Command-Form Coverage for Testing Database Applications

William G.J. Halfond and Alessandro Orso
College of Computing
Georgia Institute of Technology
E-mail: {whalfond|orso}@cc.gatech.edu

Abstract

The testing of database applications poses new chal-
lenges for software engineers. In particular, it is diffi-
cult to thoroughly test the interactions between an appli-
cation and its underlying database, which typically occur
through dynamically-generated database commands. Be-
cause traditional code-based coverage criteria focus only
on the application code, they are often inadequate in exer-
cising these commands. To address this problem, we intro-
duce a new test adequacy criterion that is based on cover-
age of the database commands generated by an applica-
tion and specifically focuses on the application-database
interactions. We describe the criterion, an analysis that
computes the corresponding testing requirements, and an
efficient technique for measuring coverage of these require-
ments. We also present a tool that implements our approach
and a preliminary study that shows the approach’s potential
usefulness and feasibility.

1 Introduction

Database applications are an important component of many
software systems in areas such as banking, online shop-
ping, and health care. Because they often handle critical
data, it is especially important that these applications func-
tion correctly. However, database applications have pecu-
liar characteristics that can hinder the effectiveness of tra-
ditional testing approaches. One of these characteristics is
the way interactions occur between the application and its
underlying database(s). Most database applications dynam-
ically generate commands in the database language (usu-
ally, SQL—Structured Query Language), pass these com-
mands to the database for execution, and process the re-
sults returned by the database. Traditional code-based cov-
erage criteria, such as statement or branch coverage, do
not specifically target these generated commands. There-
fore, even though they can reveal faults in the database ap-
plication’s code, they are often unable to reveal faults in
the database commands generated by the application. Sev-
eral researchers have proposed alternative criteria specifi-
cally targeted at database applications (e.g., [13, 17, 22]),

but none of these approaches focuses on the coverage of

dynamically-generated database commands.

To address this problem, we define a new test adequacy
criterion that is specifically targeted at the interactions be-
tween an application and its database. Our criterion is based
on coverage of all of the possible database command forms
that the application under test can generate. Intuitively,
command forms are database commands with placehold-
ers for parts that will be supplied at runtime (e.g., through
user input). To compute the set of command forms for
an application, we defined a technique that builds on two
previously-developed analyses [6, 12]. The technique takes
as input the code of the application under test and pro-
duces a conservative approximation of the possible com-
mand forms that the application can generate. The com-
mand forms are represented as a Deterministic Finite Au-
tomaton (DFA) in which each complete path identifies a
unique command form. To efficiently collect and compute
coverage information, we leverage a technique for efficient
path profiling by Ball and Larus [1] and apply it to the DFAs
generated by our technique.

We implemented our approach in a prototype tool called
DITTO (Database Interaction Testing TOol). DITTO lets de-
velopers assess the adequacy of an existing test suite with
respect to application-database interactions. DITTO can also
help testers generate test cases by providing feedback about
which database command forms have not been exercised.

To evaluate our approach, we performed two preliminary
studies on a real database application using DITTO. The
first study is a proof-of-concept study that shows that our
approach can be used to compute testing requirements and
collect coverage information. In the second study, we assess
the potential usefulness of our coverage criterion as com-
pared to a more traditional structural coverage criterion.
The contributions of this paper are:

e A new coverage criterion for database applications that
focuses on adequately exercising the interactions be-
tween an application and its underlying database.

e An efficient approach for (1) computing testing require-
ments, (2) instrumenting an application and collecting
coverage information, (3) analyzing the coverage infor-
mation and providing feedback to testers.

e The development of a tool, DITTO, that implements our
approach.

e A preliminary study that shows the potential usefulness
and feasibility of the criterion.

2 Background and Terminology

A database application is typically a multi-tiered applica-
tion that interacts with one or more databases during execu-
tion. The top tier (Ul tier) provides the user interface, the
middle tier (application tier) implements the application’s
logic, and the bottom tier (database tier) is the database. At
runtime, the application interacts with the database by gen-
erating commands in the database language and using an
API to issue the commands to the database. The database
executes the commands and returns the results to the appli-
cation.

Because of their characteristics, database applications
can be considered meta-programs that generate object pro-
grams to be executed on the database. In this case, the
meta-language is the language used in the application tier—
typically, one or more general purpose programming lan-
guages such as Java, C, Perl, or PHP—and the object lan-
guage is usually the Structured Query Language (SQL).
The meta-program creates database commands (i.e., the ob-
ject program) by combining hard-coded strings that con-
tain SQL keywords, operators, and separators with literals
that can originate from the user or other sources of input.
In most applications, the creation of a database command
spans several statements and often involves multiple proce-
dures. We refer to the parts of a database command that
cannot be determined statically (e.g., substrings that corre-
spond to user input) as the indeterminate parts of the com-
mand.

