
Combining Static Analysis and Runtime Monitoring
to Counter SQL-Injection Attacks

William G.J. Halfond and Alessandro Orso
College of Computing

Georgia Institute of Technology

{whalfond|orso}@cc.gatech.edu

ABSTRACT
Our dependence on web applications has steadily increased,
and we continue to integrate them into our everyday rou-
tine activities. When we are making reservations, paying
bills, and shopping on-line, we expect these web applica-
tions to be secure and reliable. However, as the availability
of these services has increased, there has been a correspond-
ing increase in the number and sophistication of attacks
that target them. One of the most serious types of attack
against web applications is SQL injection. SQL injection is
a class of code-injection attacks in which user input is in-
cluded in a SQL query in such a way that part of the input
is treated as code. Using SQL injection, attackers can leak
confidential information, such as credit card numbers, from
web applications’ databases and even corrupt the database.
In this paper, we propose a novel technique to counter SQL-
injection. The technique combines conservative static analy-
sis and runtime monitoring to detect and stop illegal queries
before they are executed on the database. In its static part,
the technique builds a conservative model of the legitimate
queries that could be generated by the application. In its
dynamic part, the technique inspects the dynamically gener-
ated queries for compliance with the statically-built model.
We also present a preliminary evaluation of the technique
performed on two small web applications. The results of the
evaluation are promising—our technique was able to prevent
all of the attacks that we performed on the two applications.

1. INTRODUCTION

Database-driven web applications have become widely de-
ployed on the Internet, and organizations use them to pro-
vide a broad range of services to their customers. These
applications, and their underlying databases, often contain
confidential, or even sensitive, information, such as customer
and financial records. This information can be highly valu-
able and makes web application an ideal target for attacks.
In fact, in recent years there has been an increase in at-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Workshop on Dynamic Analysis (WODA 2005)17 May 2005, St. Louis,
MO, USA
Copyright 2005 ACM ISBN # 1-59593-126-0 ...$5.00.

tacks against these online databases. One type of attacks
in particular, SQL-Injection Attacks (SQLIAs), is especially
harmful. SQLIAs can give attackers direct access to the
underlying databases of a web application and, with that,
the power to leak, modify, or even delete information that
is stored on them. Recently, there have been many SQLIAs
with serious consequences, and the list of victims of such at-
tacks includes high-profile companies and associations, such
as Travelocity, FTD.com, Creditcards.com, Tower Records,
and RIAA. Even more alarming is a study performed by the
Gartner Group on over 300 web sites, which reported that
97% of the sites audited were found vulnerable to this kind
of web attacks.

The root cause of SQLIAs is insufficient input validation.
SQLIAs occur when data provided by a user is not prop-
erly validated and is included directly in a SQL query. By
leveraging inadequate input validation, an attacker can sub-
mit input with embedded SQL commands directly to the
database. This kind of vulnerability represents a serious
threat to any web application that reads inputs from the
user (e.g., through web forms or through web APIs) and
makes SQL queries to an underlying database using these
inputs. Most web applications used by corporations and
government agencies work this way and could therefore be
vulnerable to SQL-injection attacks.

Even though the vulnerabilities that lead to SQLIAs are
well understood, SQL injection continues to be a problem
due to a lack of effective techniques for detecting and pre-
venting it. Improved coding practices could theoretically
prevent SQLIAs. However, in practice, techniques such as
defensive programming have been less than effective in ad-
dressing the problem (e.g., [16, 17, 20]). Furthermore, at-
tackers continue to find new exploits to circumvent the in-
put checks used by programmers. Finally, improved coding
practices do little to help protect large legacy systems, as the
human effort required to identify and recode all of the vul-
nerable sections of such systems often makes this approach
impractical in realistic settings. SQLIAs can also generally
elude traditional tools such as firewalls and Intrusion Detec-
tion Systems (IDSs). SQLIAs are performed through ports
used for regular web traffic, which are usually open in fire-
walls, and work at the application layer, whereas most IDSs
tend to focus on the network and IP layers. Finally, there
are very few analysis-based techniques for vulnerability de-
tection that target SQLIAs directly, and they provide only
partial solutions to the problem. Dynamic techniques, such
as penetration testing, suffer from issues related to com-
pleteness that often result in false negatives being produced.

Conversely, existing techniques based on static analysis are
either too imprecise or focus only on a specific aspect of the
problem.

