Preventing SQL Injection Attacks Using AMNESIA

William G.J. Halfond and Alessandro Orso
College of Computing
Georgia Institute of Technology

{whalfond|orso}@cc.gatech.edu

ABSTRACT

AMNESIA is a tool that detects and prevents SQL injec-
tion attacks by combining static analysis and runtime mon-
itoring. Empirical evaluation has shown that AMNESIA is
both effective and efficient against SQL injection.

Categories and Subject Descriptors: D.2.5 [Software Engi-
neering]: Testing and Debugging— Monitors;

General Terms: Security, Verification

Keywords: SQL injection, static analysis, runtime monitoring

1. INTRODUCTION

Companies and organizations use Web applications to pro-
vide a broad range of services to users, such as on-line bank-
ing and shopping. Because the databases underlying Web
applications often contain confidential information (e.g., cus-
tomer and financial records), these applications are a fre-
quent target for attacks. One particular type of attack,
SQL injection, can give attackers a way to gain access to
the databases underlying Web applications and, with that,
the power to leak, modify, or even delete information that is
stored on these databases. In recent years, both commercial
and government institutions have been victims of SQLIAs.

SQL injection vulnerabilities are due to insufficient input
validation. More precisely, SQL Injection Attacks (SQLIAs)
can occur when a Web application receives user input and
uses it to build a database query without adequately vali-
dating it. An attacker can take advantage of a vulnerable
application by providing it with input that contains em-
bedded malicious SQL commands that are then executed
by the database. Although the vulnerabilities that lead to
SQLIAs are well understood, they continue to be a signif-
icant problem because of a lack of effective techniques to
detect and prevent them. Conceptually, SQLIAs could be
prevented by a more rigorous application of defensive coding
techniques [10]. In practice, however, these techniques have
been less than effective in addressing the problem because
they are susceptible to human errors and expensive to apply
on large legacy code-bases.

In our demonstration, we present AMNESIA (Analysis
and Monitoring for NEutralizing SQL-Injection Attacks), a
tool that implements our technique for detecting and pre-
venting SQLIAs [7, 8]. AMNESIA uses a model-based ap-
proach that is specifically designed to target SQLIAs and
combines static analysis and runtime monitoring. It uses
static analysis to analyze the Web-application code and au-

Copyright is held by the author/owner.
ICSE’06,May 20-28, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

tomatically build a model of the legitimate queries that the
application can generate. At runtime, the technique moni-
tors all dynamically-generated queries and checks them for
compliance with the statically-generated model. When the
technique detects a query that violates the model, it classi-
fies the query as an attack, prevents it from accessing the
database, and logs the attack information.

2. EXAMPLE OF SQL INJECTION

To illustrate how an SQLIA occurs, we introduce a simple
example that we will use throughout the paper. The exam-
ple is based on a servlet, show.jsp, for which a possible
implementation is shown in Figure 1.

public class Show extends HttpServlet {

1. public ResultSet getUserInfo(String login, String password) {
2 Connection conn = DriverManager.getConnection("MyDB");

3. Statement stmt = conn.createStatement();

4 String queryString = "";

o

queryString = "SELECT info FROM userTable WHERE ";

if ((! login.equals("")) && (! password.equals(""))) {
7. queryString += "login=’" + login +

"’ AND pass=’" + password + "’";

(o]

8. } else {
9. queryString+="login=’guest’";

10. ResultSet tempSet = stmt.execute(queryString);
11. return tempSet;

Figure 1: Example servlet.

Method getUserInfo is called with a login and password
provided by the user, in string format, through a Web form.
If both login and password are empty, the method submits
the following query to the database:

SELECT info FROM users WHERE login=’guest’

Conversely, if the user submits login and password, the
method embeds the submitted credentials in the query. For
instance, if a user submits login and password as “doe” and
“xyz,” the servlet dynamically builds the query:

SELECT info FROM users WHERE login=’doe’ AND pass=’xyz’

A Web application that uses this servlet would be vulnerable
to SQLIAs. For example, if a user enters “> OR 1=1 --” and
“”instead of “doe” and “xyz”, the resulting query is:

