MonDe: Safe Updating through Monitored Deployment
of New Component Versions

Jonathan Cook

Department of Computer Science
New Mexico State University
Las Cruces, NM 88003 USA

jcook@cs.nmsu.edu

ABSTRACT

Safely updating software at remote sites is a cautious bal-
ance of enabling new functionality and avoiding adverse ef-
fects on existing functionality. A useful first step in this
process would be to evaluate the performance of a new ver-
sion of a component on the current workload before enabling
its functionality. This step would let the engineers assess
the component’s performance over more (and more realis-
tic) data points than by simply performing regression testing
in-house.

In this paper we propose to evaluate the performance of
a new version of a component by (1) deploying it to remote
sites, (2) running it in a controlled environment with the ac-
tual workloads being generated at that site, and (3) report-
ing the results back to the development engineers. Running
the new version can either be done on-line, alongside the
current system, or offline, using capture-replay techniques.
By running at the remote site and reporting concise results,
issues of data security, protection, and confidentiality are
diminished, yet the new version can be evaluated on real
workloads.

1. INTRODUCTION

In the present era, frequent software updates at remote
sites are becoming the norm, as security patches are released
for immediate use and other bug fixes or feature enhance-
ments are deployed. However, safely updating software at
remote sites is a cautious balance of enabling new function-
ality and avoiding adverse effects on existing functionality.
Currently, assuring that updates do not break existing func-
tionality is done with extensive (regression) testing before
deployment, hoping that the test cases are representative
of the way the software will be used in the field. Unfortu-
nately, as some of our previous work shows [6], behavior in
the field often differs from the behavior exercised in-house
using synthetic workloads.

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguees prior specific
permission and/or a fee.

PASTE '05 Lisbon, Portugal

Copyright 2005 ACM 1-59593-239-9/05/000%5.00.

Alessandro Orso

College of Computing
Georgia Institute of Technology
Atlanta, GA 30332-0280
orso@cc.gatech.edu

We believe that, in conjunction with testing, a useful step
in the software update deployment process would be to eval-
uate the performance of the update at the deployment sites
before actually enabling its functionality. We define an up-
date as the installation of a new version of a component or
set of components. Executing the new version on-site will
exercise the component with real user workloads and will
allow the engineers the opportunity to view its performance
over more (and more realistic) test data points than in-lab
regression testing does. The use of multiple sites will also
make the approach more effective and efficient, due to the
possibility of splitting the evaluation among multiple sites
and exercising the version over different user workloads.

Therefore, in this paper we propose a novel approach, that
we call Monitored Deployment (MonDe), for performing safe
software updates at remote sites. MonDe evaluates the per-
formance of a new version of a component by (1) deploying
it to remote sites, (2) running it in a controlled environment
with the actual workloads being generated at that site, and
(3) reporting the results back to the development engineers.
By running at the remote sites and reporting concise re-
sults, issues of data security, protection, and confidentiality
are diminished because the workload data stays at the cus-
tomer site. Nevertheless, the new version can be evaluated
on real workloads. Since the new version is not influencing
the system behavior, this monitored deployment does not
need to wait for the typically expensive and time-consuming
regression testing that precedes full component deployment.
Instead, in-house testing and testing in the field can overlap,
thus providing greater assurance that, when the new version
is functionally deployed, it will behave correctly in the users’
environment.

We envision two ways of running the new version of the
component in the users’ environment. The component can
be run either on-line, alongside the current system, or off-
line, using capture-replay techniques. Both approaches are
discussed in this paper. On-line execution is presented in the
context of a framework supporting compiled code (e.g., C
code) and shared libraries as deployable components, while
capture-replay techniques are presented in the context of
Java programs, in which each class can be a deployable
component. Each system has its capabilities and limita-
tions, which are also discussed in the paper. The contribu-
tion of this paper is twofold: (1) it presents the basic idea
of remote monitoring of controlled deployment of software
updates into the users’ environment; and (2) it provides ex-
amples of frameworks that can support this approach.



Development Site

Deployment Site(s)

S/W System

Monitoring
Environment

Monitoring
Output results
Analysis -
New Version deplgyment
Development

Capture Harness
New Version OES

of Component data | Old Version of
Component

Figure 1: Remote deployment and monitoring architecture.