In this paper, we introduce a novel technique for the de-
tection and prevention of SQLIAs. Our technique consists
of a model-based approach specifically designed to target
SQLIAs and combines conservative static analysis and run-
time monitoring. The key intuition behind our technique is
twofold: (1) the information needed to predict the possible
structure of the queries generated by a web application is
contained within the application’s code; (2) an SQLIA, by
injecting additional SQL statements into a query, would vio-
late that structure. Our technique consists of two phases. In
the static phase, the technique leverages an existing, conser-
vative string analysis [5, 9] to analyze the web-application
code and automatically build a conservative model of the
legitimate queries that could be generated by the appli-
cation. In the dynamic phase the technique monitors all
dynamically-generated queries at runtime and checks them
for compliance with the statically-generated model. When
the technique detects a query that violates the model, it
classifies the query as an attack, prevents it from accessing
the database, and reports information on the characteristics
of the attack.

In the paper, we also present a preliminary evaluation of
the proposed technique. We implemented the technique in a
prototype tool, and used the tool to evaluate the technique
on two small web applications. The results of the evaluation
are promising. For all the cases considered, our tool was able
to prevent and report the attacks.

The main contributions of the paper are:

• The definition of a novel technique against SQL-injection
that combines static analysis and runtime monitoring.

• A feasibility study that shows the effectiveness of the
technique on two small applications.

2. RELATED WORK
Many existing techniques, such as filtering, information-

flow analysis, penetration testing, and defensive coding, can
detect and prevent a subset of the vulnerabilities that lead to
SQLIAs. In this section, we list the most relevant techniques
and discuss their limitations with relation to SQLIAs.

Defensive Programming.Ultimately, web application vul-
nerabilities exist because developers do not adequately check
user input. Even though the cause of these vulnerabilities
is well understood, defensive coding has generally not been
successful in preventing them (e.g., [16, 17, 20]). Attackers
continue to find new attack strings or subtle variations on
old attacks that are able to avoid the checks programmers
put in place. While improved coding practices (e.g., [11])
can help mitigate the problem, they are limited by the de-
veloper’s ability to accurately generate appropriate input
validation code and recognize all situations in which they
are needed.

General Techniques for Input Validation.Some research
work treats SQLIA as part of a more general problem of
information flow and input validation. Unfortunately, the
generalization of SQLIAs as a type of input validation prob-
lem misses key parts of the problem. Engler and Ashcraft
propose MC [1], an automated checker that identifies input

validation problems. MC is not directly applicable in this
context because (1) it primarily focuses on bounds check-
ing for integers rather than string values, (2) it assumes
that any type of input sanitizing function is sufficient to
ensure that an input value is not tainted, whereas often in-
put sanitizing is performed, but inadequately. Larson and
Austin [15] extend MC to address some of its shortcomings.
However, their improvements are mostly targeted towards
bounds checking, whereas SQLIAs occur because of the con-
tent, rather than the size of the input strings. Scott [19]
uses a proxy to filter input and output data streams for
a web-enabled application based on policy rules defined at
the enterprise level. Although this technique may be ef-
fective against some basic types of attacks, it is too coarse
grained for most systems—it is difficult to specify general,
application-independent validation rules.

Specific Techniques Against SQLIAs.Other researchers
have developed techniques specifically targeted at SQLIAs.
Huang and colleagues [12] explored a black-box technique
for testing web applications for SQLIA vulnerabilities. This
techniques improves over general penetration-testing tech-
niques, but like all testing-based techniques, it cannot pro-
vide guarantees of completeness. Huang and colleagues also
define a white-box approach for input validation [13] that
relies on user-provided annotations. Besides the fact that
relying on user-provided annotations limits considerably the
practical applicability of the approach, the technique makes
assumptions that might not be practical. For example, it
assumes that preconditions for all sensitive functions can
be accurately expressed ahead of time using regular expres-
sions. Boyd and colleagues propose an approach based on
randomization of SQL instructions using a key [3], which ex-
tends a previous approach to counter general code-injections
attacks [14]. In this approach, SQL code injected by an
attacker would result in a syntactically incorrect query. Al-
though effective, this technique could be circumvented if the
key used for the randomization were exposed. Moreover,
the approach imposes a significant overhead in terms of in-
frastructure since a special proxy has to be integrated into
the application and it would be very difficult to integrate
into existing infrastructure. Wasserman and Su propose an
approach that uses static analysis to verify that the SQL
queries generated in the application layer cannot contain
a tautology [22]. Although useful, this approach does not
exclude the possibility of a user inserting a tautology (see
example in Section 3.1) and many other kinds of SQLIAs.

