
Optimizing Constraint Solving to Better Support Symbolic Execution

Ikpeme Erete and Alessandro Orso
College of Computing, Georgia Institute of Technology

Atlanta, Georgia

{ikpeme,orso}@cc.gatech.edu

Abstract—Constraint solving is an integral part of symbolic

execution, as most symbolic execution techniques rely heavily

on an underlying constraint solver. In fact, the performance of

the constraint solver used by a symbolic execution technique

can considerably affect its overall performance. Unfortunately,

constraint solvers are mostly used in a black-box fashion within

symbolic execution, without leveraging any of the contextual

and domain information available. Because constraint solvers

are optimized for specific kinds of constraints and heavily based

on heuristics, this leaves on the table many opportunities for

optimizing the solvers’ performance. To address this problem,

we propose a novel optimization strategy that uses domain

and contextual information to optimize the performance of

constraint solvers during symbolic execution. We also present

a study in which we assess the effectiveness of our and other

related strategies when used within dynamic symbolic execution

performed on real software. Our results are encouraging; they

show that optimizing constraints based on domain and contex-

tual information can improve the efficiency and effectiveness of

constraint solving and ultimately benefit symbolic execution.

Keywords-symbolic execution; constraint solving;

I. INTRODUCTION
Testing is one of the most commonly used techniques

to identify faults in a software system. Although software
testing cannot guarantee the absence of faults in the code,
if suitably performed it can provide some confidence in the
correct behavior of that code. One of the main problems
in software testing is the generation of inputs to exercise
the code under test. Because manual generation of inputs is
extremely labor intensive, both researchers and practitioners
have investigated ways to automate or semi-automate this
task. In fact, the last few decades have witnessed the defini-
tion of countless test input generation techniques (e.g., [2],
[4], [8]).

Among these techniques, one popular approach is random
testing, which randomly selects values from the input domain
of a program (e.g., [4]). The main advantage of random
testing over manual testing is that it can quickly generate
a large number of inputs. Its main drawback is that the
generated test inputs tend to be shallow and ultimately result
in inadequate testing.

As an alternative to random (and manual) testing, re-
searchers have proposed various test input generation tech-
niques based on symbolic execution. Symbolic execution is
not a novel technique, as it was introduced more than 30
years ago by King [7]; however, in recent years, there has
been renewed interest in symbolic execution techniques due
to the tremendous growth in computational power of the
average machine and the availability of increasingly power-
ful decision procedures. Because symbolic execution relies
heavily on constraint-solving technologies, the efficiency
of constraints solvers is of paramount importance in this

context. One important characteristic of constraint solvers is
that they are optimized for specific kinds of constraints and
heavily based on heuristics. Therefore, providing contextual
information and domain knowledge to the solvers is likely
to considerably improve their performance.

Unfortunately, however, most symbolic execution tech-
niques use constraint solvers in a purely black-box fashion,
by feeding the solvers constraints to solve without pro-
viding them with any other contextual or domain related
information. Recently, a few researchers have started to use
some domain-based constraint optimizations (e.g., [5], [8]),
which represents an important first step in the right direction.
However, the effectiveness of these optimizations is unclear.
It is also unclear what other optimizations could be used, and
ultimately, what could be the benefits of a tighter integration
between symbolic execution and constraint solving.

The goal of this paper is to investigate these issues and
help provide an answer to these questions. To achieve this
goal, we (1) propose a novel optimization based on dynamic
symbolic execution, (2) discuss other commonly used op-
timizations presented in the literature, and (3) perform an
extensive empirical study in which we analyze the effect of
these new and existing optimizations. In our study, we target
two of todays’ most popular constraint solvers: CVC3 [1]
and Z3 [3]. As data for the study, we use more than 5,000
path conditions that we collected by performing dynamic
symbolic execution on three real software subjects.

We believe that the work presented in this paper represents
a first important step towards a better integration of symbolic
execution and constraint solving techniques by providing the
following main contributions:

• Highlight the problems related to the use of constraint
solvers as black boxes within symbolic execution.

• Propose a novel constraint-optimization technique based
on domain restriction that can improve dynamic sym-
bolic execution.

• Perform an extensive empirical evaluation that provides
evidence of the effectiveness of constraint optimization
techniques and motivates further research in the area.

