important step in addressing the limitations of purely in-
house approaches to quality assurance, they work on lim-
ited data (typically, a snapshot of the execution state) and
can at best identify correlations between a crash report and
data on other known failures.

In this paper, we present a novel technique for reproduc-
ing and investigating field failures that addresses the limita-
tions of existing approaches. Our technique works in three
phases, intuitively illustrated by the scenario in Figure 1. In
the recording phase, while users run the software, the tech-

nique intercepts and logs the interactions between applica-
tion and environment and records portions of the environ-
ment that are relevant to these interactions. If the execution
terminates with a failure, the produced execution recording
is stored for later investigation. In the minimization phase,
using free cycles on the user machines, the technique re-
plays the recorded failing executions with the goal of au-
tomatically eliminating parts of the executions that are not
relevant to the failure. In the replay and debugging phase,
developers can use the technique to replay the minimized
failing executions and investigate the cause of the failures
(e.g., within a debugger). Being able to replay and debug
real field failures can give developers unprecedented insight
into the behavior of their software after deployment and op-
portunities to improve the quality of their software in ways
that were not possible before.

To evaluate our technique, we implemented it in a proto-
type tool, called ADDA (Automated Debugging of Deployed
Applications), and used the tool to perform an empirical
study. The study was performed on PINE [19], a widely-
used e-mail client, and involved the investigation of failures
caused by two real faults in PINE. The results of the study
are promising. Our technique was able to (1) record all ex-
ecutions of PINE (and two other subjects) with a low time
and space overhead, (2) completely replay all recorded exe-
cutions, and (3) perform automated minimization of failing
executions and obtain shorter executions that manifested the
same failures as the original executions. Moreover, we were
able to replay the minimized executions within a debugger,
which shows that they could have actually been used to in-
vestigate the failures.

The contributions of this paper are:

e A novel technique for recording and later replaying exe-
cutions of deployed programs.

e An approach for minimizing failing executions and gen-
erating shorter executions that fail for the same reasons.

e A prototype tool that implements our technique.

e An empirical study that shows the feasibility and effec-
tiveness of the approach.

In House

Software S
1 J
- 5’5588827 e
LT

.
~
Replay and debugging phase
(in-house) Internet
—~
/,\
Software < //C> e
developers
Minimized N o
recording % k&(@
oSS
RS
& &
<
— 5 7 &
Local] ¢ ¢
repository -~

In the Field
Site 1
Recording phase | Minimization phase
(on-line) | (off-line)
Minimized
i recording
ADDA Recording Tool ey ADDA Minization Tool
— environment ————
Minimized
Users
Execution recording Execution recording
|
Event log Event log
Remote
repository
Site 2

(eJe]e)

1 Site n

Figure 1. An intuitive scenario of usage of our technique.

2. Related Work
This work encompasses several areas. We present the
most related efforts, organized into categories.

Record and replay. The techniques most closely related
to our approach are those that record and replay executions
for testing or debugging. Some of these techniques per-
form deterministic replay debugging, that is, replay of ex-
ecutions that led to a crash (e.g., [3, 9, 14, 15, 21]). Var-
ious commercial and research tools record and replay user
interactions with a software product for regression testing
(e.g., [11, 22, 23]). Unlike our approach, most of these
techniques are designed to be used during in-house testing
or debugging. The overhead they impose (on space, time,
or infrastructure required for recording) is reasonable for
their intended use, but would make them impractical for
use on deployed software. The few record and replay tech-
niques that are either defined to operate in the field (e.g.,
BugNet [14]) or may be efficient enough to be used in the
field (e.g., [9, 21]) require a specialized operating-system
or hardware support, which considerably limits their appli-
cability in the short term.

More recently, several researchers presented techniques
for recording executions of Java subsystems [5, 16, 17, 20].
These approaches are heavily based on Java’s characteris-
tics and target the recording of subsystems only. It would
be difficult to adapt them to work in a more general con-
text. Moreover, most of these approaches are defined to be
used in-house, for regression testing, and impose an over-
head that would prevent their use on deployed software.

Remote data collection. Pavlopoulou and Young propose
residual testing [18], which continuously monitors test obli-
gations not fulfilled in the development environment. The
Expectation-Driven Event Monitoring project [4, 7] col-
lects program-usage data to compare against an interaction
model. Elbaum and Diep [6] investigate ways to efficiently

collect field data (specifically, coverage data) that could be
used for improving the representativeness of test suites. The
Cooperative Bug Isolation project [2, 10] uses statistical
techniques to sample and analyze execution data collected
from real users and perform fault localization. These ef-
forts are all related to our research, in that they collect infor-
mation on-line and use it to augment in-house techniques.
However, none of these projects tries to record and repro-
duce field executions for debugging.

Debugging of deployed software. When a deployed pro-
gram fails, most modern operating systems generate a
crash report that the user can send to the developers (e.g.,
[1, 13]). Crash reports typically contain a snapshot of the
execution’s final state, which can be used to investigate the
causes of the crash. These systems address some of the
limitations of purely in-house approaches, but they are still
limited. When developers receive a report, they have little
information about the failure and can at best look for corre-
lations with other known failures. Existing techniques that
leverage field data to do fault localization for deployed soft-
ware (e.g., [8, 10]) can improve the situation by identifying
parts of the code that are likely to be faulty, but still do not
let developers reproduce and observe failing executions.