Security Techniques Based on Program Models.Our
research is also related to the larger field of model-based
anomaly detection or behavior-based detection, where ex-
ecution models are used to monitor program behavior [6].
There has been a large amount of research in model-based
anomaly detection (e.g., [7, 21]). Current application-security
techniques are very effective in detecting traditional attacks
such as buffer overflows. However, to be successful against
web-application attacks, we must shift the focus from sys-

tem security policies (e.g., execution of injected/unautho-
rized code) to application security policies (e.g., access to
parts of the database not allowed for users of the applica-
tion).

B r o w s e r /A p p l i c a t i o n
/ /

W e bs e r v e r A p p l i c a t i o ns e r v e r D a t a b a s e s e r v e r(M y S Q L , O r a c l e ,I B M D B 2 , . . .)F i r e w a l l
h t t p : / / f o o . c o m / s h o w . j s p ? l o g i n = d o e & p a s s = x y zl o g i n c l e a rd o e I n t e r n e tp a s s x y z

p a s s = x y zh t t p : l o g i n = d o ef o o . c o m / ?s h o w . j s ps u b m i t
Figure 1: Example of interaction between a user and a typical web application.

Static Analysis Techniques.Although not directly related
to SQLIAs, two static analysis techniques are related to
our research because we leverage them in our static-analysis
phase. The first technique is a string analysis technique for
Java developed by Christensen, Müller, and Schwartzbach [5].
Their technique performs a conservative string analysis of an
application and creates automata that express all the possi-
ble values a specific string can have at a given point in the
application. The second technique is a technique for stati-
cally checking the type correctness of dynamically-generated
SQL queries, by Gould, Su, and Devanbu [8, 9]. Their tech-
nique does not address SQLIAs and could only be used to
prevent attacks that take advantage of type mismatches to
crash the database underlying the web application. Their
technique also relies on the string analysis by Christensen
and colleagues [5], and we use a slightly modified version of
their approach to build our SQL-query models.

3. TECHNIQUE
To better motivate our technique, we introduce an exam-

ple of SQLIA that we will use throughout the rest of the
technical description.

3.1 Example of SQL-Injection Attack
Figure 1 shows a simple example of how a user on a

client machine can access services provided by an applica-
tion server and an underlying database. When the user en-
ters a login and a password in the web form and presses the
submit button, a URL is generated (http://foo.com/show.
jsp?login=doe&pass=xyz) and sent to the Web server. The
figure illustrates which components of the web application
handle the different parts of the URL.

In the example, the user input is interpreted by a servlet
(show.jsp). Servlets are Java applications that operate in
conjunction with a Web server. In this scenario they would
typically (1) use the user input to build a dynamic SQL
query, (2) submit the query to the database, and (3) use
the response from the database to generate HTML-pages
that are then sent back to the client. Figure 2 shows an
excerpt of a possible implementation of servlet show.jsp.
Method getUserInfo is called with the login and the pass-
word provided by the user in string format. If both login

and password are empty, the method submits the following
query to the database:

SELECT info FROM users WHERE login=’guest’

If login and password are defined by the user, the method
embeds the submitted credentials in the query. So, if a user

public class Show extends HttpServlet {
...

1. public ResultSet getUserInfo(String login, String password)
{

2. Connection conn = DriverManager.getConnection("MyDB");
3. Statement stmt = conn.createStatement();
4. String queryString = "";

5. queryString = "SELECT info FROM userTable WHERE ";
6. if ((! login.equals("")) && (! password.equals("")))

{
7. queryString += "login=’" + login +

"’ AND pass=’" + password + "’";
}

8. else
{

9. queryString+="login=’guest’";
}

10. ResultSet tempSet = stmt.executeQuery(queryString);
11. return tempSet;

}
...

}

Figure 2: Example servlet.

submits login and password as “doe” and “xyz,” the servlet
dynamically builds the query:

SELECT info FROM users WHERE login=’doe’ AND pass=’xyz’

A web site that uses this servlet would be vulnerable to a
SQLIA. For example, if a user enters “’ OR 1=1 --” and
“”, instead of “doe” and “xyz”, the resulting query is:

SELECT info FROM users WHERE login=’’ OR 1=1 --’ AND pass=’’

The database interprets everything after the WHERE to-
ken as a conditional statement, and the inclusion of the “OR
1=1” clause turns this conditional into a tautology. (The
characters “--” mark the beginning of a comment, so ev-
erything after them is ignored.) As a result, the database
returns the info records for all users in the database. An
attacker could insert a wide range of SQL commands via this
exploit, including commands to modify or destroy database
tables.