SELECT info FROM users WHERE login=’’ OR 1=1 --’ AND pass=’’

The database interprets everything after the WHERE token
as a conditional statement, and the inclusion of the “OR 1=1"
clause turns this conditional into a tautology. (The charac-
ters “--=" mark the beginning of a comment, so everything
after them is ignored.) As a result, the database would re-

login

SELECT info FROM userTable WHERE
O————»0O0—»

login

Figure 2: SQL-query model for the servlet in Figure 1.

turn information about all users. Introducing a tautology is
only one of the many possible ways to perform SQLIAs, and
variations can have a wide range of effects, including mod-
ification and destruction of database tables. We provide a
thorough survey of SQLIAs in [9].

3. THE AMNESIA TOOL

In this section we summarize our technique, implemented
in the AMNESIA tool, and then discuss the main charac-
teristics of the tool implementation. A detailed description
of the approach is provided in [7].

3.1 Underlying Technique

Our technique uses a combination of static analysis and
runtime monitoring to detect and prevent SQLIAs. It con-
sists of four main steps.

Identify hotspots: Scan the application code to identify
hotspots—points in the application code that issue SQL
queries to the underlying database.

Build SQL-query models: For each hotspot, build a model

that represents all of the possible SQL queries that
may be generated at that hotspot. An SQL-query
model is a non-deterministic finite-state automaton in
which the transition labels consist of SQL tokens, de-
limiters, and placeholders for string values.

Instrument Application: At each hotspot in the appli-
cation, add calls to the runtime monitor.

Runtime monitoring: At runtime, check the dynamically-
generated queries against the SQL-query model and
reject and report queries that violate the model.

3.1.1 Identify Hotspots

This step performs a simple scanning of the application
code to identify hotspots. For the example servlet in Fig-
ure 1, the set of hotspots would contain a single element,
the statement at line 10.

3.1.2 Build SQL-Query Models

To build the SQL-query model for each hotspot, we first
compute all of the possible values for the hotspot’s query
string. To do this, we leverage the Java String Analy-
sis (JSA) library developed by Christensen, Mgller, and
Schwartzbach [3]. The JSA library produces a non-determini-
stic finite automaton (NDFA) that expresses, at the char-
acter level, all the possible values the considered string can
assume. The string analysis is conservative, so the NDFA
for a string is an overestimate of all the possible values of
the string.

To produce the final SQL-query model, we perform an
analysis of the NDFA and transform it into a model in
which all of the transitions represent semantically mean-
ingful tokens in the SQL language. This operation creates
an NDFA in which all of the transitions are annotated with
SQL keywords, operators, or literal values. (This step is
configurable to recognize different dialects of SQL.) In our

model, we mark transitions that correspond to externally
defined strings with the symbol (.

To illustrate, Figure 2 shows the SQL-query model for the
hotspot in the example provided in Section 2. The model
reflects the two different query strings that can be generated
by the code depending on the branch followed after the if
statement at line 6 (Figure 1). In the model, 8 marks the
position of the user-supplied inputs in the query string.

3.1.3 Instrument Application

In this step, we instrument the application code with calls
to a monitor that checks the queries at runtime. For each
hotspot, we insert a call to the monitor before the call to
the database. The monitor is invoked with two parameters:
the query string that is about to be submitted and a unique
identifier for the hotspot. The monitor uses the identifier to
retrieve the SQL-query model for that hotspot.

Figure 3 shows how the example application would be
instrumented by our technique. The hotspot, originally at
line 10 in Figure 1, is now guarded by a call to the monitor
at line 10a.

10a. if (monitor.accepts (<hotspot ID>, queryString))

{

10b. ResultSet tempSet = stmt.execute(queryString);
11. return tempSet;

}

Figure 3: Example hotspot after instrumentation.

3.1.4 Runtime Monitoring

At runtime, the application executes normally until it
reaches a hotspot. At this point, the query string is sent to
the runtime monitor. The monitor parses the query string
into a sequence of tokens according to the specific SQL di-
alect considered. Figure 4 shows how the last two queries
discussed in Section 2 would be parsed during runtime mon-
itoring.