• Makes publicly available a large set of real constraints
and related infrastructure that can support research in
this and other related areas (see http://www.cc.gatech.
edu/∼ikpeme/software/).

II. BACKGROUND AND MOTIVATING EXAMPLE

Symbolic execution techniques execute a program with
symbolic inputs and try to cover all possible paths in the
program [7]. For each path, symbolic execution updates the
symbolic state of the program according to the semantics



function foo(int a, int b, int c, int d) {
1. if (c > a)
2. int e = d + 10
3. if (b > 5)
4. //do something
5. else if (a < e)
6. if (b < c)
7. //do something
8. else
9. //do something
10. else
11. //do something
12. return
}

Figure 1. Simple code example to illustrate symbolic execution.

of the instructions being executed and keeps track of the
constraints that the inputs must satisfy for that path to
be followed—the path condition (PC). At the end of the
execution of a path, the corresponding PC is fed to a
constraint solver. (The constraint solver may also be invoked
while executing a path to simplify constraints and detect
infeasible paths.) If the solver is able to find a solution for the
PC, that solution represents the concrete inputs that lead to
the execution of the path being considered. The extraordinary
growth in the computational power available on the average
user machine and the availability of increasingly powerful
decision procedures in recent years have spawned a renewed
interest in the use of symbolic execution for test input
generation. In particular, one recent variation of symbolic
execution called dynamic symbolic execution is becoming
increasingly popular (e.g., [2], [5], [8]). For this reason, in
this work, we focus on this variation of symbolic execution.

Dynamic symbolic execution (DSE) runs a program using
concrete and symbolic inputs at the same time, so that the
concrete execution drives the symbolic execution along a
specific path that is guaranteed to be feasible. While it
executes the path, DSE keeps track of the symbolic state and
the PC for that path, which consists of a conjunctive set of
constraints, one for each branch traversed. When done, DSE
negates the last constraint in the PC that corresponds to a
branch not yet covered (for simplicity, we do not consider
alternative exploration policies) and invokes a constraint
solver to obtain a solution for the modified PC, which we
call PC’. We call the negated constraint, which represents
the only difference between PC and PC’, target constraint,
and the symbolic variables involved in such constraint target

(symbolic) variables. If the solver returns a solution for PC’
(i.e., a set of inputs that cause the program to follow the path
identified by PC’), DSE executes that path and continues
the process until either all branches are covered, some other
coverage goal is achieved, or a time threshold is reached.

To illustrate DSE, consider the code snippet in Figure 1
and assume that the concrete inputs for the program are
initially a = 4, b = 5, c = 6, and d = 1. We call the
corresponding symbolic inputs a0, b0, c0, and d0. When
DSE executes the program using these concrete values,
the execution follows the path �1, 2, 3, 5, 6, 7, 12�, and the
corresponding PC is (c0 > a0) ∧ (b0 <= 5) ∧ (a0 <
d0 + 10) ∧ (b0 < c0), which corresponds to the conjunction
of the predicates for branches 1T , 3F , 5T , and 6T . DSE

would then negate the last constraint, (b0 < c0), obtain
PC’=(c0 > a0)∧ (b0 <= 5)∧ (a0 < d0 +10)∧ (b0 >= c0),
and pass PC’ to a constraint solver. (In this case, the target
constraint is (b0 >= c0), and the target symbolic variables
are b0 and c0.) The constraint solver would then return a
possible solution, such as a0 = 4, b0 = 5, c0 = 5, and
d0 = 1, that are the input values that satisfy PC’.

Our intuition is that this approach, by asking the solver
to find a solution for PC’ without leveraging the fact that
there is a known solution for PC, misses the opportunity to
optimize the solvers’ performance. More generally, DSE and
other symbolic-execution techniques do not take advantage
of any domain knowledge (e.g., the fact that the constraints
are generated by a program with specific characteristics
and properties) or context information (e.g., the existence
of a solution for a very similar set of constraints). Our
overall goal is to understand how symbolic execution can be
properly integrated to take advantage of these opportunities
for optimization. As a first step towards this goal, and as
a way to gather initial evidence of the correctness of our
intuition, we propose a possible optimization strategy for
dynamic symbolic execution. We also study the effects of
our new and two existing optimizations on two commonly
used constraints solvers when used in the context of DSE.