This particular exploit is a simple example of SQLIA. Cur-
rent attacks have progressed to the point where they are au-
tomated, supported by various tools, and can evade many
types of input validation. In general, any application that
accepts input from a user, embeds it into a SQL query, and
then submits it to a database, could be vulnerable.

3.2 Proposed Approach
Our approach addresses SQLIAs by combining static anal-

ysis and runtime monitoring. The key insights behind the
approach are that (1) the source code contains enough in-

formation to infer models of the expected, legitimate SQL
queries generated by the application, and (2) an SQLIA, by
injecting additional SQL statements into a query, would vio-
late such a model. In its static part, our technique uses pro-
gram analysis to automatically build a conservative model
of the legitimate queries that could be generated by the ap-
plication. (This analysis leverages previous work on static
string analysis [5, 9].) In its dynamic part, our technique
monitors the dynamically generated queries at runtime and
checks them for compliance with the statically-generated
model. Queries that violate the model represent potential
SQLIAs and are prevented from executing on the database
and reported. The technique consists of four main steps:

Identify hotspots: Scan the application code to identify
hotspots—points in the application code that issue SQL
queries to the underlying database.

Build SQL-query models: For each hotspot, build a model
that represents all the possible SQL queries that may
be generated at that hotspot. A SQL-query model is a
non-deterministic finite-state automaton in which the
transition labels are either SQL tokens (SQL keywords
and operators), delimiters, or string tokens.

Instrument Application: Add to the application, at each
hotspot, calls to the runtime monitor.

Runtime monitoring: At runtime, check the dynamically
generated queries against the SQL-query model and
reject queries that violate the model.

3.2.1 Identify Hotspots
This step performs a simple scanning of the application

code to identify hotspots. For the example servlet in Fig-
ure 2, the set of hotspots would contain a single element: the
statement at line 10. (In Java-based applications, interac-
tions with the database occur through calls to specific meth-
ods in the JDBC library,1 such as java.sql.Statement-
.executeQuery(String).)

3.2.2 Build SQL-Query Models
In this step we build the SQL-query model for each hotspot

identified in the previous step. Within each hotspot, we
are interested in computing the possible values of the query
string passed to the database. To do this, we leverage
the Java String Analysis (JSA) developed by Christensen,
Müller, and Schwartzbach [5]. Their technique constructs
a flow graph that abstracts away the control flow of the
program and represents string-manipulation operations per-
formed on string variables. For each string of interest, the
technique analyzes the flow graph and simulates the string-
manipulation operations that are performed on the string.
The result of the analysis is a Non-Deterministic Finite Au-
tomaton (NDFA) that expresses, at the character level, all
the possible values the considered string can assume at the
hotspot. The string analysis is conservative, so the NDFA
for a string is an overestimate of all the possible values of
the string.2

1http://java.sun.com/products/jdbc/
2Christensen and colleagues’ technique actually generates
Deterministic Finite Automata (DFAs) by transforming
each NDFA into a corresponding DFA. However, because
the transformation to DFAs increases considerably the size
of the automata and introduces patterns that complicate the
construction of our SQL-query model, we use their technique
but skip its determinization step.

To build our SQL-query models, we use an approach that
is analogous to the one proposed by Gould, Su, and De-
vanbu [9], except that we perform it on NDFAs instead of
DFAs. We perform a depth first traversal of each hotspot’s
NDFA and group characters into SQL tokens and string
tokens. SQL tokens consist of either SQL keywords (e.g.,
“WHERE”) or operators (e.g., “=” and “<=”). For example, a
sequence of transitions labeled ’S’, ’E’, ’L’, ’E’, ’C’, and ’T’
would be recognized as the SQL SELECT keyword and suit-
ably grouped into a single transition labeled ”SELECT”.
Any token that is not a SQL keyword, SQL operator, or
delimiter is recognized as a string token. A string token
can either be a constant string, hard-coded in the applica-
tion (e.g., value ’guest’ for the example servlet in Figure 2),
or a variable string, a string that corresponds to a variable
related to some user input (e.g., variable password for the
example servlet). In the latter case, we use the generic label
“VAR” to indicate the string. Note that the parsing of the
NDFAs that we just described is configurable, in that it lets
us consider different SQL dialects. At the end of the parsing
we obtain, for each hotspot, the SQL-query model that is
then used by the dynamic part of our technique. Each SQL-
query model is an NDFA in which the transitions represent
SQL or string tokens.