3. Technique and Tool

Our overall goal is to record, minimize, and replay (fail-
ing) executions of deployed software to support debugging
of field failures. Existing approaches for record and replay
have three main limitations with respect to this goal. The
first two, efficiency problems and need for specialized hard-
ware, were discussed in Section 2. The third limitation is
that none of these approaches is amenable to minimization
of the recorded executions. Most existing techniques record
executions in terms of low-level events, such as memory
accesses, and then reproduce these events exactly during
replay. Recording executions at a low-level of detail allows

for capturing all sources of non-determinism without having
to worry about types and sources of inputs, and works well
for replaying complete executions. When minimizing exe-
cutions, however, the greatest challenge is to maintain con-
sistency while eliminating parts of the execution. Low-level
event logs contain events that are highly dependent on one
another. Due to these dependencies, removing even a sin-
gle event from a log is often enough to make the rest of the
execution inconsistent and, thus, unusable. We and other
researchers experienced this issue while trying to minimize
recorded executions (e.g., [16, 20]).

In the next sections, we discuss how we addressed the
above issues to develop a record and replay technique that

e is efficient enough to be used on deployed programs,

e does not require any specialized hardware,

e can replay executions in a sandbox, and

o is flexible enough to support minimization of executions.

3.1. General Approach

This section provides a high-level description of our
technique. Low-level aspects of the approach and imple-
mentation details are presented in Section 3.2. One novelty
of our approach is that it steps away from replay techniques
that drive a program (almost) statement by statement based
on a recorded event log. We use an execution log when re-
playing entire executions, but discard it almost completely
otherwise. Intuitively, our technique treats executions as se-
quences of interactions between software and environment.

While the software interacts with the environment
through the Operating System (OS), by accessing different
I/O streams (e.g., keyboard input, network, and files), our
technique intercepts such interactions and produces an exe-
cution recording that consists of an event log and a set of en-
vironment data. The event log records relevant information
on the observed interactions. The environment data consist
of a dump of the input streams used by the software (stream
dumps) and a copy of the files accessed by the software (en-
vironment files). Stream dumps also contain metadata that
provide grouping and timing information for the data in the
streams, used during minimization. Using the information
in event logs and environment data, our technique can re-
play recorded executions in two ways. The first way is to
perform a complete replay. In this case, our technique re-
plays the execution as it was recorded, by enforcing the se-
quence of events in the log and providing the program with
data from the stream dumps at the appropriate times. The
second way is to perform a minimized replay by trying to
eliminate as much data as possible from the stream dumps,
discarding the event log, and letting the program run on this
set of reduced inputs. In the case of a failing user execu-
tion, a minimized replay that still fails in the same way as
the original execution would provide developers with a way

to not only debug the field failure, but also to do it on an
execution in which some of the parts that are irrelevant for
the failure have been eliminated.

We are aware of the issues of privacy involved with the
proposed approach. At this stage of the research, how-
ever, we think it is more important to focus on the tech-
nical aspects of the problem and show the feasibility of
our approach. Moreover, there are several ways in which
these issues could be addressed. One possibility is to show
users the collected data and let them decide whether to send
the minimized executions. Other possibilities include data-
sanitization techniques and incentive mechanisms (e.g., free
updates for participating users).

3.1.1. Recording Executions

When recording executions, our technique intercepts
three kinds of actions performed by the software: POLL,
FILE, and PULL. Each action refers to a specific input
stream (current stream, hereafter) or file. For each type of
action, the technique updates the event log and the environ-
ment data, by either adding files to the set of environment
files or modifying the stream dump for the current stream.

POLL actions are performed by the software to check
for availability of data on an input stream. For each POLL
action, our technique adds to the event log a POLL event
with the following information: (1) a unique id for the cur-
rent stream; (2) the outcome of the POLL action (OK if data
were available on the specified stream, or NOK otherwise);
and (3) the amount of time elapsed before the software ob-
tained a response to the POLL action. If the outcome of
the POLL is positive, the technique also adds the amount of
time elapsed, in the form of metadata, to the stream dump
associated with the current stream.

FILE actions are interactions between the software and
a filesystem. For each FILE action performed by the soft-
ware, our technique checks to see if the action is the first
reference to a specific file or directory.! If so, it copies the
file into the set of environment data and stores the file’s
properties (e.g., owner, permissions, time stamps). The
technique then increments a FILE-action sequence num-
ber and adds to the event log a FILE event that specifies
(1) the current sequence number and (2) the name of the
file being accessed. For subsequent accesses to the same
file, the technique checks whether the file has been exter-
nally modified (by checking its modification time against
the file’s stored properties). If not, the technique increments
the FILE-action sequence number, updates the file proper-
ties if needed, and does not log any event. Otherwise, a new
version of the file is stored in the environment data and a
new entry for the file is created in the event log. A numeric
suffix distinguishes different versions of a file.

IFor simplicity, in the rest of the paper, we use the term file to refer to
both files and directories, unless otherwise indicated.

777777777777 Event log ————————————
PARAMS -I i

FILE 01 /etc/nsswitch.conf.l

FILE 02 /home/clause/.pinerc.1l

POLL STREAMO1l NOK 8000

POLL STREAMO1l OK 5680

PULL STREAMO1 1

POLL STREAMO1l OK 1986

PULL STREAMO1l 3

FILE 41 /var/spool/mail/clause.2
FILE 63 /var/spool/mail/clause.3
————— Environment data: Files ————-—
/etc/nsswitch.conf.1l
/home/clause/.pinerc.1l
/var/spool/mail/clause.l
/var/spool/mail/clause.?2
/var/spool/mail/clause.3

———- Environment data: STREAMQ1 -—-
{time:5680} |m|{time:1986} |sko|{separator}..