2. GENERIC FRAMEWORK

The generic framework architecture is shown in Figure 1.
At the development site, new versions of components are
created and deployed, and remote data about component
performance is evaluated and analyzed (this paper will not
discuss the output analysis in depth, but rather focuses on
deployment-site frameworks). At the deployment site, two
capabilities are needed:

e A capture capability, for recording the interactions of
the old version of the component with the existing sys-
tem, thus collecting the operational workload of the
component for that site.

e An execution and monitoring capability that uses the
collected operational workload to drive the new version
of the component in a sandboxed environment where
it can be observed.

As stated before, we do not make a restriction as to
whether this capture and execution must proceed in par-
allel or the two can be separated in time. We detail both
approaches in the Sections 3 and 4.

2.1 Selecting Part of the System to Monitor

One possible way to decide which parts of the system to
monitor after new components are deployed is simply to
select for monitoring each changed component. However,
this straightforward approach has two main drawbacks.

First, it may result in a large number of false positives
in cases in which a change (and its effects) are spread over
several components. To illustrate, consider the example of
two functions foo and bar defined in two different compo-
nents. Function foo inputs a string and returns that string
in lower case and without leading and trailing white spaces.
To this end, foo leverages bar’s functionality. In version n of
the components, foo calls bar to eliminate white spaces and
then performs the transformation to lower case, whereas in
version n+ 1, bar performs both the transformation and the
trimming (e.g., for efficiency reasons) and foo simply acts
as a proxy. In such a case, monitoring all changed functions
(i-e., foo and bar) independently would erroneously report
problems in bar’s behavior for every call that involves a
string with at least a capital letter (e.g., bar,(“ StRing”)
would return “StRing”, whereas bar,+1(“ StRing”) would
return “string”).

Second, monitoring every changed component indepen-
dently may impose unnecessary overhead on the users’ ex-
ecutions. Consider again the example of functions foo and

bar discussed above. If foo is the only function calling bar,
then there is no need for monitoring bar independently be-
cause its changed behavior would be exercised through in-
teractions of the rest of the application with foo.

The approach that we propose to alleviate these two prob-
lems is based on an analysis of the applications that use the
modified components. At this initial stage of the research,
we are considering an analysis of the calling relationships
within the application. The analysis would be performed
on the users’ site and would consist of four main steps. For
ease of presentation, we illustrate the analysis for the case of
a single application using the modified components. Also,
we discuss the analysis at the function level, but it could
be adapted to operate at different levels of abstraction (e.g.,
the class level, for Java applications).

1. Construct a conservative call graph® for the applica-
tion that uses the modified component(s).

2. Mark, in the call graph, the nodes that correspond to
changed components.

3. Identify, in the call graph, all hammocks? that contain
only changed components. (Note that such hammocks
may contain one or more components.)

4. For each changed component, select the largest ham-
mock that contains it, that is, the hammock with the
largest number of nodes.

After these four steps are performed, each selected ham-
mock identifies the boundaries of a part of the deployed sys-
tem that our technique must monitor. Because the largest
hammock is selected, intermediate unchanged functions, if
their use is totally enclosed, would not cause inefficient split-
ting of hammocks. Figure 2 shows an example application of
the technique for a system that consists of seven functions,
three of which are modified. In the figure, the changed func-
tions are colored in yellow and the selected hammocks are
depicted using dashed ovals. For this example, the anal-
ysis would identify two subsets of the application for our
technique to monitor—our technique would need to moni-
tor all interactions between function chgd2 and the rest of
the system and all interactions between function chgd1 and
the rest of the system. In the next two sections, we discuss
how our technique captures such interactions for Java and
C programs.

YA call graph is a directed graph in which nodes repre-
sent functions and edges represent call relationships between
functions.

2A hammock is a single-entry, single-exit subgraph.



Figure 2: Example of call graph with hammocks.

3. JAVA CAPTURE AND REPLAY

One possible way of running the new version of the com-
ponent in the users’ environment is to use off-line techniques
based on capture-replay mechanisms. We present this ap-
proach in the context of Java programs. to implement the
approach, we leverage a technique and a tool previously
developed by one of the authors [7]. The tool is called
SCARPE and performs Selective CApture and Replay of
Program Executions for Java software.