After parsing the query, the runtime monitor checks whether
the query violates the hotspot’s SQL-query model. To do
this, the runtime monitor checks whether the model accepts
the sequence of tokens in the query string. When matching
the query string against the SQL-query model, a token that
corresponds to a numeric or string constant (including the
empty string, €) can match either an identical literal value
or a 3 label. If the model does not accept the sequence of
tokens, the monitor identifies the query as an SQLIA.

To illustrate runtime monitoring, consider again the queries
from Section 2, shown in Figure 4. The tokens in query (a)
specify a set of transitions that terminate in an accepting
state. Therefore, query (a) is executed on the database.
Conversely, query (b) contains extra tokens that prevent it
from reaching an accepting state and is recognized as an
SQLIA.

(a) SELECT info FROM users WHERE login=’doe’ AND pass=’xyz’
SELECT] - [info} » [FROM] — (s} — [WHERE] ~ [login | — (5]~ [} — [doe] — [J- [2x})~ =2- [— 10— [
(b) SELECT info FROM users WHERE login=’’ OR 1=1 -- ’AND pass=’’
SELECT]~ [info] - [FROM] — [smere}— [WHERE] - [1ogin | (5}~ [} — D — [~ [o&] - (- &~ [0~ E— - 2} - -0 — @ —0

Figure 4: Example of parsed runtime queries.

3.2 Implementation

In our demonstration, we show an implementation of our
technique, AMNESIA, that works for Java-based Web ap-
plications. The technique is fully automated, requiring only
the Web application as input, and requires no extra runtime
environment support beyond deploying the application with
the AMNESIA library. We developed the tool in Java and
its implementation consists of three modules:

Analysis module. This module implements Steps 1 and
2 of our technique. It inputs a Java Web application and
outputs a list of hotspots and a SQL-query model for each
hotspot. For the implementation of this module, we lever-
aged the Java String Analysis library [3]. The analysis mod-
ule is able to analyze Java Servlets and JSP pages.

Instrumentation module. This module implements Step
3 of our technique. It inputs a Java Web application and
a list of hotspots and instruments each hotspot with a call
to the runtime monitor. We implemented this module using
INSECT/, a generic instrumentation and monitoring frame-
work for Java [19].

Runtime-monitoring module. This module implements
Step 4 of our technique. The module takes as input a query
string and the ID of the hotspot that generated the query,
retrieves the SQL-query model for that hotspot, and checks
the query against the model.

Figure 5 shows a high-level overview of AMNESIA. In the
static phase, the Instrumentation Module and the Analy-
sis Module take as input a Web application and produce
(1) an instrumented version of the application and (2) an
SQL-query model for each hotspot in the application. In
the dynamic phase, the Runtime-Monitoring Module checks
the dynamic queries while users interact with the Web ap-
plication. If a query is identified as an attack, it is blocked
and reported.

To report an attack, AMNESIA throws an exception and
encodes information about the attack in the exception. If
developers want to access the information at runtime, they
can leverage the exception-handling mechanism of the lan-
guage and integrate their handling code into the application.
Having this attack information available at runtime allows
developers to react to an attack right after it is detected and
develop an appropriate customized response. Currently, the
information reported by AMNESIA includes the time of the
attack, the location of the hotspot that was exploited, the
attempted-attack query, and the part of the query that was
not matched against the model.

3.3 Assumptionsand Limitations

Our tool makes one primary assumption regarding the
applications it targets—that queries are created by manip-

Static Phase
(Static Analysis)

AMNESIA Toolset

Instrumented

Instrumentation | [> Web
Application

Module

Web _—

Application

Analysis
Module E:> SQL-Query

Model
Dynamic Phase Runti
n S untime
(Runtime Monitoring) Monitoring 4%

Module

lal)

Browser / alicious Q
Application -
(URL
:> Instrumented Legitimate Query
it ﬂ Database
<:| Application
=== N <—

Data
Users Data ﬂ
Report III

Figure 5: High-level overview of AMNESIA.

ulating strings in the application. In other words, AMNE-
STA assumes that the developer creates queries by combin-
ing hard-coded strings and variables using operations such
as concatenation, appending, and insertion. Although this
assumption precludes the use of AMNESIA on some appli-
cations (e.g., applications that externalize all query-related
strings in files), it is not an overly restrictive assumption.
Moreover, it is an implementation-related assumption that
can be eliminated with suitable engineering.