Figure 2. Example of recorded execution.

PULL actions are atomic reads of some amount of data
from a stream. For each PULL action performed by the
software, our technique first adds to the event log a PULL
event that contains (1) a unique id for the current stream
and (2) the amount of data being read in bytes. Then, the
technique groups the data being read and appends the group
to the appropriate stream dump, creating a new dump if one
does not already exist.

Finally, if the last observed action accessed stream s1,
and the new action either refers to a different stream or is
a FILE action, the technique adds, as metadata, a separator
marker to the stream dump for s1, in its current position.

Figure 2 shows an example of execution log and environ-
ment data generated by our recording technique. The first
log entry contains the command-line parameters used for
the software. The following two entries are FILE events that
indicate a first access to Version 1 of two different files. For
each entry, there is a corresponding file in the set of environ-
ment files (restored during replay). The first POLL event in
the log is an unsuccessful polling of the input stream with id
STREAMO1. The third attribute of the event indicates that
the POLL waited for eight second before receiving a nega-
tive response. Conversely, the next POLL event received a
positive response after 5,680 milliseconds, as shown both in
the event log and in the metadata associated with the stream
dump (shown within brackets and in boldface). After that,
the program read one byte from stream STREAMO1 (char-
acter “m” in the corresponding stream dump). The situation
is analogous for the next POLL and PULL entries, except
that three characters are read in this case, and the three char-
acters appear thus as a group in the stream dump. Because
the program then switched from an access to STREAMO1 to
a FILE action, the metadata for STREAMO01’s dump contain
a separation marker in the current position. The two FILE
events correspond to the first accesses to Versions 2 and 3
of the user’s mailbox, respectively. The difference in the
value of the sequence numbers for the two events indicates
that there have been 21 additional FILE actions between
the two, but none of them was a first access to a new or
externally-modified file.

3.1.2. Replaying Executions

Our technique replays executions in a sandbox, which
has two main advantages. First, it does not need the orig-
inal user environment, which allows for replaying an exe-
cution in a different environment than the one where it was
recorded. In particular, it allows for replaying in-house ex-
ecutions captured in the field. Second, it eliminates side ef-
fects of the replayed executions, which prevents potentially
harmful actions performed by the replayed software from
occurring (e.g., deletion of files, modification of databases,
transmission of files over the network).

In this section, we describe how our technique performs
complete replay. Minimized replay is described in the next
section. To completely replay an execution, our technique
sets the current position in the event log and in the stream
dumps to their first entry, initializes the sandbox that will
contain the filesystem for the replay, and executes the soft-
ware using the command-line parameters stored in the event
log. Then, it lets the software run while intercepting the
same software actions it intercepted during recording (plus
output actions that need to be prevented from executing).

When the software performs a POLL action, the tech-
nique retrieves the outcome of the action and the response
time from the current log entry. It then returns the retrieved
outcome to the software after the specified response time.
For the first POLL event in our example log, for instance,
the technique would wait for eight seconds and then return
a negative result to the software.

When the software performs a FILE action, the tech-
nique increments a FILE-action sequence number and then
checks whether the current event in the log is a FILE event
with a matching sequence number. If so, the technique re-
trieves the corresponding file version from the environment
data and restores it, with the correct attributes, to the sand-
box. Otherwise, no file is restored. If the FILE action refers
to the file by name (e.g., in a file open), the technique ma-
nipulates that parameter of the call so that it refers to the file
in the sandbox. For the last FILE action in our example, the
technique would copy /var/spool/mail/clause.3
from the environment data, together with its attributes, to
{sandbox dir}/var/spool/mail/clause.

When the software performs a PULL action, the tech-
nique reads from the event log the id of the stream being
accessed and the amount of data to be read. It then reads
that amount of data from the stream dump corresponding
to the stream id and returns the data to the program. For
the first and second PULL actions in our example, the tech-
nique would return one and three bytes, respectively, from
the stream dump corresponding to id STREAMOLI.

3.1.3. Minimizing Executions

The goal of execution minimization is to transform fail-
ing executions into shorter executions that can be used to

efficiently investigate the failure. The way to check whether
two executions, a minimized and an original one, fail in the
same way may depend on the failure considered and on the
context. Section 4.4 discusses how we performed this check
in our experiments. Our technique minimizes along two di-
mensions, time and environment, in four steps.

In Step 1, the technique performs partial fast forward
of executions by eliminating idle times due to unsuccessful
POLL actions (i.e., polling calls that returned after a time-
out because no data were available). To do this, the tech-
nique returns a negative response immediately to all such
actions. The result is an execution in which reading data
and processing inputs are replayed at their original speed,
whereas the time during which the software was idle wait-
ing for input is eliminated. If partial fast forward produces
an execution that still manifests the original failure, our
technique moves to Step 2. Otherwise, it stops the mini-
mization process and stores the original execution.