Within the meta-program, there are statements that per-
form API calls to issue commands to the database. Using
the terminology introduced by Kapfhammer and Soffa [13],
we call these statements database interaction points. De-
pending on the structure of the application and user input, a
specific database interaction point can issue different types
of database commands. To characterize the commands that
can be generated at a database interaction point, we use the
concept of database command form. A database command
form (or simply command form) is an equivalence class that
groups database commands that differ only in the possible
value of their indeterminate parts. Intuitively, one can think
of a command form as a template command string in which
the parts of the database command that are statically defined
by the application are specified, and the indeterminate parts
are marked by a placeholder. In Section 4.1 we provide a
concrete example of a database command form.

public ResultSet

searchBooks (String searchString, int searchType,
boolean showRating, boolean groupByRating,
boolean groupByISBN) ({

1. String[] searchFields = {"tiitle", "author", "isbn"};
2. String queryStr= "SELECT title, author, description";
3. if (showRating) {
4. queryStr += ", avg(rating) ";
}
5. queryStr += "FROM books WHERE ";
6. 1f (searchType==2) {
7. queryStr += searchFields[searchType] + " = " +
searchString;
}
8. else {
9. queryStr += searchFields[searchType] + " = '" +

searchString + "’ ";

}

10. if (groupByRating) {

11. queryStr += "GROUP BY rating ";
}

12. else if (groupByISBN) {

13. queryStr += " GROUP BY isbn ";
}

14. return database.executeQuery (queryStr);
Figure 1. Excerpt of database application.

3 Motivating Example

Traditional code-based coverage criteria focus on discover-
ing errors in the application code and can result in very lim-
ited coverage of the SQL commands that an application can
generate. To illustrate this limitation, Figure 1 shows a pos-
sible snippet of code from a database application. Method
searchBooks has one database interaction point (line 14)
and takes five inputs: a search string (searchString),
an integer representing the search type (searchType),
and a set of parameters for the search (showRating,
groupByRating, and groupByISBN). The last four in-
puts determine how the hard-coded strings in the code will
be combined to produce the final command. The value of
the first parameter, searchString, is directly embedded
in the database command.

This code compiles correctly, but it contains four faults
that manifest themselves in the object language. Certain
paths through the code generate illegal SQL commands that
cause database errors and, ultimately, application failures.

1. At line 1, field “title” is misspelled as “tiitle.” Because
“tiitle” is not a legal column name in the table, it will
cause an error if it is appended to the query at line 9.

2. If both of the appends at line 7 and line 11 are executed,
there will be no space delimiter between the value of
searchString and the “GROUP BY” clause.

3. In SQL, grouping functions such as avg () require
a corresponding “GROUP BY” clause in the query.
If showRating is true, but groupByRating and
groupByISBN are not, this rule will be violated.

4. If the append at line 4 is not performed, there will be no
space delimiter between “description” and the “FROM”
clause.

These faults manifest themselves in the generated object-
program and not in the application code. Therefore, a tradi-
tional code-based adequacy criterion that requires the cov-
erage of the application code would only detect such faults
by chance. To illustrate, consider the following three test
cases:

searchBooks ("0123456789", 2, false, false, true)
searchBooks ("Any Author", 1, false, false, false)

searchBooks ("Any Author", 1, true, true, false)

These test cases achieve 100% branch (and statement) cov-
erage of the example code, but reveal only one of the four
faults in the code—the fourth one. Even using a stronger
criterion, such as the all-paths criterion, could fail to expose
all of the faults. A test suite could exercise all paths in the
example code, but if zero is never used as a search type,
the first fault would not be exposed. In the next section,
we explain how our approach can provide the tester with a
more effective criterion for testing interactions between ap-
plications and their underlying databases by focusing on the
object program instead of the meta-program.

4 A Novel Approach for Testing Database
Applications

Whereas traditional code-based adequacy criteria focus on
the database application code, our approach focuses on test-
ing the interactions between applications and underlying
databases. In this sense, our approach complements exist-
ing testing criteria and ensures that database applications
are more thoroughly tested. In this section, we discuss the
four components of our approach: (1) a new coverage crite-
rion for database applications, (2) a technique for comput-
ing testing requirements for the criterion, (3) a technique for
efficiently collecting coverage data, and (4) a technique for
analyzing and reporting coverage information.

4.1 Testing Requirements

The set of testing requirements for our criterion consists of
all of the command forms for all of the database interaction
points in the application under test. Because our goal is to
exercise the interactions between an application and its un-
derlying database, command forms represent a model of the
database application at the right level of abstraction—they
model all of the possible commands that the application can
generate and execute on the database. Therefore, the num-
ber of command forms exercised by a test suite is likely to
be a good indicator of the thoroughness of the testing of the
interactions between the application and its database.

For our example code in Figure 1, the set of testing re-
quirements consists of the command forms that can be ex-
ecuted at line 14, the only database interaction point. By
looking at the different paths in the code, we can see that

it can generate eighteen distinct command forms. For the
sake of space, we only list one of them as an example:

SELECT title, author, description, avg(rating)
FROM books WHERE author = ’*’ GROUP BY rating

We use symbol * as a placeholder for the indeterminate part
of the command (in this simple case, the part corresponding
to the value of searchString). All other parts of the
database command, which can be determined statically, are
specified in the command form.

4.2 Computing Command Forms

The main challenge when generating command forms is the
accurate identification of the possible SQL commands that
could be issued at a given database interaction point. Be-
cause these commands are generated at runtime and often
inter-procedurally, this task requires the application of so-
phisticated program-analysis techniques. We perform this
task in three steps.

In the first step, we leverage the Java String Anal-
ysis (JSA) developed by Christensen, Mgller, and
Schwartzbach [6]. Given a program P, a string variable!
str, and a program point s, JSA analyzes P and computes
a Non-deterministic Finite Automaton (NFA) that encodes,
at the character level, all of the possible values that str can
assume at s. JSA builds the NFA in a conservative way, by
taking into account all string operations on str along pro-
gram paths leading to s. We apply JSA to the command
string variable used at each database interaction point and
obtain an NFA for each string.