III. CONSTRAINT OPTIMIZATIONS
We present our new constraint optimization technique and

discuss two other optimizations presented in previous work.
A. DomainReduce Optimization

Our novel optimization strategy, called DomainReduce,
restricts the domain of the constraints to be solved by
eliminating irrelevant or potentially irrelevant constraints
based on dynamic information. As discussed above, our
optimization is specifically targeted to improve constraint
solving in the context of DSE. DomainReduce relies on
two main observations. (The first observation has also been
used in previous work (e.g., by Sen and colleagues [8]).
The second one is, to the best of our knowledge, a novel
contribution.)

The first observation is that, within DSE, constraints that
are not dependent on the target constraint (i.e., the one
being negated) cannot affect the solution of the modified
path condition, PC’. Two constraints ca and cb in a set of
constraints C are dependent if at least one of the following
conditions hold:

1) Direct dependency: vars(ca) ∩ vars(cb) �= 0 where
vars(c) represents all symbolic variables in c.

2) Indirect dependency: There exists a subset of con-
straints {c1, ..., cn} in C, such that (1) ca and c1 are
dependent, (2) ci and ci+1 (for i = 1, ..., n − 1) are
dependent, and (3) cn and cb are dependent.

(Intuitively, ca and cb are dependent if the solution of
one can affect the solution of the other, which happens
if they share one or more variables directly or indirectly.)
We also define two variables va and vb as directly (resp.,



indirectly) dependent (symbolic) variables if they appear in
two constraints that are directly (resp., indirectly) dependent.
By definition, the solution of all the constraints in PC’
that are not dependent on the target constraint are not
affected by the solution to that constraint. Therefore, these
independent constraints identify a subset of inputs whose
values can be “reused” and do not need to be determined
by the solver. For our example in Section II, for instance, if
PC’=(c0 > a0)∧(b0 <= 5)∧(a0 >= d0+10), then our target
symbolic variables are a0 and d0, and constraint (b0 <= 5)
is independent—the value of b0 can be safely replaced with
that of the corresponding concrete input (i.e., 5). PC’ can
therefore be simplified to (c0 > a0) ∧ (a0 >= d0 + 10).
For more realistic constraints, this simplification can result
in dramatic savings in terms of number of constraints that
the solver must process.

The second observation is that restricting the domain
for PC’ may help the constraint solver to find a solution
faster than when considering the complete input domain.
We propose to invoke the solver first by fixing the value
of all target symbolic variables in PC’ but one using their
concrete values. If the solver can find a solution for this
modified PC’, this is also a solution for the original PC’; such
solution consists of the value found by the solver for the one
symbolic variable considered and the original input values for
all other symbolic values. If the solver cannot find a solution,
we try a different symbolic variable and eventually expand
the domain by adding one variable to the set of symbolic
variables whose value is not fixed. We continue by adding
one variable at a time until either the solver returns a solution,
or we have considered all of the target symbolic variables.
This technique leverages a tradeoff related to the size of the
input domain considered. In general, the smaller the domain,
the faster the solver can find a solution, if it exists, but the
lower the chances for a solution to exist. Conversely, a larger
domain increases the chances for a solution to exist, but can
also dramatically increase the computational cost of finding
such solution. As our empirical evaluation in Section IV
shows, in many cases the additional speed clearly outweighs
the reduction in the domain size.

To get a better understanding of the effect of the optimiza-
tion and of the tradeoffs involved, we defined two variants
of the DomainReduce technique: DomainReduce with de-
pendencies and DomainReduce without dependencies.