In Step 2, the technique pushes the time compression
further and performs complete fast forward by eliminating
all idle times in the replayed executions. Besides im-
mediately returning a negative response to all unsuccessful
POLL actions, the technique immediately returns a positive
response to all successful POLL actions as well. With com-
plete fast forward, executions have virtually no idle time.
If the time compression changed the outcome of the exe-
cution, our technique notifies Step 3 to operate in partial
fast forward mode, that is, to use the timing information in
the stream dumps instead of disregarding it. Otherwise, the
technique performs Step 3 in complete fast forward mode.

Steps 1 and 2 are concerned with minimization along the
time dimension and can considerably reduce the duration
of a failing execution. Steps 3 and 4, conversely, perform
minimization of the environment by trying to minimize files
and stream dumps, respectively.

To minimize files, Step 3 replaces all environment files
with files of size zero and then replays the execution. If
the execution still manifests the original failure, it means
that the content of the files is irrelevant for the failure and
can be removed. If the execution does not fail, or fails for
different reasons, the technique tries again by zeroing only
one half of the files. The process continues until the tech-
nique identifies which files, if any, can be eliminated with-
out modifying the outcome of the execution. In our empir-
ical evaluation, this process was able to eliminate a large
percentage of files (around 86% on average). For the files
left, the technique performs minimization at a finer level of
granularity. It tries to eliminate parts of the files, checks
whether the original failure still occurs, and backtracks and
tries a different alternative otherwise. This second part of
Step 3 is meant to be flexible and allow for using a range of
minimization algorithms. The rationale for this decision is
to enable the use of developer-provided minimization algo-

rithms, which can take into account the structure of the files
used by the software and be more effective in reducing their
size. If no customized algorithm is provided, we can default
to the use of a standard input-minimization algorithm, such
as the widely-used delta debugging [24].

The final step of the minimization, Step 4, operates sim-
ilarly to Step 3, but on stream dumps. The minimization is
also performed hierarchically. Initially, the technique tries
to eliminate parts of the stream dumps that correspond to
contiguous actions referring to the same stream. To iden-
tify these groups, we use the separator marks added to the
stream dumps during recording. Based on our initial expe-
rience, it is common to observe large sequences of consec-
utive accesses to the same source. Our intuition, confirmed
by our empirical results, is that these groups of events map
to specific high-level operations in the software (or even
phases) and can sometimes be eliminated without affecting
the overall outcome of the execution.

After performing this high-level minimization, our tech-
nique tries to further minimize the stream dumps at the data-
group level (i.e., by considering as a unit groups of data that
were read atomically by the software in the original execu-
tion). This step also allows for using externally-provided
minimization algorithms and defaults to a standard input-
minimization algorithm if no custom algorithm is specified.

Steps 1 through 4 can be performed several times, un-
til no additional minimization is achieved or until a given
time threshold is reached. Additional iterations might ex-
pose possible synergies between different steps (e.g., elim-
inating parts of a stream dump may allow for eliminating a
file that was previously necessary).

Replaying Minimized Executions. In the discussion so
far, we purposely glossed over technical issues related to the
replay of minimized executions. Whereas time-based min-
imization is still driven by the event log, and thus ensures
some degree of control on the execution of the software,
input-based minimizations do not rely on the event log. The
reason for this difference is that input-based minimizations
reduce or even eliminate inputs (files and streams), which
can result in a potentially large number of log entries being
inconsistent with the actual replayed execution. For exam-
ple, consider the effect of removing all data from stream
STREAMO1 in the log of Figure 2. All successful POLL
events for that stream would be inconsistent with the envi-
ronment, and all PULL events for the stream could not be
replayed because there would be no data to read.

This simple example is representative of what would
happen with traditional record and replay techniques that
are completely based on recording and replaying a log. Our
technique uses a log when performing complete (and fast-
forward) replay, but can also replay without having to en-
force a specific sequence of events. Thanks to its notion
of environment and to the way it records files and streams,

our technique can replay in the presence of a minimized
environment by (1) still intercepting the usual software ac-
tions, and (2) responding to these actions based on the state
of the minimized environment instead of the information in
the log, as follows.

If the software performs a POLL action, the technique
returns a negative result if there is no data in the correspond-
ing stream dump. Otherwise, it returns a positive response
either right away (complete fast forward mode) or after
the timeout specified at the current position in the stream
dump (partial fast forward mode). If the software performs
a PULL action, our technique reads and returns the next
group of data in a stream, if any. The situation for a FILE
action is slightly more complex in the presence of files with
multiple versions. In such a situation, without relying on se-
quence numbers, our technique cannot distinguish between
actions that should access a new version of a file and ac-
tions that should access the current version. To address this
issue, our technique uses a single version of a file through-
out a (minimized) execution. In particular, it tries in turn
the last, the first, and then the intermediate versions.

Obviously, there are many ways in which an execution
could take a wrong path and either not fail or manifest a
different failure. However, as our empirical results show,
the flexibility of our approach allows for identifying many
executions that maintain their behavior of interest (the fail-
ure) even when run on a different set of environment data.

3.2. The ADDA Tool

To experiment with our technique, we implemented it
in a tool called ADDA (Automated Debugging of Deployed
Applications). The first implementation challenge we faced
with ADDA was how to intercept interactions between soft-
ware and environment. As a first attempt at this task, we
decided to focus on interactions with the OS and not con-
sider interactions occurring through a windowing system.
Also, we decided not to record and replay concurrency-
related events, which may prevent ADDA for performing
deterministic replay in some cases (but was not a problem
for our studies). Because interactions with the OS occur
through system-library calls, we considered two alternative
approaches: operating at the system-call level or at the C-
library level. For our current implementation, we decided
to work at the C-library level because instrumenting at the
system-call level has several drawbacks. For example, at
the system-call level there is no explicit notion of parameter
types and number (for function calls). Also, it is difficult to
limit the amount of instrumentation code executed because
it is not always possible to distinguish relevant from non-
relevant calls based on the context. Instrumenting at the
C-library level eliminates these and other drawbacks, but
limits the applicability of the technique to software writ-
ten in C or C++. Given the high percentage of applications

written using these languages, we believe this to be a minor
limitation.