In the second step, we refine the NFAs by using a tech-
nique from our previous work [12]. This technique parses
the character-level NFAs and produces corresponding SQL-
level models by aggregating characters that correspond to
SQL keywords and operators. Therefore, an SQL-level
model is an NFA in which transitions correspond to SQL to-
kens (keywords, operators, and delimiters) and input place-
holders, instead of single characters or character ranges (as
in the original JSA models).

In the third step, we compute the set of command forms
from the SQL-level models. We first determinize and then
minimize the SQL-level models to obtain what we call an
SQL command form model. By construction, the set of com-
mand forms for a specific database interaction point is ex-
actly the set of all accepting paths in the command form
model. To keep the number of requirements finite and avoid
the need to enumerate all of the possible command forms,
we adapt the efficient path profiling approach proposed by
Ball and Larus [1]. Using this approach, we (1) transform
any cyclic models into directed acyclic graphs and (2) as-
sign integer edge values to a subset of the transitions in

'We use the term string to refer to all of the Java string-related classes,
such as STRINGBUILDER, STRINGBUFFER, CHARACTER, and STRING.

GROUF

isbn

@ e
ERE aythor =
(OO A0y
5]

VAR

Oy ©
O

GROUFP

o (:)O -
0L O 0L 0.0, 020

Figure 2. Excerpt of the command form model for the code in Figure 1.

the models, such that the sum of the edge values along
each path is unique and the encoding is minimal. Since
each command form corresponds to a unique path in the
command form model, the unique integer associated with a
path can be used as the ID for the corresponding command
form. Moreover, because the path encoding is minimal, the
largest path ID gives the total number of requirements for
a database interaction point. This allows us to calculate the
total number of testing requirements and assign unique IDs
to requirements without having to enumerate all of the com-
mand forms.

As an example, Figure 2 shows an excerpt of the com-
mand form model for the database interaction point of the
code in Figure 1. The command form shown in Section 4.1
corresponds to a specific path in this command form model.

The size of the command form model can, in the worst
case, be quadratic with respect to the size of the pro-
gram [6]. However, this worst case corresponds to a pro-
gram that, at every statement, modifies the command string
and has a branch. As Tables 1 and 2 show, the models tend
to be linear with respect to the size of the application.

4.3 Coverage Collection

To measure the adequacy of a test suite with respect to our
coverage criterion, we monitor the execution of the appli-
cation and determine which command forms are exercised.
We consider a command form associated with a database
interaction point to be covered if, during execution, an SQL
command that corresponds to the command form is issued
at that point. An SQL command corresponds to a command
form if they differ only in the value of the command form’s
indeterminate part For example, the query:

SELECT title, author, description, avg(rating)
FROM books WHERE author = ’Edward Bunker’ GROUP
BY rating

would match the command form

SELECT title, author, description, avg(rating)
FROM books WHERE author = '’ GROUP BY rating

because the former can be obtained from the latter by re-
placing the * placeholder with the string “Edward Bunker.”

We collect coverage information by inserting a call to
a monitor immediately before each database interaction
point. At runtime, the monitor is invoked with two pa-

rameters: the string that contains the actual SQL command
about to be executed and a unique identifier for the inter-
action point. First, the monitor parses the command string
into a sequence of SQL tokens. Second, using the inter-
action point’s identifier, it retrieves the corresponding SQL
command form model. To find which command form cor-
responds to the command string, the monitor traverses the
model by matching SQL tokens and transition labels un-
til it reaches an accepting state. (Label * can match any
number of tokens.) At the end of the traversal, the path
followed corresponds to the command form covered by the
command string, and the ID of the command form is given
by the sum of the edge values associated with the transitions
in the traversed path. At this point, the monitor adds to the
set of coverage data a pair consisting of the ID of the cov-
ered command form and the ID of the database interaction
point.

4.4 Coverage Analysis and Reporting

Given a set of coverage data, the database command form

coverage measure can be expressed as:
number of command forms covered
total number of command forms

coverage =

The number of command forms covered is simply the
number of unique entries in the coverage data. The total
number of command forms is given, as discussed in Sec-
tion 4.2, by the sum of each database interaction point’s
maximum command form ID. All command form IDs that
do not appear in the coverage data correspond to command
forms that were not covered during testing. Given an ID, we
can easily reconstruct the string representation of the corre-
sponding command form and show it to the testers. To do
this, we use the same approach used to reconstruct paths
from path IDs in Ball and Larus’s profiling approach [1].

S The DITTO Tool

To automate the use of our testing approach and enable
experimentation, we designed and implemented a proto-
type tool called DITTO (Database Interaction Testing TOol).
DITTO is implemented in Java, provides fully automated
support for all aspects of our approach, and can guide the
developer in testing database applications written in Java.
Figure 3 provides a high-level view of DITTO’s architecture.
As the figure shows, DITTO has three main operating modes
and consists of several modules.

Mode 1

Requirements Generator

Database

Application

| Mode 3
SQL Command
String |:> NFA |:> SQL-Model I::> Form Models
Analyzer Models Generator w
- Path
Analyzer

Database C E %
> Coverage
Point IDs Analyzer

Instrumenter <":| Interaction

Instrumented
Database
Application

Coverage
Coverage
Monitor |:‘| =

Testers

Figure 3. High-level overview of piTTO.