To illustrate, Figure 3 shows the SQL-query model for the
hotspot in our example (Figure 2, line 10). The query model
reflects the two types of query strings that can be generated
by the code depending on the branch followed after the if

statement at line 6.

3.2.3 Instrument Application
In this step, we instrument the application by adding calls

to the monitor in charge of checking the queries at runtime.
For each hotspot, the technique inserts a call to the monitor
before the call to the database. The monitor is invoked
with two parameters: the string that contains the actual
query about to be submitted and a unique identifier for the
hotspot. Using the unique identifier, the runtime monitor
is able to correlate the hotspot with the specific SQL-query
model that was statically generated for that point and check
the query against the appropriate model.

Figure 4 shows how the example application would be
instrumented by our technique. The hotspot, originally at
line 10 in Figure 2, is now guarded by a call to the monitor
at line 10a.

10a. if (monitor.accepts (<hotspot ID>,

queryString))

{

10b. ResultSet tempSet = stmt.execute(queryString);

11. return tempSet;

}

Figure 4: Example hotspot after instrumentation.

3.2.4 Runtime Monitoring
During execution, when the application reaches a hotspot,

the runtime monitor is invoked and the string that is about
to be submitted as a query is passed as a parameter. The
monitor parses the query string into a sequence of SQL to-
kens, delimiters, and string tokens (similar to what the tech-
nique does when generating SQL-query models). Figure 5
shows how the last two queries discussed in Section 3.1 would
be parsed during runtime monitoring.

0 1
SELECT info

4

15141312111097 86

532
FROM

ANDVAR’=login

login

WHEREuserTable

pass ’’’ = VAR

1917 1816
guest’= ’

Figure 3: SQL-level model for the servlet in Figure 2.

(a) SELECT info FROM users WHERE login=’doe’ AND pass=’xyz’

SELECT info FROM userTable WHERE login = ’
string

doe ’ AND pass = ’
string

xyz ’

(b) SELECT info FROM users WHERE login=’’ OR 1=1 -- ’and pass=’’

SELECT info FROM userTable WHERE login = ’
string

”” ’ OR 1 = 1 -- ’ AND pass = ’
string

”” ’

Figure 5: Example of parsed runtime queries.

After the query has been parsed, the runtime monitor
checks whether the query violates the SQL-query model as-
sociated with the hotspot from which the monitor has been
called. As discussed above, an SQL-query model is an NDFA
whose alphabet consists of all the SQL keywords and opera-
tors, a set of constant strings, delimiters, and the placeholder
string “VAR”. Therefore, to check whether a query is com-
pliant with the model, the runtime monitor simply checks
whether the model (i.e., the automaton) accepts the query
(i.e., whether at least a series of valid transitions imposed
by the query reaches an accepting state). Note that, in the
checking, the monitor considers “VAR” as a special symbol
that can match any single non-SQL token3 in the query .
If the model accepts the query, then the monitor lets the
execution of the query continue. Otherwise, the monitor
identifies the query as an SQLIA, prevents the query from
executing on the database, and reports the attack.

To illustrate, consider again the queries from Section 3.1
shown in Figure 5 and recall that the first query is legit-
imate, whereas the second one corresponds to a SQLIA.
When checking query (a), the analysis would start match-

ing from token SELECT and from the initial state (State
0) of the SQL-query model in Figure 3. Because the token
matches the label of the only transition from the initial state,
the automaton reaches State 1. The automaton continues
to reach new states until it reaches State 5. At this point,
the monitor would either continue with the higher branch
and backtrack, or continue with the lower branch. On the
lower branch, all the remaining tokens in the query suit-
ably match transitions’ labels, and the automaton reaches
an accept state after consuming the last token in the query
(“’”). Note that, during the matching, the monitor success-
fully matches token “doe” with label “VAR” on the transition
from State 8 because “doe” is a non-SQL symbol. The same
holds for token “xyz” and label “VAR” on the transition from
State 14.

The checking of query (b) would proceed in an analogous

way until token OR is reached, and the automaton is in
State 10. Because the node does not match the label of the
only outgoing transition from State 10 (AND), the query is
not accepted by the automaton, and the monitor identifies
the query as a SQLIA.