In certain situations our technique can generate false pos-
itives and false negatives. False positives can occur when
the string analysis is not precise enough. For example, if the
analysis cannot determine that a hard-coded string in the
application is a keyword, it could assume that it is an input-
related value and erroneously place a 3 in the SQL query
model. At runtime, the original keyword would not match
the placeholder for the variable, and AMNESIA would flag
the corresponding query as an SQLIA. False negatives can
occur when the constructed SQL query model contains spu-
rious queries and the attacker is able to generate an injection
attack that matches one of the spurious queries.

To assess the practical implications of these limitations,
we conducted an extensive empirical evaluation of our tech-
nique. The evaluation used AMNESIA to protect seven ap-
plications while the applications where subjected to thou-
sands of attacks and legal accesses. AMNESIA’s perfor-
mance in the evaluation was excellent: it did not generate
any false positives or negatives [7].

4. RELATED WORK

To address the problem of SQLIAs, researchers have pro-
posed a wide range of techniques. Two recent techniques [2,
20] use an approach similar to ours, in that they also build
models of legitimate queries and enforce conformance with
the models at runtime. Other techniques include intrusion
detection [21], black-box testing [11], static code checkers [5,
12, 13, 22], Web proxy filters [18], new query-development
paradigms [4, 15], instruction set randomization [1], and
taint-based approaches [6, 14, 16, 17].

While effective, these approaches have limitations that af-
fect their ability to provide general detection and preven-
tion capabilities against SQLIAs [9]. Furthermore, some
of these approaches are difficult to deploy. Static analy-
sis techniques, such as [5, 22], address only a subset of
the problem. Other solutions require developers to learn
and use new APIs [4, 15], modify their application source
code [2, 20], deploy their applications using customized run-
time environments [1, 15, 16, 18], or accept limitations on
the completeness and precision of the technique [11, 21].
Techniques based solely on static analysis, such as [12, 13],
do not achieve the same levels of precision as dynamic tech-
niques. Finally, defensive coding [10], while offering an effec-
tive solution to SQLIAs, has shown to be difficult to apply
effectively in practice.

5. SUMMARY

In this paper, we have presented AMNESIA, a fully auto-
mated tool for protecting Web applications against SQLIAs.
Our tool uses static analysis to build a model of the legiti-
mate queries an application can generate and monitors the
application at runtime to ensure that all generated queries
match the statically-generated model. In [7], we have pre-
sented an extensive evaluation that uses commercial appli-
cations and real-world SQLIAs to evaluate the effectiveness
of AMNESIA. The results of this evaluation show that AM-
NESTA can be very effective and efficient in detecting and
preventing SQLIAs.

Acknowledgments

This work was partially supported by DHS contract FA8750-
05-2-0214 and NSF awards CCR-0205422 and CCR-0209322
to Georgia Tech.

6. REFERENCES

[1] S. W. Boyd and A. D. Keromytis. SQLrand: Preventing
SQL injection attacks. In Proc. of the 2nd Applied
Cryptography and Network Security Conf. (ACNS 2004),
pages 292-302, Jun. 2004.

[2] G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti. Using
Parse Tree Validation to Prevent SQL Injection Attacks. In
Proc. of the 5th Intern. Workshop on Software Engineering
and Middleware (SEM 2005), pages 106-113, Sep. 2005.

[3] A.S. Christensen, A. Mgller, and M. I. Schwartzbach.
Precise analysis of string expressions. In Proc. 10th Intern.
Static Analysis Symposium (SAS 2003), pages 1-18, Jun.
2003.

[4] W. R. Cook and S. Rai. Safe Query Objects: Statically
Typed Objects as Remotely Executable Queries. In Proc.
of the 27th Intern. Conf. on Software Engineering (ICSE
2005), pages 97-106, May 2005.

[5] C. Gould, Z. Su, and P. Devanbu. Static Checking of
Dynamically Generated Queries in Database Applications.