We expect that in a typical usage scenario DITTO would
be used iteratively to support the testing process. Testers
would create a set of test cases for their application or use
a previously-developed test suite. Then they would use
DITTO to instrument the application (Mode 1), run their test
cases against the application (Mode 2), and get a coverage
report (Mode 3). If testers are not satisfied with the level
of coverage achieved, DITTO can provide detailed feedback
about which command forms were not covered. The feed-
back can include both a visual display of the command form
models, marked with coverage information, and a textual
list of uncovered command forms. Testers can use this in-
formation to guide the development of new test cases. At
this point, DITTO would be used again in Modes 2 and 3
to assess whether the additional test cases helped improved
coverage. As in traditional testing, this process could con-
tinue until the testers are either satisfied with the coverage
results or run out of resources.

5.1 Mode 1: Instrumentation

In Mode 1 DITTO generates the command form models and
instruments the code for collecting coverage data.

To generate the command form models, DITTO statically
analyzes the database application under test, as discussed in
Section 4.2. For each database interaction point, the String
Analyzer uses the JSA library [6] to produce an NFA model
of the SQL command string used at that point. The SQL-
Model Generator uses a modified version of our AMNE-
SIA tool [12] to process the NFA models and generate the
corresponding SQL command form models. Finally, the
Path Analyzer takes as input the SQL command form mod-
els, annotates them with the edge values for the path encod-
ing, and generates some command form information used
for bookkeeping.

To produce coverage data at runtime, the Instrumenter
modifies the code as described in Section 4.3. The In-
strumenter inserts a call to the Coverage Monitor imme-
diately before each database interaction point. The call to
the monitor provides as parameters (1) the string variable
that contains the SQL command about to be executed and

(2) the unique identifier for the database interaction point.
The instrumentation is performed using bytecode rewriting
and leverages the Byte Code Engineering Library (BCEL
—http://jakarta.apache.org/bcel/). For our
example application, the Instrumenter would modify the
database interaction point at line 14 (Figure 1) as follows:

monitor.log(<interaction point ID>,queryStr);
return database.executeQuery (queryStr);

5.2 Mode 2: Execution

In Mode 2 DITTO collects coverage data and records it
for later analysis. The instrumented database application
executes normally until it reaches a database interaction
point. At this point, the string that is about to be submitted
as an SQL command is sent to the Coverage Monitor to-
gether with the interaction point’s ID. The monitor traverses
the command form model for that interaction point, as de-
scribed in Section 4.3, and logs the pair consisting of the ID
of the covered command form and the ID of the database
interaction point.

5.3 Mode 3: Analysis and Reporting

In Mode 3 DITTO computes the command form coverage
measure and provides feedback to the testers. The Cover-
age Analyzer uses the coverage data collected in Mode 2
and calculates the coverage as described in Section 4.4. The
test adequacy score alone does not give testers any informa-
tion about which parts of the code were insufficiently exer-
cised. To provide more detailed feedback, DITTO also al-
lows testers to visually examine the command form models
and see which paths were not covered by their tests. This in-
formation is visualized by coloring and annotating covered
paths in the models. The testers can also list the command
forms that were not covered in the model in textual format.
Both of these feedback mechanisms provide testers with an
intuitive way to understand coverage results and can guide
further test-case development.

6 Current Limitations

Stored procedures. A common development practice is to
encapsulate sequences of SQL commands and save them
in the database as stored procedures. Developers can then
issue a SQL command that invokes the stored procedure,
possibly with some input parameters. Our approach mod-
els calls to stored procedures just like any other command
issued to the database, but does not consider the SQL com-
mands within a stored procedure (as they are stored in the
database and not explicitly generated by the application).
In other words, our current approach treats stored proce-
dures as atomic instructions. If needed, the coverage cri-
terion could be expanded to include the contents of stored
procedures.

External fragments. In some applications, developers in-
put constant strings from external sources, such as files,
and use these strings to build SQL commands. These ex-
ternal strings are typically SQL command fragments that
contain SQL keywords and operators (in contrast with user
input, which typically consists of string or numeric liter-
als). This situation does not cause any conceptual problem
for our approach, as an indeterminate part of a command
form can match the tokens that correspond to external frag-
ments. From a practical standpoint, however, simply con-
sidering external fragments as indeterminate parts may de-
crease the effectiveness of the criterion. (For an extreme
example, consider the case in which all SQL commands are
simply read from external files.) This limitation is mostly
implementation related: we could extend our technique so
that developers can specify which external fragments are
used in their application, and the technique would account
for these fragments when building the SQL command form
model. We have not implemented this solution yet because
none of the applications that we have examined so far uses
external fragments.

Infeasibility. Infeasibility is one of the main problems for
structural coverage criteria. Computing structural cover-
age requirements for an application typically involves some
form of static analysis of the application’s code. In general,
because determining the reachability of a statement for a
given program is an undecidable problem [20], static anal-
ysis tends to generate spurious requirements that cannot be
satisfied. The presence of unsatisfiable requirements in a
criterion makes it impossible to reach 100% coverage for
that criterion and limits its usefulness. Infeasibility can af-
fect the command form criterion by causing the presence
of spurious command forms that do not correspond to any
command that could be generated by the application. In-
tuitively, this problem should occur primarily because the
string analysis may add to the model strings that are gen-
erated along infeasible paths. Therefore, we expect the in-
feasibility problem to affect us to a similar extent in which

Servlet ‘ LOC ‘ # Methods
Header 130 9
AdvSearch 253 13
Default 693 26
CategoriesGrid 309 18
CardTypesGrid 270 17
OrdersRecord 463 20
MembersInfo 488 21
CardTypesRecord 368 18
Footer 129 9
Login 290 14
EditorialCatGrid 310 18
EditorialsGrid 325 18
ShoppingCartRecord | 412 19
Registration 515 20
CategoriesRecord 368 18
EditorialsRecord 441 19
Books 534 22
EditorialCatRecord 365 18
MembersRecord 618 22
BookMaint 514 21
MylInfo 649 19
BookDetail 921 25
AdminBooks 609 22
OrdersGrid 602 20
ShoppingCart 705 21
AdminMenu 429 11
MembersGrid 578 20

Table 1. Summary information about Book-
store’s serviets.

it affects path-based coverage criteria. As discussed in Sec-
tion 9, we plan to investigate infeasibility issues for our cri-
terion through empirical evaluation.