DomainReduce with dependencies: In this version of
the approach, we consider as variables to be passed to the
solver not only the target symbolic variables selected, but
also their directly or indirectly dependent variables. Figure 2
shows the DomainReduce with dependencies algorithm.
First, the algorithm iteratively forms sets of a particular size,
starting from size one, using the target variables. Subse-
quently, the corresponding dependencies for each member
of this set are derived, and members with the smallest
and largest number of dependencies are determined. (We
consider both cases because they represent the two extremes

Input: Path condition(PC), Mapping of symbolic variables to concrete values, Solver
Output: result = sat, unsat, or unknown
Constraint cur = getTargetConstraint(index, pc)
List targetsymlist = getSymVars(cur)
result = unknown
for i = 1 to length(targetsymlist) do

groups[] = formGroupsofX(i, targetsymlist)
List dependencies = []
for a = 0 to length(groups) do

dependencies[a] = getDependencies(groups[a], pc)
end

int selectDep[0] = findSmallestDepIndex(dependencies)
int selectDep[1] = findLargestDepIndex(dependencies)
for b = 0 to length(selectedDep) do

List grpDep = dependencies[(selectDep[b])]
List symbolicVars = join(groups(selectDep[b]), grpDep)
newPC = modifyPC(symbolicVars,concreteValuesMapping,pc)
output = callSolver(solver,newPC)
if output = “sat” then

return output
end

else if output = “unsat” then

result = output
end

end

end Figure 2. DomainReduce with dependencies.

of a spectrum of possible approaches.) The variables in the
selected sets determine, by exclusion, which variables in PC’
will be replaced with their concrete values (obtained from
the inputs that generated PC). The resulting PC’ is then
sent to the constraint solver. Consider again our example
in Section II, for which PC’ is (c0 > a0) ∧ (b0 <=
5) ∧ (a0 < d0 + 10) ∧ (b0 >= c0). In this case, our
approach would first pick one of the two target variables,
for instance b0, and ask the constraint solver to solve the
modified PC’ (b0 <= 5) ∧ (b0 >= 6). If the solver
could not find a solution for that PC’, our algorithm would
then consider target variable c0 and pass to the solver PC’
(c0 > a0) ∧ (a0 < d0 + 10) ∧ (5 >= c0), where d0 is also
considered because it is indirectly dependent on c0 through
a0. This is a typical case in which the approach would be
beneficial, as the solver would likely be able to find a solution
for the first modified PC’ quickly and would not require
further interactions.

DomainReduce without dependencies: DomainReduce
with dependencies accounts for all symbolic variables that
might be affected by changes in the values of the target
variables selected. To explore the effect of dependencies on
the performance of the constraint solver, we also defined
a second approach, called DomainReduce without depen-
dencies. This algorithm, depicted in Figure 3, is analogous
to the previously described approach, except that it ignores
dependencies among variables. For our example, the differ-
ence with respect to the behavior of DomainReduce with
dependencies is the following: in the second step, when only
target variable c0 is considered, the approach would pass to
the solver PC’ (c0 > 4) ∧ (5 >= c0), where a0 and b0 are
replaced with their concrete values.

B. Additional Optimizations

Other researchers have defined different strategies for
constraint optimization, such as fast unsatisfiability checks
[8] and local constraint caching [2]. Although useful, these
are general strategies that can be easily incorporated into



Input: Path condition(PC), Mapping of symbolic variables to concrete values, Solver
Output: result = sat, unsat, or unknown
Constraint cur = getTargetConstraint(index, pc)
List targetsymlist = getSymVars(cur)
result = unknown
for i = 1 to length(targetsymlist) do

groups[] = formGroupsofX(i, targetsymlist)
List allrandomlySelectedGroup = []
while length(allrandomlySelectedGroup) < length(groups) do

Found = False
while ¬Found do

selectedGroup = randomSelectGroup(groups)
if selectedGroup /∈ allrandomlySelectedGroup then

Found = True
allrandomlySelectedGroup.add(selectedGroup)

end

end

newPC = modifyPC(groups[selectedGroup],concreteValuesMapping,pc)
output = callSolver(solver,newPC)
if output = “sat” then

return output
end

else if output = “unsat” then

result = output
end

end

end Figure 3. DomainReduce without dependencies

a constraint solver and do not take into account domain
or contextual information. In this paper, we are mostly
interested in optimizations that are specifically targeted at
improving symbolic execution and, more specifically, DSE.
Therefore, in addition to DomainReduce, in our investi-
gation we also consider two optimization strategies pre-
sented in related work: incremental solving, by Sen and
colleagues [8], and constraint subsumption, by Godefroid and
colleagues [5]. Incremental solving identifies dependencies
between constraints in a set and leverages them to elimi-
nate irrelevant constraints. However, unlike our technique,
it does not perform any kind of domain reduction. In our
example, PC’ obtained using Incremental solving would be
(d0 < b0)∧(b0 <= 5)∧(d0 >= c0). Incremental solving can
be considered equivalent to the worst case for DomainReduce
with dependencies, that is, the case where none of the domain
reductions work and all target variables and all of their
dependencies must be considered. Constraint subsumption