A second challenge was the mapping of C-library func-
tions to POLL, FILE, and PULL actions. (Note that ADDA
also intercepts additional function calls, such as rand, to
account for some sources of non-determinism in complete
replay. During minimized replay, these calls are not inter-
cepted.) For many functions, the mapping is trivial. For
example, functions such as open and stat map naturally
to FILE actions, and functions such as select and poll
map naturally to POLL actions. For other functions, how-
ever, the mapping is more complex. For example, function
read can map to both POLL and PULL actions, depend-
ing on the context. Luckily, the number of C-library calls to
be considered for a given platform is small enough to allow
for an exhaustive study of their characteristics. We stud-
ied, classified, and mapped the functions in the C library
as a preliminary step towards our implementation of ADDA.
ADDA uses this information to redirects to wrapping func-
tions all relevant calls from the software to the C library,
using binary instrumentation. The wrapping functions in-
voke the original functions while recording the information
needed to update the event log and the environment data
(e.g., dataread from streams and timing information).

The current implementation of ADDA is based on the Pin
binary instrumentation framework [12]. We chose Pin for
several reasons. First, it allows for instrumenting binaries
on the fly, so we can perform execution recording and re-
play of a software without any need to modify the software
beforehand. Second, Pin can be very efficient, which is a re-
quirement for our technique to work on real deployed soft-
ware. Third, Pin works on a large number of architectures
that include IA32 (Mac OS X, Windows, and Linux), IA32e
(Linux), Arm (Linux), and Itanium (Linux).

The minimization component of the ADDA tool is im-
plemented as an extensible set of Python scripts that invoke
the ADDA replay tool. As discussed in Section 3.1.3, we
want the minimization module to allow for plugging dif-
ferent minimization algorithms for different types of files
and stream dumps. To avoid problems of bias, for our ex-
periments we have used the default minimization algorithm
based on delta debugging [24].

4. Empirical Evaluation

To assess the feasibility and effectiveness of our ap-
proach, we performed an empirical evaluation using ADDA
and investigated the following research questions:

RQ1: Feasibility — Can ADDA record and replay real
executions in an accurate way?

RQ2: Efficiency — How much time and space overhead
does ADDA impose while recording executions?

RQ3: Effectiveness — Can ADDA automatically reduce

the size of recorded failing executions and generate shorter
test cases that manifest the same failures as the original ex-
ecutions? Can these executions still be used to debug the
observed failure?

The following sections explain our experimental setup and
discuss the results of our empirical evaluation.

4.1. Subject and Data

In selecting a subject for our study, our goal was to create
arealistic instance of the scenario shown in Figure 1. To this
end, we selected PINE [19], a widely used e-mail and news
client developed at the University of Washington. We chose
PINE because it is a non-trivial program, with a large user
base and, moreover, PINE’s developers provide source code
and change logs for many previous versions of the software
(the earliest ones dating back to 1993).

After studying several versions of PINE, we selected ver-
sion 4.63, which contains two faults that were fixed in the
subsequent version. The fact that the faults were docu-
mented and fixed is a good indication that they were (1)
discovered in the field and (2) considered relevant enough to
be worth fixing. Because knowledge about these faults and
their manifestation is important for a correct understanding
of our study, we describe them in detail in the next section.

4.2. Faults Considered

Header-color fault. This fault causes PINE to crash if (1)
color is enabled in PINE’s configuration, (2) a user adds one
or more header colors, and (3) a user removes all header
colors. This fault is ideal for our study because it was not
discovered during in-house testing and resulted in field fail-
ures, which is the scenario we are targeting.

There are several ways in which a user can expose this
fault and trigger the corresponding failure. Figure 3 shows
three possible sequences of actions (and environment con-
ditions) that we considered in our study. An edge between
two actions A and B indicates that A must occur before B,
but there can be any number of different interleaving actions
between the two. For example, users could read and write
several email messages between the time they save the con-
figuration file and the time they go back to the configuration
to delete header colors.

Address book fault. This fault causes PINE to crash if (1)
the address book contains two entries with the same nick-
name and (2) the user edits the first of these entries changing
it from a single address to a list of addresses. One unique
characteristic of this fault, which makes it especially inter-
esting for our evaluation, is that PINE does not let users cre-
ate two entries with the same nickname. For the fault to
manifest, it is thus necessary to perform an external edit
of the address book. For this fault, simply recreating user
actions is not enough to reproduce the failure because the
environment also plays a fundamental role in the outcome.

environment:
irrelevant

go to configuration

environment:
pine configuration file with
"color" enabled

environment:
pine configuration file with
"color" enabled and at
least a header color set

L]

enable color

go to configuration |

| go to configuration |

save configuration

add a header color

remove all header
colors

go to configuration

save configuration

i

add a header color

save configuration

go to configuration

remove all header
colors

i

go to configuration

remove all header
colors

2iE

Legend:

I:l User action in pine

— Actions sequentiality

Figure 3. Possible sequences of actions that
trigger the header-color faulit.

environment:
irrelevant

open address book

add entry with
nickname "abc"

save address book
open address book

add entry with
nickname "xyz"

save address book

I ™ "external modification: |
I change address book entry's :
|

! _nickname from ”xe” 10 "abc”

[open address book]

environment:
two entries in address
book with nickname "abc”

environment:
one entry in address book
with nickname "abc”

[open address book] [open address book]

add entry with
nickname "xyz"

add second e-mail
address to first entry
with nickname "xyz"

save address book

[save address book]

i
add to address book entry |
with nickname "abc" |

e

open address book

add second e-mail
address to first entry
with nickname "xyz"

[save address book]

add second e-mail
address to first entry
with nickname "abc"

save address book

S8

Legend:

D User action in pine
-
[

_ 7“ External (user) action

— Actions sequentiality

Figure 4. Possible sequences of actions that
trigger the address-book fault.

There are several ways in which a user can expose this
fault. Figure 4 shows three possible alternatives that we
considered. The figure uses the same notation as Figure 3
but also shows external user actions—actions performed
outside of PINE that affect PINE’s behavior.

4.3. Collecting PINE’s Execution Recordings

To assess replay and minimization capabilities of ADDA
we need a set of executions that expose the failures consid-
ered. Moreover, these executions should be rich and varied.
They should contain both actions that contribute to the fail-
ure and actions that do not contribute to the failure. Because
executions captured from a sample of user sessions would
be unlikely to trigger the failing behavior, and simply creat-
ing the executions ourselves could create problems of bias,
we decided to generate executions in a random fashion.

Using PINE’s manual, we compiled a list of high-level
user actions. We then associated weights to actions to indi-
cate the likelihood of users performing a given action. For
example, we expect users to read and send email more of-
ten than they update PINE’s configuration. We then wrote a
simple program that produces random execution scripts of
a given length. Each execution script contains, interleaved
with other actions, one of the core sequences of actions
shown in Figures 3 and 4.

Overall, we generated 20 execution scripts (10 for each
of the two faults considered), containing between 10 and
100 high-level actions each. For each execution script, we
first executed the script on PINE, run normally, and verified
that the actions in the script produced the expected failure.
We then executed the script again while recording the exe-
cution. At the end of this process ADDA had produced 20
execution recordings, one per script.

The next sections describe our studies and results. All
studies were performed on a dual-processor Pentium D,
3.0Ghz, with 4GB of memory, running GNU/Linux 2.6.

4.4. Studies, Results, and Discussion

RQ1: Can ADDA record and replay real executions in an
accurate way? To address RQ1, we replayed each execu-
tion recording and checked whether the execution failed as
expected. To do this, we checked that (1) the replayed exe-
cution crashed due to the same process signal as the original
execution, and (2) the value of the instruction pointer was
the same in the two cases. For all 20 executions, ADDA was
able to correctly reproduce PINE’s failing behavior.

To reduce the threats to external validity of this first
study, we recorded and fully replayed executions of two ad-
ditional subjects: BC, a numeric processing language with
arbitrary precision, and GCC, a widely used C compiler. We
used Version 1.06 of BC (17 KLOCs) and Version 4.0.3 of
GCC (around 1,000 KLOCs). As inputs for BC, we used
several programs from the set of BC number theory pro-
grams (http://www.numbertheory.org/gnubc/)
run with random numeric arguments. To verify whether the
record and replay worked successfully, we simply checked
the final results of the original and replayed executions.
For gcc, we recorded the compilation of a set of student
projects and used the correct termination of the compilation
as the indicator of a successful replay. For both subjects,
all executions were recorded and replayed correctly to the
extent that we could verify.

These results show the feasibility of our approach. In the
cases considered in the study, ADDA was able to record and
replay complete executions.

RQ2: How much time and space overhead does ADDA
impose while recording executions? We expect our
technique to impose low time overhead during recording.

Interactions between software and environment typically in-
volve I/O operations that are relatively expensive and are
likely to dominate the cost of our instrumentation.

It would be difficult to measure the overhead imposed
by our technique on PINE, due to its interactive nature.
Although we did not experience any noticeable overhead
while recording the execution scripts, ours is just a qualita-
tive and subjective assessment. To obtain a quantitative and
more objective assessment of the cost of the approach, we
measured the overhead imposed by ADDA on the additional
two subjects used in the previous study: BC and GCC. For
all executions, the difference between the execution times
with and without ADDA was too small to be measured using
UNIX’s time utility. Therefore, at least for these subjects
and executions, the overhead was negligible.

Despite these results, there may be cases in which our
approach imposes a non-negligible overhead. In particu-
lar, if an application accesses very large files that are of-
ten changed externally, ADDA would make several copies
of these files, which may involve a large time and space
overhead. However, we do not expect situations of this kind
to be very common. If we do encounter cases where our
approach is too costly, there are ways to improve its effi-
ciency. For example, for the issue mentioned above, we
may modify our technique so that it uses a differencing-
based approach to save only deltas instead of complete file
versions.