Analysis limitations. Our approach relies on the ability of
the underlying string analysis to build the initial NFA mod-
els for the database interaction points. Imprecision (i.e.,
over-approximation) in the string analysis could limit the
effectiveness of our criterion. For example, a worst case
scenario in which the analysis generates an automaton that
accepts any strings would result in command-form models
that are covered by any test case that reaches the corre-
sponding database interaction point. Note that manual in-
spections showed that imprecision was not an issue for any
of the models that we generated in our evaluation.

7 Evaluation

In our evaluation, we performed two studies. The first one is
a proof of concept study in which we used DITTO on a real
database application to assess whether it was able to suc-
cessfully generate test requirements and measure coverage.
The second study explores the effectiveness of traditional
coverage criteria in generating test suites that are adequate
with respect to command-form coverage.

Servlet ‘ # DIP ‘ # Edges | # States | % Cov. ‘
Header 0 0 0 N/A
AdvSearch 1 16 17 N/A
Default 1 406 407 13%
CategoriesGrid 1 48 49 N/A
CardTypesGrid 1 48 49 N/A
OrdersRecord 2 371 259 <1%
MembersInfo 2 201 172 7%
CardTypesRecord 2 191 143 2%
Footer 1 1 2 N/A
Login 1 67 58 4%
EditorialCatGrid 1 48 49 N/A
EditorialsGrid 1 157 158 N/A
ShoppingCartRecord 2 296 210 N/A
Registration 3 478 309 <1%
CategoriesRecord 2 191 143 5%
EditorialsRecord 2 527 345 <2%
Books 1 7928 6267 N/A
EditorialCatRecord 2 191 143 2%
MembersRecord 3 1282 772 <1%
BookMaint 2 1163 681 <1%
MylInfo 2 588 354 N/A
BookDetail 4 1211 854 1%
AdminBooks 1 344 258 N/A
OrdersGrid 1 326 265 N/A
ShoppingCart 2 154 140 N/A
AdminMenu 1 1 2 N/A
MembersGrid 1 235 207 N/A

Table 2. Information on the SQL command
form models for Bookstore.

For both studies, we used a database application called
Bookstore (available at ht tp: //www.gotocode . com).
Bookstore implements an online bookstore and uses Java
servlets to implement the UI and application tiers. Table 1
shows summary information about each of the servlets in
the application. For each servlet (Serviet), the table shows
its size (LOC) and its number of methods (# Methods).

7.1 Study 1

The first study provides a proof of concept evaluation of
DITTO by showing that it can work on a specific applica-
tion. To achieve this goal, we used DITTO on Bookstore to
generate testing requirements and measure command form
coverage for a set of test cases. DITTO successfully com-
puted the test requirements for each of the database interac-
tion points and instrumented all of the servlets. The entire
process of extracting the models took less than five minutes
on a Pentium III machine with 1GB of memory running
the GNU/Linux Operating System. We then deployed the
instrumented servlets and ran a previously developed test
suite against them.

Table 2 summarizes the results of the study. For each
servlet, the table shows the number of database interaction
points it contained (#DIP), the total number of states and

transitions in the models (#States and #Edges), and the per-
centage of command-form coverage achieved during testing
(%Cov.). Some of the servlets were not exercised by the test
suite, and their coverage measure is reported as “N/A.”

The test suite that we used in this study was developed
in previous work [12] (and also used in related work [16])
to target specific security issues. It was not developed to
achieve coverage, and we did not try to improve it because
the goal of this study was not to test the subject application,
but to demonstrate a successful use of DITTO. Even un-
der these premises, the results provide some initial evidence
that command-form coverage cannot be trivially achieved,
and that specialized test cases may be needed to suitably
exercise the interactions between applications and their un-
derlying databases.

7.2 Study 2

The second study addresses the research question: Does
command-form coverage provide for a more thorough test-
ing of database applications than alternative traditional ap-
proaches? For this study, we selected branch coverage as
the representative traditional criterion because it is widely
used. A typical way to address this question would be to (1)
create a number of branch-adequate test suites, (2) create
the same number of adequate test suites for the command-
form coverage criterion, (3) run both sets of test suites on
several versions of an application with seeded faults, and
(4) compare the fault-detection capability of both sets of
test suites.

However, there is a significant technical challenge that
complicates this type of evaluation: the lack of an effective
way to automatically seed different types of SQL-related er-
rors. Whereas there are mutant generation tools that can be
used to seed traditional faults in programs, there are no such
tools for SQL-related faults. Seeding the errors by hand
or building an ad-hoc tool are less than ideal options be-
cause they would introduce problems of bias. Alternatively,
collecting real database-command related faults from open-
source projects would be a good solution, but may involve
an extensive search and still result in too few data points to
draw significant conclusions.