identifies cases where a new constraint definitely implies or
is definitely implied by another constraint generated from the
same instruction and, if so, eliminates the implied constraint.
This is especially useful for loops, where this approach can
dramatically reduce the number of constraints generated by
large numbers of loop iterations.

IV. EMPIRICAL EVALUATION
Although other researchers have investigated the possibil-

ity of optimizing constraint solving within symbolic execu-
tion, there is little evidence and understanding of the potential
benefits of these optimizations. To address this issue, we
performed a study in which we quantitatively analyzed the
effectiveness of the three optimizations described in the
previous section. More precisely, we investigated whether
the use of these optimizations can improve efficiency and
effectiveness of constraint solvers in the context of DSE.
A. Study Setup

To conduct our studies, we used three software sub-
jects: HTMLParser (http://sourceforge.net/projects/htmlparser/),

XMLParser (http://sourceforge.net/projects/nanoxml/), and K-
NN (http://sourceforge.net/projects/weka/). The first two subjects
are parsers, whereas the third one is an implementation of
the K-Nearest Neighbor machine learning algorithm. We
selected these subjects because they are freely available, and
most importantly, they can be handled by the DSE framework
we used. As a representative implementation of DSE, we
used JFuzz [6], which is a dynamic symbolic executor built
on top of Java PathFinder (JPF – http://babelfish.arc.nasa.gov/
trac/jpf/). We first modified JFuzz, so that it dumped all PC
and PC’ constraint sets computed during DSE. We then used
this modified JFuzz to dynamically execute each subject
using 10 different data sets as inputs.

We generated our data sets for HTMLParser us-
ing Yahoo!’s random URL generator (http://random.yahoo.
com/bin/ryl), obtained the ones for XMLParser from an
open xml repository (http://www.cs.washington.edu/research/
xmldatasets/www/repository.html), and gathered the ones for K-
NN from its distribution. The second column of Table I
shows the number of path conditions collected for each
subject. As constraint solvers for our study, we considered
CVC3 [1] and Z3 [3] because they are popular, actively
maintained, and support the SMTLIB standard format (http:
//www.smt-lib.org/). Finally, we implemented in Python the
three optimization strategies considered: DomainReduce, in-
cremental solving, and constraint subsumption.

To gather the data for our study, we used CVC3 and
Z3 to find a solution for each PC collected; we fed to the
solvers first the PC unoptimized, and then the PC optimized
using each of the three approaches considered. For each
invocation of each constraint solver, we measured the time
used by the solver to return a solution and the outcome: sat,
unsat, and unknown. (Note that the time is cumulative in the
case of DomainReduce, which may perform more than one
invocation of the constraint solver per PC.) The outcome sat

indicates that the solver found a solution, unsat that there is
no solution, and unknown that the solver timed out before
completing its execution. As a time limit for the solvers, we
chose ten minutes because we believe it is an adequately long
time and yet allows us to perform our data collection in a
reasonable overall time. (Note that the time limit used in the
STMLIB competition is 20 minutes, which is a comparable
time). We also computed the number of target variables and
the number of clauses in each set of constraints considered
before and after optimization.

We ran our study on 8 dedicated 64-bit quad-core Linux
boxes. The data for the different optimizations of a same
set of constraints were collected on the same box to avoid
problems of bias related to different speeds on different boxes
(although all machines had the same configuration).
B. Results and Evaluations

We evaluate our results along two dimensions: number of
constraints successfully processed and time required to solve
constraints. The first dimension is related to the benefits
of the optimizations in terms of allowing the solvers to



Table I
RESULTS OF OUR STUDY IN TERMS OF NUMBER OF CONSTRAINTS SUCCESSFULLY PROCESSED.