RQ3: Can ADDA automatically reduce the size of
recorded failing executions and generate shorter test
cases that manifest the same failures as the original ex-
ecutions? Can these executions still be used to debug
the observed failure? To address RQ3, we fed the 20
execution recordings for PINE to the ADDA minimization
tool, which produced 20 corresponding minimized record-
ings using the four steps discussed in Section 3.1.3. The
minimization step took at most 75 minutes per execution.
As we did for RQ1, we verified that the minimized exe-
cutions exhibited the same failing behavior as the original
executions by checking process signal and value of the in-
struction pointer at the time of the crash. Figure 5 shows a
bar chart with the results for the two sets of executions.

For each set, the bar chart shows the average percentage
reduction achieved by ADDA for four measurements: total
size of the stream dumps (streams size), total size and num-
ber of environment files (files size and # files, respectively),
and number of unique instructions executed during replay
(# unique instructions).

As the figure shows, ADDA was able to minimize execu-
tions along all four measurements, and for three of them
it achieved a considerable reduction: on average, it was
able to (1) reduce the streams size by almost 95% (from
about 300 to 16 characters), (2) eliminate more than 85%

70

0O Header-color fault
60 — B Address book fault

50

30

20

BE= B

streams size

Average value after minimization (%)

i

files size # files # unique

instructions

Figure 5. Results of the minimization per-

formed by ADDA.
of the environment files (from 32 to three), and (3) reduce
the total size of the environment by more than 90% (from
approximately 800KB to 72KB). Whereas these first three
measurements considered are indicative of ADDA’s effec-
tiveness in reducing execution recordings’ size, the fourth
measurement (number of unique instructions executed) is
an indicator of how much the minimization can help debug-
ging: having less instructions to inspect with respect to the
original failing executions has the potential to speed up de-
bugging. As our results show, ADDA was able to generate
minimized executions that exercised 42% (for the header-
color fault) and 57% (for the address-book fault) of the in-
structions exercised by the original executions. Although
there may be no direct connection between these results and
the reduction in debugging effort, the results are encourag-
ing. Moreover, we stress that the possibility of replaying
and debugging (in-house) failing field executions, even in
the case of little of no reduction, would be a considerable
improvement over the state of the art.

Note that we chose to show the reduction in the number
of executed instructions instead of the reduction in execu-
tion time for fairness. PINE is driven by user actions, so
its running time could increase simply due to idleness that
would be eliminated during minimization and unnaturally
inflate the savings. Note also that, when recording PINE’s
executions, we generated just the minimal amount of inputs
needed to perform the actions in the script. For example, for
all e-mail-sending actions, we wrote one-liner e-mails with
one-word subjects. We chose this approach again to avoid
an artificial inflation of the savings achieved by our tech-
nique (e.g., minimizing a 10,000-character email would
certainly result in a larger reduction than eliminating a 10-
character email). Because we followed the same principle
wherever applicable, using ADDA on executions recorded
from actual users is likely to result in even larger reductions
than the ones we obtained in this study.

Looking at the different results, we were especially
pleased by the amount of reduction achieved by ADDA on
the environment data. In almost all cases, the tool was

able to completely eliminate a large percentage of files and
also considerably reduce the size of the remaining files and
streams. For example, there is a common group of three
files that are necessary for both faults: PINE’s configuration
file, /etc/passwd, and /lib/terminfo/x/xterm.
Although the technique was not able to minimize the
xterm terminfo file, probably because of its binary con-
tent, it reduced /etc/passwd to a single line, the one
with the entry for the email user, and PINE’s configuration
file to one or two lines, depending on the execution. In-
terestingly, one of these two lines is the one that records
whether PINE has been run at least once already, to avoid
opening PINE’s greeting message multiple times. When that
line was removed, no execution failed because PINE was
stuck on the greetings page, waiting for an acknowledgment
from the user (and none of the recorded keyboard streams
contained the right key presses).

To gain some confidence that the executions recorded
and minimized by ADDA can actually be used for debug-
ging, we also performed a preliminary study on four of
the 20 execution recordings. (We simply picked the first
two executions generated for each fault.) For the study,
we attached a well-known debugging tool, gdb (http:
//www.gnu.org/software/gdb/), to the replayed
executions and used the tool to debug PINE while it was
being replayed by ADDA. The result of the study was suc-
cessful, and we were able to perform typical debugging ac-
tions, such as stopping at a breakpoint or watching the value
of a variable, on the replayed executions.

Because we performed most of our studies on a single
subject, they may not generalize. However, the subject we
used is real and widely used, the faults we considered are
real faults that were not discovered during testing, and we
also performed a subset of the studies on two additional
subjects. Therefore, although more studies are needed, our
initial results with ADDA are promising and motivate addi-
tional research in this area.

5. Conclusion and Future Work

We presented a technique for debugging failures of de-
ployed software—failures that occur while the software
runs on user platforms. Our technique allows for recording,
replaying, and minimizing user executions. The resulting
minimized execution can then be used to debug the prob-
lem(s) leading to the observed failure.

We also presented ADDA—a prototype tool that imple-
ments our technique, is based on binary dynamic instru-
mentation, and works on x86 binaries—and an empirical
evaluation of the approach performed using ADDA. The re-
sults of our evaluation, although still preliminary, show that
our approach is effective and practical, at least for the sub-
ject and executions considered. Overall, ADDA was able to
efficiently record many failing executions of a real program

and considerably reduce the size of the recorded executions
while preserving their failing behavior. Moreover, we were
able to replay and examine the minimized failing executions
from within a debugger, which provides evidence that they
could be used to investigate the original failure and support
the scenario we sketched in Figure 1.