Due to these issues, we decided to use an indirect and
approximated method to compare the effectiveness of our
criterion with the effectiveness of the traditional branch-
coverage criterion. The method that we use is to compute an
upper bound to the number of command forms that could be
exercised by a branch-adequate test suite and compare this
number to the total number of command forms for the ap-
plication. A higher total number of command forms would
be an indication that branch coverage (and possibly other
traditional testing criteria) may not adequately test inter-
actions between the application and the database, and that
command-form coverage may be needed. For instance, con-
sider the example code in Figure 1. As discussed in Sec-

tion 3, we could achieve 100% branch coverage of that code
with just three test cases, each of which would exercise
only one command form. Because there are eighteen possi-
ble command forms, it is clear that the considered branch-
adequate test suite would not thoroughly exercise the SQL
commands generated by the application.

The total number of command forms for an application
is computed by DITTO, as discussed in Section 4.2. To cal-
culate an upper bound to the number of command forms
that would be executed in a servlet by a branch-adequate
test suite, we use the cyclomatic complexity of the servlet.
The cyclomatic complexity is an upper bound to the mini-
mal number of test cases needed to achieve 100% branch
coverage of a program [19]. An analysis of the servlets
used in the study revealed that no test case can execute a
database interaction point more than once (i.e., no database
interaction point is in the body of a loop). Therefore, if we
conservatively assume that each test case exercises a dif-
ferent command form, we can use the cyclomatic complex-
ity as an upper bound to the number of possible command
forms that a minimal, branch-adequate test suite would ex-
ecute. In practice, however, such an assumption could
vastly overestimate the number of command forms exer-
cised by a branch-adequate test suite because many paths
in the code do not actually generate a database command.
To obtain a better estimate, we must compute the cyclo-
matic complexity on only the subset of the servlet code
that is involved with creating, modifying, and executing
database commands. We thus generate an executable back-
ward slice [18] for each command string variable at each
database interaction point using JABA? and compute the cy-
clomatic complexity only for the subset of the servlet in the
slice. Because the JABA-based slicer that we use is still a
prototype and requires a considerable amount of human in-
tervention, in the study we consider only a subset of the
Bookstore servlets.

The results of our analysis are shown in Table 3. For
each servlet considered, we report the number of database
interaction points (#DIP), the number of command forms
(# Command Forms), and the cyclomatic complexity of the
servlet’s slice. As the data shows, the number of command
forms is considerably higher than the cyclomatic complex-
ity in several cases, and the average number of command
forms per database interaction point (253) is almost five
times the average cyclomatic complexity (57). Because the
numbers we used in the study are estimates, and we only
considered a small number of servlets, we cannot draw any
definitive conclusion from the study. Nevertheless, this pre-
liminary study indicates that command-form coverage may
result in a more thorough testing of database interactions
than traditional coverage criteria. These results encourage
further research and a more extensive empirical evaluation.

thtp: //www.cc.gatech.edu/aristotle/Tools/jaba.html

Servlet #DIP | # Command | Cyclomatic
Forms Complexity
MyInfo 1 6 136
BookDetail 4 1583 150
AdminBooks 1 617 31
OrdersGrid 1 394 26
ShoppingCart 2 20 28
AdminMenu 1 1 6
MembersGrid 1 162 21

Table 3. Results of the evaluation.

8 Related Work

The problem of ensuring the correctness of database ap-
plications has been approached in several different ways.
The approaches most closely related to ours are those that
also propose new test adequacy criteria for database appli-
cations. Within this group, there are two types of crite-
ria, those that focus on data-flow and those that focus on
the structure of the SQL commands sent to the database.
Suérez-Cabal and Tuya [17] propose a structural coverage
criterion that requires the coverage of all of the conditions
in a SQL command’s “FROM,” “WHERE,” and “JOIN”
clauses. This criterion is analogous to the multiple condi-
tion coverage criterion [5], but applied to SQL clauses in-
stead of code predicates. This work differs from ours in that
it focuses on SQL commands that are completely statically
defined and only considers coverage of a subset of the SQL
language, namely, conditions in queries’ clauses. In con-
trast, our technique considers coverage of all types of SQL
commands, including dynamically-constructed ones. Also
similar to our criterion are the criteria proposed by Will-
mor and Embury [22]. In particular, they propose the all
database operations criterion, which requires the execution
of all of a program’s database interaction points. Our pro-
posed criterion subsumes this criterion because it requires
not only the execution of each database interaction point,
but also the coverage of all of the command forms that can
be generated at that point.

Kapfhammer and Soffa [13] propose a set of data-flow
test adequacy criteria based on definition-use coverage of
database entities. These entities can be defined at differ-
ent levels of granularity that include the database, relation,
attribute, record, and attribute-value level. These criteria
parallel conventional data-flow testing criteria [10], but are
defined and evaluated based on database entities instead of
program variables. Willmor and Embury [22] refine these
criteria and expand them to accommodate database transac-
tions. Both approaches differ from ours in that they focus
on covering all of the definitions and uses of database enti-
ties instead of the different command forms. The data-flow
criteria do not subsume command form coverage because
at a database interaction point it is possible to have several
command forms that exercise the same set of database en-

tities. In this case, satisfying the data-flow criteria would
not satisfy command form coverage. The data flow crite-
ria are complementary to ours; they target faults related to
the definition and use of database entities, whereas our ap-
proach targets errors in the database commands generated
by a database application.