Subjects PCs
considered

PCs successfully processed

unsat+sat
No optimization Subsumption Incremental solving DomainReduce

with dependencies

DomainReduce with-

out dependencies

cvc3 z3 cvc3 z3 cvc3 z3 cvc3 z3 cvc3 z3

HTMLParser 1879 1879

43+1836
1879

43+1836
1879

43+1836
1879

43+1836
1879

43+1836
1879

43+1836
1879

43+1836
1879

43+1836
1879

43+1836
1879

43+1836

XMLParser 1881 473

49+424
1881

49+1832
473

49+424
1881

49+1832
1881

49+1832
1881

49+1832
1881

49+1832
1881

49+1832
1881

49+1832
1881

49+1832

K-NN 1930 261

261+0
936

936+0
261

261+0
936

936+0
271

271+0
937

937+0
262

262+0
878

878+0
111

0+111
0

0+0

process more constraints. The second dimension focuses on
the benefits of the optimizations in terms of speeding up the
constraint-solving process. Although these two dimensions
are related, examining them independently allows us to
perform a more thorough analysis of the results.

1) Number of Constraints Successfully Processed: Table
I presents the results of our study, for each of the three
subjects and two solvers considered, in terms of number of
constraints successfully processed. The table is organized as
follows: Column 2 (PCs considered) shows the total number
of constraint sets considered for each test subject; Column
3 (PCs successfully processed) shows, for each solver and
optimization strategy, the number of constraints for which
the solver terminated and, underneath, the breakdown of this
number between constraints for which it reported that the
constraints were unsolvable (i.e., unsat) and solvable (i.e.,

sat). For example, for XMLparser, 1,881 constraints were
considered of which, without optimizations, CVC3 was able
to find a solution for 424, reported that they were unsolvable
for 49, and timed out for the remaining 1,406.

As the table shows, the optimizations are not effective in
the case of Z3; either Z3 is able to successfully process all
of the constraint sets considered, or it is able to successfully
process only a subset of those, and the optimizations do
not help. The only exception is incremental solving, which
allows Z3 to successfully process one more constraint set for
K-NN. It is also worth noting that the use of DomainReduce
actually reduces the number of constraint sets that both Z3
and CVC3 can successfully process for K-NN. The reason
for this behavior lies in the way DomainReduce operates and
in the type of constraints considered for K-NN. Because (1)
none of the constraints for K-NN is solvable and (2) in the
case of unsat solutions DomainReduce must keep iterating
until it tries all possible constraint groups, these constraints
represent a worst-case scenario for this optimization strategy.
Interestingly, however, in the case of CVC3, all the con-
straints that DomainReduce without dependencies is able to
process are constraints on which all other optimizations time
out (see also Section IV-B2).

The situation is quite different for CVC3, where, for
two of the three subjects considered, the optimizations are
effective in most cases. For K-NN, incremental solving
and DomainReduce with dependencies slightly increase the
number of constraints successfully processed by CVC3. For
XMLParser, these increases are fairly dramatic: incremental

solving, DomainReduce with dependencies, and DomainRe-
duce without dependencies all increase the number of con-
straints successfully processed by CVC3 from 25% to 100%
of the constraints considered.

2) Time Required to Solve Constraints: Figures 4 and 5
present, as a box-and-whisker plot, the average time (in
log10) spent by each solver to solve the constraints for a
test subject when a given optimization strategy was used.
As the figures show, overall all of the optimizations but
subsumption improved the efficiency of the constraint solvers
dramatically in four out of six cases. For both HTMLParser
and XMLParser, incremental solving and DomainReduce
reduced the runtime of CVC3 by several orders of magnitude
on average. And for the same subjects, the optimizations also
reduced the runtime of Z3 by one order of magnitude.

The results for K-NN are, also in this case, quite different
from the ones for the other two subjects. For K-NN with Z3,
incremental solving and DomainReduce with dependencies
also improved the performance of the solver, although to
a lesser extent than for HTMLParser and XMLParser. (Note
that the results for DomainReduce with dependencies are not
presented because it was not able to successfully process any
of K-NN’s constraints in this case.) For K-NN and CVC3,
all but one optimizations provided no benefits. The reason,
again, is in the nature of the constraints considered for this
subject: in many cases, the constraint solvers timed out while
trying to find a solution; in the remaining cases, they returned
unsat as a result, but took a long time to compute such
result. Interestingly, the only optimization performing well in
this case is DomainReduce without dependencies; although
it was able to successfully process less constraint sets than
the other strategies, it solved those constraint sets two orders
of magnitude faster than any of those strategies.