There are several directions for future work. First, we
will perform additional studies with real users in our lab.
Second, we will investigate how to extend our technique to
handle interactions with a windowing systems. One possi-
bility is to treat the windowing system as part of the soft-
ware when intercepting interactions with the environment.
Alternatively, we may be able to add (part of) the API of the
windowing system to the set of calls that our approach inter-
cepts and consider GUI events as an additional class of in-
put streams. Third, if further studies show that concurrency
creates problems for ADDA, we will also investigate ways to
add concurrency-related events to our approach (leveraging
Pin’s support for concurrency [12]). Fourth, we will inves-
tigate ad-hoc minimization algorithms. Although our initial
experience shows that our current minimization approach
can reduce the size of the recorded executions, we believe
that more sophisticated techniques can produce even better
results. Finally, we will study ways to apply anonymization
techniques to the recorded (and minimized) executions.

Acknowledgments

This work was supported in part by NSF awards CCF-
0541080 and CCR-0205422 to Georgia Tech.

References

[1] Apple Crash Reporter, 2006. http://developer.
apple.com/technotes/tn2004/tn2123.html.

[2] The Cooperative Bug Isolation Project, 2006. http://
www.cs.wisc.edu/cbi/.

[3] S.-K. Chen, W. K. Fuchs, and J.-Y. Chung. Reversible De-
bugging Using Program Instrumentation. [EEE Trans. on
Software Engineering, 27((8)):715-727, August 2001.

[4] Expectation-Driven Event Monitoring (EDEM), 2005.
http://www.ics.uci.edu/~dhilbert/edem/.

[5] S. Elbaum, H. N. Chin, M. Dwyer, and J. Dokulil. Carv-
ing Differential Unit Test Cases from System Test Cases. In
Proc. of the 14th ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering (FSE 2006), November 2006.

[6] S. Elbaum and M. Diep. Profiling Deployed Software: As-
sessing Strategies and Testing Opportunities. [EEE Trans.
on Software Engineering, 31(4):312-327, 2005.

[7]1 D. M. Hilbert and D. F. Redmiles. Extracting Usability In-
formation from User Interface Events. ACM Computing Sur-
veys, 32(4):384-421, Dec 2000.

[8] J. A. Jones, A. Orso, and M. J. Harrold. Gammatella: Vi-
sualizing Program-execution Data for Deployed Software.
Information Visualization, 3(3):173-188, 2004.

[9] S.King, G. Dunlap, and P. Chen. Debugging Operating Sys-
tems with Time-traveling Virtual Machines. In Proc. of the
Usenix Annual Technical Conf., pages 1-15, April 2005.

(10]

(1]

[12]

(13]

(14]

(15]

(16]

(7]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. . Jordan.
Scalable Statistical Bug Isolation. In Proc. of the Conf. on
Programming Language Design and Implementation (PLDI
2005), June 2005.

Mercury LoadRunner, 2006. http://www.mercury.
com/us/products/performance-center/
loadrunner/.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: Building Customized Program Analysis Tools With
Dynamic Instrumentation. In Proc. of the 2005 ACM SIG-
PLAN conf. on Programming Language Design and Imple-
mentation (PLDI 2005), pages 190-200, 2005.

Microsoft Online Crash Analysis, 2006. http://oca.
microsoft.com.

S. Narayanasamy, G.Pokam, and B.Calder. Bugnet: Con-
tinuously Recording Program Execution for Deterministic
Replay Debugging. In Proc. of the 32th Annual Inter-
national Symposium on Computer Architecture (ISCA-32),
June 2005.

R. H. B. Netzer and M. H. Weaver. Optimal Tracing and In-
cremental Reexecution for Debugging Long-Running Pro-
grams. In Proc. of the Conf. on Programming Language
Design and Implementation (PLDI 1994), June 1994.

A. Orso, S. Joshi, M. Burger, and A. Zeller. Isolating rel-
evant Component Interactions with JINSL. In Proc. of the
Fourth International ICSE Workshop on Dynamic Analysis
(WODA 2006), pages 3-9, Shanghai, China, May 2006.

A. Orso and B. Kennedy. Selective Capture and Replay of
Program Executions. In Proc. of the Third International
ICSE Workshop on Dynamic Analysis (WODA 2005), pages
29-35, May 2005.

C. Pavlopoulou and M. Young. Residual Test Coverage
Monitoring. In Proc. of the 21st International Conf. on Soft-
ware Engineering (ICSE 99), pages 277-284, May 1999.
Pine(© — A Program for Internet News & Email, 2006.
http://www.washington.edu/pine/.

D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Auto-
matic Test factoring for Java. In Proc. of the 20th Annual In-
ternational Conf. on Automated Software Engineering (ASE
2005), pages 114-123, November 2005.

S. Srinivasan, S. Kandula, C. Andrews, and Y. Zhou. Flash-
back: A Light-weight Rollback and Deterministic Replay
Extension for Software Debugging. In Proc. of the 2004
USENIX Technical Conf., June 2004.

J. Steven, P. Chandra, B. Fleck, and A. Podgurski. JRapture:
A Capture/replay Tool for Observation-based Testing. In
Proc. of the 2000 ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA 2000), pages 158—
167, 2000.

Mercury WinRunner, 2006. http://www.
mercury.com/us/products/quality-center/
functional-testing/winrunner/.

A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input. IEEE Trans. on Software Engineer-
ing, 28(2):183-200, 2002.