[6]

7]

(8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

20]

(21]

(22]

In Proc. of the 26th Intern. Conf. on Software Engineering
(ICSE 2004), pages 645-654, May 2004.

V. Haldar, D. Chandra, and M. Franz. Dynamic taint
propagation for java. In Proc. of the 21st Annual
Computer Security Applications Conf. (ACSAC 2005),
pages 303-311, Dec. 2005.

W. G. Halfond and A. Orso. AMNESIA: Analysis and
Monitoring for NEutralizing SQL-Injection Attacks. In
Proc. of the IEEE and ACM Intern. Conf. on Automated
Software Engineering (ASE 2005), pages 174-183, Nov.
2005.

W. G. Halfond and A. Orso. Combining Static Analysis
and Runtime Monitoring to Counter SQL-Injection
Attacks. In Proc. of the Third Intern. ICSE Workshop on
Dynamic Analysis (WODA 2005), pages 2228, May 2005.
W. G. Halfond, J. Viegas, and A. Orso. A Classification of
SQL-Injection Attacks and Countermeasures. In Proc. of
the Intern. Symposium on Secure Software Engineering
(ISSSE 2006), Mar. 2006.

M. Howard and D. LeBlanc. Writing Secure Code.
Microsoft Press, Redmond, Washington, 2"¢ edition, 2003.
Y. Huang, S. Huang, T. Lin, and C. Tsai. Web Application
Security Assessment by Fault Injection and Behavior
Monitoring. In Proc. of the 12th Intern. World Wide Web
Conf. (WWW 2003), pages 148-159, May 2003.

Y. Huang, F. Yu, C. Hang, C. H. Tsai, D. T. Lee, and

S. Y. Kuo. Securing Web Application Code by Static
Analysis and Runtime Protection. In Proc. of the 13th
Intern. World Wide Web Conf. (WWW 2004), pages
40-52, May 2004.

V. B. Livshits and M. S. Lam. Finding Security
Vulnerabilities in Java Applications with Static Analysis.
In Useniz Security Symposium, Aug. 2005.

M. Martin, B. Livshits, and M. S. Lam. Finding
application errors and security flaws using PQL: a program
query language. In Proc. of the 20th annual ACM
SIGPLAN Conf. on Object Oriented Programming
Systems Languages and Applications (OOPSLA 2005),
pages 365-383, Oct. 2005.

R. McClure and I. Kriiger. SQL DOM: Compile Time
Checking of Dynamic SQL Statements. In Proc. of the 27th
Intern. Conf. on Software Engineering (ICSE 2005), pages
88-96, May 2005.

A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and
D. Evans. Automatically Hardening Web Applications
Using Precise Tainting Information. In Twentieth IFIP
Intern. Information Security Conf. (SEC 2005), May 2005.
T. Pietraszek and C. V. Berghe. Defending Against
Injection Attacks through Context-Sensitive String
Evaluation. In Proc. of Recent Advances in Intrusion
Detection (RAID 2005), Sep. 2005.

D. Scott and R. Sharp. Abstracting Application-level Web
Security. In Proc. of the 11t" Intern. Conf. on the World
Wide Web (WWW 2002), pages 396-407, May 2002.

A. Seesing and A. Orso. InsECTJ: A Generic
Instrumentation Framework for Collecting Dynamic
Information within Eclipse. In Proc. of the eclipse
Technology eXchange (eTX) Workshop at OOPSLA 2005,
pages 49-53, Oct. 2005.

Z. Su and G. Wassermann. The Essence of Command
Injection Attacks in Web Applications. In The 33rd Annual
Symposium on Principles of Programming Languages
(POPL 2006), pages 372-382, Jan. 2006.

F. Valeur, D. Mutz, and G. Vigna. A Learning-Based
Approach to the Detection of SQL Attacks. In Proc. of the
Conf. on Detection of Intrusions and Malware and
Vulnerability Assessment (DIMVA 2005), Jul. 2005.

G. Wassermann and Z. Su. An Analysis Framework for
Security in Web Applications. In Proc. of the FSE
Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2004), pages 70-78,
Oct. 2004.