To assess the statistical significance of our results, we
performed a two-way Analysis of Variance (ANOVA) test.
The analysis substantiated our results in all cases except for
K-NN and Z3, where the difference in performance between
no optimizations and incremental solving or DomainReduce
was not deemed statistically significant. The ANOVA test
also revealed that, for all subjects and solvers but K-NN
with CVC3, there is no statistical difference between the im-
provements in performance obtained using incremental solv-
ing, DomainReduce with dependencies, and DomainReduce
without dependencies. This is because these subjects exhibit
either very high or very low coupling among constraints.



!

(a) HTMLParser using CVC3 solver
!

(b) XMLParser using CVC3 solver
!

(c) K-NN using CVC3 solver
Figure 4. Time taken for each strategy. Time is expressed in log10 due to the disparity in results between strategies.

!

(a) HTMLParser using Z3 solver
!

(b) XMLParser using Z3 solver
!

(c) K-NN using Z3 solver
Figure 5. Time taken for each strategy. Time is expressed in log10 due to the disparity in results between strategies.

In other words, either most of the inputs or too few inputs
interact with one another, which is the DomainReduce’s
worst case scenario that makes it equivalent to incremental
solving (see Section III-B).

V. DISCUSSION, CONCLUSION, AND FUTURE WORK

In this paper, we have argued that symbolic execution and
constraint solving should be more tightly integrated. As a
first step in this direction, we have presented one new and
two existing constraint optimization strategies and assessed
whether they can benefit constraint solving and, ultimately,
symbolic execution techniques.

Overall, our results are encouraging and motivate further
research in this area. Although the use of our and others’ op-
timizations did not always increase the number of constraints
that a solver could successfully process, it could in some
cases increase such number considerably. Moreover, when
efficiency of the constraint solvers is considered, in most
cases the optimizations provided dramatic improvements in
the time required to process a constraint.

One interesting venue for future work is to investigate
in which cases the different optimizations work, so as to
be able to select the right approach for the program and
type of constraints at hand. Another possible (and related)
research direction is the definition of ways to apply several
optimizations in parallel (e.g., on a multicore machine),

which would allow for trying different strategies at once
and stopping as soon as one of the strategies is successful.
Finally, future research should investigate other optimization
strategies of different nature, such as strategies that leverage
domain information (e.g., the structure or properties of the
program) to inform and improve constraint solvers.

ACKNOWLEDGMENTS

This work was supported in part by NSF awards CCF-
0725202 and CCR-0209322 to Georgia Tech.

REFERENCES

[1] C. Barrett and C. Tinelli. Cvc: A Cooperating Validity Checker. In
Proceedings of CAV 2002, pages 500– 504, 2002.

[2] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and
Automatic Generation of High-coverage Tests for Complex System
Programs. In In Proceedings of Usenix SOSDI 2008, pages 209–224,
2008.

[3] L. De Moura and N. Bjørner. Z3: An Efficient SMT Solver. In
Proceedings of TACAS 2008, pages 337– 340, 2008.

[4] J. E. Forrester and B. P. Miller. An Empirical Study of the Robustness
of Windows NT Applications Using Random Testing. In In Proceed-

ings of the Usenix Windows System Symposium, pages 59–68, 2000.
[5] P. Godefroid, M. Y. Levin, and D. Molnar. Automated Whitebox Fuzz

Testing. In Proceedings of NDSS 2008, 2008.
[6] K. Jayaraman, D. Harvison, V. Ganesh, and A. Kietzun. JFuzz:

A Concolic Whitebox Fuzzer for Java. In NASA Formal Methods

Symposium, pages 121–125, 2009.
[7] J. C. King. Symbolic Execution and Program Testing. Communica-

tions of the ACM, 19(7):385–394, 1976.
[8] K. Sen, D. Marinov, and G. Agha. Cute: A Concolic Unit Testing

Engine for C. In In Proceedings of ESEC-FSE 2005, pages 263–272,
2005.