Given an application, SCARPE lets one (1) select a sub-
system of interest, (2) capture at runtime all the interactions
between such subsystem and the rest of the application, and
(3) replay the recorded interactions on the subsystem in iso-
lation. SCARPE is designed to be efficient: for each exe-
cution, it only captures information that is relevant to that
execution. To this end, it disregards all data that, although
flowing through the boundary of the subsystem of interest,
do not affect its execution. Intuitively, our technique cap-
tures only the minimal subset of the application’s state and
environment required to replay the execution considered on
the selected subsystem.

In the context of the MonDe approach, the subsys-
tem of interest would consist of one or more components
(classes) identified as discussed in Section 2.1. We would
use SCARPE to capture users’ executions of such subsys-
tem that would then be replayed on the new version, as
illustrated in Figure 3, when free cycles are available.

In the replay phase, the technique automatically provides
a replay sandbox. The replay sandbox inputs the captured
executions, in the form of event logs, and replays each event
in the log by acting as both a driver and a stub. Replaying
an event corresponds to either performing an action on the
observed set (e.g., writing an observed field) or consuming
an action from the observed set (e.g., receiving a method
invocation originally targeted to external code). Based on
the event log, the replay scaffolding is able to generate and
consume appropriate actions, so that during replay the right
classes are created and the interactions among these classes
are reproduced.

Because the events captured also include events generated
in the system of interest, such as return of values, SCARPE

3Events correspond to the various forms of interactions be-
tween the subsystem of interest and rest of the application,
such as method calls, access to field, and exceptions.

Capture: Application

2
i

N
1

Old version of
T ' Components .

_—

Captured
Execution

Users

Replay:

Captured
Execution

Figure 3: Capture and replay of deployed compo-
nents.

can be used as an oracle when replaying the captured execu-
tions. If the behavior of the new component(s) is observably
different from the behavior of the current component(s), the
problem can be reported to the developers. It may also be
possible to report the (sanitized) captured execution that
generated the problem. In this way, developers not only are
notified, but can also reproduce and investigate the problem.

One open issue that we will have to address is how to
handle situations in which the subset of the application state
accessed by the updated components is different from the
subset that was captured. (As stated above, we capture only
a subset of the application’s state to improve performance.)
To address this issue, we will investigate ways to extend the
amount of information captured and to balance the resulting
trade-offs between efficiency and effectiveness. For example,
we are already capturing complete objects of some specific
classes, such as String.

4. SHARED LIBRARY PARALLEL EXE-
CUTION

A second method for running the new component version
is to run it on-line alongside the existing component version.
This technique will work well if the performance overhead
does not severely impact the application, if the amount of
interaction data to capture would be too much to store ef-
ficiently, or if the environment is not easily amenable to
full capture yet the component interactions can be inter-
cepted. Compiled applications (e.g., C programs) deployed
using shared (dynamic link) libraries are able to utilize this
on-line approach.

One of the authors has built DDL [9], an extended dy-
namic linker that opens up the dynamic linking process and
provides programmatic control over it. DDL provides the
basic capability needed to build program monitoring and
manipulation tools. The two basic capabilities that DDL
supports are an informative one, where DDL informs a tool
of the bindings that are taking place, and a manipulative
one, where DDL allows a tool to redirect a binding to a
different symbol.

In previous work, we have already used DDL to perform
software updates in which multiple component versions are
run in parallel and allowed to immediately affect the appli-
cation [1]. In this work, we reuse that basic infrastructure to
support the MonDE approach by running the new compo-



<*--|-- New
Component
—_-lle Version

Application - Existing
Component

Version

Component Arbiter

Dynamic Linker

Figure 4: Shared library-based parallel version exe-
cution.

nent version in an “evaluation mode” that prevents it from
affecting the overall application.

Figure 4 shows the overall architecture of this approach. A
new component version is loaded into the application space,
but DDL-controlled linking isolates it within control of the
component arbiter. The arbiter intercepts interactions with
the existing version of the component and duplicates them
for the new version. Results and external effects of the new
version are controlled by the arbiter, and either logged for
later delivery to the remote development site or compared
with the existing version at run time for aggregation of re-
sults that will be sent to the development site.

In this approach, a component is a shared object. Our
previous work restricts the component to be a collection of
C functions or a C++ class (and its objects) that obeys the
ideas and rules of component-based design: external data is
not directly modified but is only done so through accessor
methods or functions external to the shared object.