The work of Chan and Cheung [2] is similar to ours
in that it aims to thoroughly test database applications by
taking into account the generated SQL commands. Their
approach translates SQL commands into Relational Alge-
bra Expressions (RAE), converts the RAE into the meta-
language of the application, and replaces the SQL command
in the application with the generated code. After the trans-
formation, they use standard white-box testing criteria to
test, albeit indirectly, the SQL commands. To illustrate their
approach, consider the case in which the developer issues a
SQL JOIN command. They would first convert the SQL
command into equivalent statements in the meta-language.
In this case, the JOIN would be translated into two nested
for loops (the JOIN command is similar to a cross prod-
uct between two database tables). Testers would then create
test cases to properly exercise the additional for loops in
the code. (Using our approach, the JOIN command would
simply be counted as an additional command form to be
covered.) Chan and Cheung’s approach enforces a thorough
testing of database applications, but it has several limita-
tions when compared to our approach. First, and most im-
portantly, the translation of the SQL commands into RAE
requires that the SQL commands be statically defined as
constant strings. This is a fundamental limitation because it
precludes the usage of the technique on the many database
applications that build command strings by appending dif-
ferent substrings along non-trivial control-flow paths. Our
approach does not have this problem because the static anal-
ysis can typically account for all possible commands, in-
cluding dynamically-constructed ones. Another limitation
is that the RAE is less expressive than SQL, so certain SQL
commands cannot be translated and will not be adequately
tested. We are not affected by this issue because we mea-
sure coverage directly on the database command forms.

Another proposed approach is to perform static ver-
ification of the possible SQL commands. Christensen,
Mgller, and Schwartzbach introduce the Java String Anal-
ysis (JSA) [6] and use it to extract non-deterministic finite
automata that represent the potential SQL commands that
could be generated at a given database interaction point.
They then intersect the automata with a regular language ap-
proximation of SQL to determine if the commands are syn-
tactically correct. Gould, Su, and Devanbu propose JDBC
Checker [11], which builds on JSA and adds type analysis
to statically verify that dynamically generated commands
are type-safe. This type of verification is powerful, but does
not necessarily eliminate the need for testing. First, it is not

always possible to check SQL commands statically (e.g., in
cases where the application allows keywords or operators
to be specified at runtime). Second, there are limitations in
the type of errors that can be detected by these techniques.
For instance, consider the third error in our example from
Section 3. This type of fault would not be detected by Chris-
tensen, Mgller, and Schwartzbach’s approach because their
syntax checking is not expressive enough to represent the
constraints violated by the error. Although our approach
uses similar models as these techniques, it uses them for
measuring the thoroughness of a test suite with respect to
command forms instead of for verifying them. Our tech-
nique, although less complete than the ones based on static
verification, does not have the limitations of these tech-
niques and may reveal faults that these techniques cannot
reveal.

Other approaches, such as SQL DOM [14] and Safe
Query Objects [7], propose to change the way developers
construct SQL commands. Instead of having developers
create SQL commands using string concatenation, they of-
fer a specialized API that handles all aspects of creating and
issuing SQL command strings. The main benefit of these
approaches is that they can enforce a more disciplined us-
age of SQL, and thus prevent many errors. However, these
approaches require developers to learn a new API and de-
velopment paradigm and, most importantly, cannot be eas-
ily applied to legacy code.

Finally, other related work focuses on test case genera-
tion for database applications and regression testing. Al-
though related to our approach, they have different goals
and are mostly orthogonal to our work. AGENDA [3, 4, 9]
is a framework for automatic generation and execution of
unit tests for database applications that is loosely based
on the category partition testing method [15]. AGENDA
takes as input information about the logical database model
(e.g., schema information, database states, and logical con-
straints) and combines it with tester input to generate test
cases for the database. Zhang, Xu, and Cheung propose a
technique for generating database instances to support test-
ing [24]. The technique uses a constraint solver to iden-
tify which values a database should contain to ensure that
the different conditions and predicates in an application’s
SQL commands will be exercised. Similarly, Willmor and
Embury [23] propose a mechanism that allows developers
to specify database states that are relevant for a test suite
and can then appropriately populate the database. Daou and
colleagues use a firewall-based approach for regression test-
ing of database applications [8], while Willmor and Embury
propose regression testing based on definition-use analysis
of the SQL commands in an application [21].

9 Conclusion
In this paper, we addressed a common problem that arises
when testing database applications: how to adequately test

the interactions between an application and its underlying
database. To address this problem, we introduced an ap-
proach based on a new test adequacy criterion called com-
mand form coverage. This criterion requires the coverage
of all of the command forms that a given application can
issue to its database.

We also presented DITTO, a prototype tool that imple-
ments our approach. DITTO generates testing requirements
for our criterion, measures the adequacy of a test suite with
respect to the criterion, and provides feedback to testers
about which requirements were not covered during testing.

Finally, we presented two preliminary studies. The first
one is a feasibility study that shows that DITTO can success-
fully extract testing requirements and measure coverage for
a real database application. The second study provides an-
alytical evidence that traditional code-based testing criteria
may be inadequate in the case of database applications. The
results of the studies, although preliminary, are encouraging
and motivate further research.

There are several possible directions for future work.
First, we will perform a more extensive empirical evalua-
tion of our approach. We will identify additional subjects
and fault information for these subjects by performing a
survey of existing database applications. We will then use
these subjects to (1) assess the effectiveness of our criterion
in revealing database-application-specific errors, (2) further
compare our criterion and traditional code-based criteria,
and (3) study infeasibility and other analysis-related issues
for our approach. Second, we will investigate whether we
can improve the effectiveness of our approach by leverag-
ing information about the database used by the application
under test (e.g., the database schema). Finally, we will in-
vestigate the application of our technique to other domains,
such as dynamic web applications.

Acknowledgments

This work was partially supported by NSF awards CCR-
0205422 and CCR-0306372 to Georgia Tech and by the
Department of Homeland Security and US Air Force under
Contract No. FA8750-05-C-0179.

References

[1] T. Ball and J. R. Larus. Efficient Path Profiling. In Proc. of Micro
96, pages 46-57, Dec. 1996.

M. Chan and S. Cheung. Testing Database Applications with SQL
Semantics. In CODAS’99: Proc. of 2nd International Sympo-
sium on Cooperative Database Systems for Advanced Applications,
pages 363-374, Dec. 1999.

D. Chays, S. Dan, P. G. Frankl, F. I. Vokolos, and E. J. Weyuker. A
Framework for Testing Database Applications. In ISSTA ’00: Proc.
of the 2000 ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 147-157, Aug. 2000.

D. Chays, Y. Deng, P. G. Frankl, S. Dan, F. 1. Vokolos, and
E. J. Weyuker An AGENDA for Testing Relational Database Ap-
plications. Journal of Software Testing, Verification and Reliability,
Mar. 2004.

[2]

[3]

[4]

10

[3]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

J. Chilenski and S. Miller. Applicability of Modified Condi-
tion/Decision Coverage to Software Testing. Software Engineering
Journal, 9(5):193-200, Sep. 1994.

A. S. Christensen, A. Mgller, and M. I. Schwartzbach. Precise Anal-
ysis of String Expressions. In Proc. 10th International Static Anal-
ysis Symposium, SAS 03, pages 1-18, Jun. 2003.

W. R. Cook and S. Rai. Safe Query Objects: Statically Typed Ob-
jects as Remotely Executable Queries. In Proc. of the 27th Inter-
national Conference on Software Engineering (ICSE 2005), pages
97-106, May 2005.

B. Daou, R. A. Haraty, and N. Mansour. Regression Testing of
Database Applications. In SAC ’01: Proc. of the 2001 ACM Sympo-
sium on Applied Computing, pages 285-289, 2001.

Y. Deng, P. Frankl, and D. Chays. Testing Database Transactions
with AGENDA. In ICSE ’05: Proc. of the 27th International Con-
ference on Software Engineering, pages 78-87, 2005.

P. G. Frankl and E. J. Weyuker. An Applicable Family of Data
Flow Testing Criteria. IEEE Transactions on Software Engineering,
14(10):1483-1498, Oct. 1988.

C. Gould, Z. Su, and P. Devanbu. Static Checking of Dynamically
Generated Queries in Database Applications. In Proc. of the 26th In-
ternational Conference on Software Engineering (ICSE 04), pages
645-654, May 2004.

W. G. Halfond and A. Orso. AMNESIA: Analysis and Monitoring
for NEutralizing SQL-Injection Attacks. In Proc. of the IEEE and
ACM International Conference on Automated Software Engineering
(ASE 2005), pages 174—183, Nov. 2005.

G. M. Kapfhammer and M. L. Soffa. A Family of Test Adequacy
Criteria for Database-Driven Applications. In ESEC/FSE-11: Proc.
of the 9th European Software Engineering Conference, held jointly
with, 11th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pages 98—107, Sep. 2003.

R. McClure and I. Kriiger. SQL DOM: Compile Time Checking
of Dynamic SQL Statements. In Proc. of the 27th International
Conference on Software Engineering (ICSE 05), pages 88-96, May
2005.

T. J. Ostrand and M. Balcer. The Category-Partition Method for
Specifying and Generating Functional Tests. Communications of
the ACM, 31(6), Jun. 1988.

Z. Su and G. Wassermann. The Essence of Command Injection
Attacks in Web Applications. In The 33rd Annual Symposium on
Principles of Programming Languages, pages 372-382, Jan. 2006.

M. J. Sudrez-Cabal and J. Tuya. Using an SQL Coverage Measure-
ment for Testing Database Applications. In Proc. of the 12th ACM
SIGSOFT Symposium on the Foundations of Software Engineering
(FSE 2004), pages 253-262, Oct. 2004.

F. Tip. A Survey of Program Slicing Techniques. Journal Of Pro-
gramming Languages, 31(5):32-40, May 1998.

A. H. Watson and T. J. McCabe. Structured Testing: A Testing
Methodology Using the Cyclomatic Complexity Metric. Technical
Report 500-235, NIST Special Publication, Aug. 1996.

E.J. Weyuker. The Applicability of Program Schema Results to Pro-
grams. International Journal of Parallel Programming, 8(5):387—
403, Oct. 1979.

D. Willmor and S. M. Embury. A safe regression test selection tech-
nique for database-driven applications. In Proc. of the 21st IEEE
International Conference on Software Maintenance (ICSM 2005),
pages 421-430, Sep. 2005.

D. Willmor and S. M. Embury. Exploring test adequacy for database
systems. In Proceedings of the 3rd UK Software Testing Research
Workshop (UKTest 2005), pages 123—133, Sep. 2005.

D. Willmor and S. M. Embury. An Intensional Approach to the
Specification of Test Cases for Database Systems. In Proceedings of
the 28th International Conference on Software Engineering (ICSE
2006), pages 102—111, May 2006.

J. Zhang, C. Xu, and S. C. Cheung. Automatic Generation of
Database Instances for White-box Testing. In COMPSAC ’01: Proc.
of the 25th International Computer Software and Applications Con-
ference, pages 161-165, Oct. 2001.