Our approach is different than the capture and replay
approach taken with Java in that the new version is exe-
cuted in parallel with the application and the old version.
Under the assumptions above, this approach is easier than
capture-replay because the compiled-code environment is
more opaque. By running the new version in parallel with
the application, it can have read-only access to application
data as it needs, without having to record those accesses.

For outgoing calls that modify state, we intercept these
and can do one of two things. Firstly, we can return the
call without actually invoking the state-modifying code, and
thus disable external state modification. This approach will
work as long as the state that is maintained by the old ver-
sion and the application is all that the new version needs.
If the new version needs new state maintained by another
component, then the hammock idea presented earlier can
be extended to encapsulate that component with the other,
so that they are updated together. Special consideration
will also be needed for large stateful components, such as
databases. In this case, if the new version needs unique
state modifications, then a special stub wrapper would be
used to isolate its state changes and yet keep them and make
them available back to the new version when needed.

5. CONCLUSION

We have proposed an approach for verifying a new ver-
sion of one or more components using field data and at the

field site. The approach, that we call Monitored Deployment
(MonDE), works by deploying the component version and
running it either on-line, in parallel with the application, or
later, in a replay environment using previously captured in-
teraction data. In either case, the new version is executed on
actual field data but is prevented from affecting the system.
Performance data is then sent back to the development site
for evaluation by the engineers. Such an approach can as-
suage the concern of allowing real user data to be captured
and delivered off-site, while still enabling field testing of the
new version.

Related work has looked at executing component versions
or variants within a system, yet not for pre-functional de-
ployment evaluation in end-user environments [1, 2, 4, 5].
Similar execution encapsulation mechanisms have been used
for execution of mobile and untrusted code, intrusion detec-
tion, and other security issues (e.g., [3]). Other approaches
in verifying new component versions have also been investi-
gated (e.g., [8]).

Acknowledgments

This work was supported in part by NSF under grants CCR-
0306457, ETIA-9810732, and EIA-0220590 to New Mexico
State University and grants CCR-0205422, CCR~0306372,
and CCR-0209322 to Georgia Tech.

6. REFERENCES

[1] N. Abbas, J. Cook, and S. Tambe. Reliable Runtime
Upgrading of Binary C++ Classes. Technical report, New
Mexico State University.

[2] V. Kharchenko, P. Popov, and A. Romanovsky. On
Dependability of Composite Web Services with Components
Upgraded Online. In Proc. 2004 DSN Workshop on
Architecting Dependable Systems, June 2004.

[3] C. Ko, G. Fink, and K. Levitt. Automated detection of
vulnerabilities in privileged programs by execution
monitoring. In Proceedings of the 10th Annual Computer
Security Applications Conference, pages 134—144, Orlando,
FL, 1994. IEEE Computer Society Press.

[4] S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J. Barnes.
Runtime Support for Type-Safe Dynamic Java Classes. In
Proc. European Conference on Object-Oriented
Programming, pages 337-361, 2000.

[5] A. Mos and J. Murphy. COMPAS: Adaptive Performance
Monitoring of Component-Based Systems. In Proc. 2nd
ICSE Workshop on Remote Analysis and Measurement of
Software Systems, May 2004.

[6] A. Orso, T. Apiwattanapong, and M. J. Harrold. Leveraging
field data for impact analysis and regression testing. In
Proc. of the 9th European Software Engineering Conference
and 10th ACM SIGSOFT Symposium on the Foundations
of Software Engineering, pages 128-137, Helsinki, Finland,
September 2003.

[7] A. Orso and B. Kennedy. Selective Capture and Replay of
Program Executions. In Online Proc. of the Third
International ICSE Workshop on Dynamic Analysis
(WODA 2005), St. Louis, MO, USA, May 2005.
http://www.csd.uwo.ca/woda2005/proceedings.html.

[8] A. Podgurski and E. J. Weyuker. Re-estimation of Software
Reliability after Maintenance. In Proc. 19th International
Conference on Software Engineering, pages 79-85, New
York, NY, USA, 1997. ACM Press.

[9] S. Tambe, N. Vedagiri, N. Abbas, and J. Cook. DDL:
Extending Dynamic Linking for Program Customization,
Analysis, and Evolution. In Proc. International Conference
on Software Maintenance, Budapest, Hungary, September
2005. to appear.