Once a SQLIA has been detected, our technique stops the
query before it is executed on the database and reports rele-

3Because the parser within the monitor understands the
SQL syntax, it is able to correctly distinguish and identify
SQL keywords, SQL operators, and strings.

vant information about the attack in a way that can be lever-
aged by developers. For example, in our implementation of
the technique for Java, we throw an exception when the at-
tack is detected and encode information about the attack in
the exception. If developers want to access the information
at runtime, they can simply leverage the exception-handling
mechanism of the language and integrate their handling code
into the application. Having this attack information avail-
able at runtime is useful because it allows developers to react
to an attack right after it is detected and develop an appro-
priate customized response. For example, developers may
decide to avoid any risk and shut-down the part of the ap-
plication involved in the attack. Alternatively, a developer
could handle the attack by converting the information into
a format that is usable by another tool, such as an IDS, and
report it to that tool. Because this mechanism integrates
with the application’s language, it allows developers flexi-
bility in choosing a response to the SQLIAs that matches
the specific needs of their organization.

Currently, the information reported by our technique in-
cludes the time of the attack, the location of the hotspot
that was exploited, and the attempted-attack query. We
are currently considering additional information that could
be useful for the developer (e.g., information correlating pro-
gram execution paths with specific parts of the query model)
and investigating ways in which we can modify the static
analysis to collect this information.

3.3 Considerations on the Technique
Because the static analysis that we use to build the SQL-

query models is conservative [5], the models are guaran-
teed to represent an overestimate of the set of legitimate
query strings that the application can generate. Therefore,
at runtime, all legitimate queries necessarily match the cor-
responding model, and our technique does not generate false
positives.

As far as false negatives are concerned, our technique
could produce false negatives only in cases in which (1) the
imprecision of the static analysis results in SQL models that
include more spurious queries than the one that can actu-
ally be generated by the application, and (2) the malicious
query happens to match one of these spurious queries. We
expect this case to be rare, mostly because queries resulting
from SQL injection are typically fairly convoluted.

In terms of efficiency, our approach requires the execu-
tion of the monitor for each database query. The moni-
tor just matches a typically short set of tokens against an
NDFA whose size is at worst quadratic in the size of the pro-

gram [5] (and in practice almost always linear). Conversely,
database queries normally involve interactions over a net-
work. Therefore, we expect the overhead for the monitoring
to be dominated by the cost of the database transactions
and negligible.

4. EVALUATION
To evaluate our approach, we developed a prototype tool

that implements our technique and used this tool to detect
SQLIAs on two small web applications. The following sec-
tions present the tool, illustrate the setup for our evaluation,
and discuss our results.

4.1 The Tool
AMNESIA (Analysis and Monitoring for NEutralizing

SQL Injection Attacks) is the prototype tool that imple-
ments our technique to counter SQLIAs for Java web ap-
plications. AMNESIA is developed in Java and consists
of three modules that leverage various existing technologies
and libraries in their implementation:

Analysis module. This module implements Steps 1 and
2 of our technique. It inputs a Java web application
and outputs a list of hotspots and a set of SQL-query
models associated with the hotspots. For the imple-
mentation of this module, we leveraged the BRICS
Java String Analyzer [5] and its extensions by Gould,
Su, and Devanbu [9].

Instrumentation module. This module implements Step
3 of our technique. It inputs a Java web application
and a list of hotspots and instruments each hotspot
with a call to the runtime monitor. We implemented
this module using InsECT, a generic instrumentation
and monitoring framework for Java developed at Geor-
gia Tech [4].

Runtime-monitoring module. This module implements
Step 4 of our technique. The module inputs a query
string and the ID of the hotspot that generated the
query, retrieves the SQL-query model for that hotspot,
and checks the query against the model. For this mod-
ule, we also leveraged InsECT.

4.2 Experiment Setup

Subjects.For the evaluation we used two experimental sub-
jects, ExampleSQL and Checkers. ExampleSQL is an exam-
ple program that we wrote for testing purposes and consists
of about 100 lines of code. One goal when developing Ex-
ampleSQL was to create a subject that contained various
control- and data-flow patterns. Such patterns were de-
signed to exercise the technique in meaningful ways and to
result in non-trivial SQL-query models. Another goal was
for ExampleSQL to be representative, on a smaller scale,
of existing web applications. As a result, ExampleSQL is
characterized by non-trivial control- and data-flow, the pres-
ence of paths that contain multiple string-manipulation op-
erations, and realistic vulnerabilities (we used parameter-
handling code similar to that found in real applications).

Our second test subject, Checkers, is a Java servlet that
consists of about 5,000 lines of code. Checkers was previ-
ously used in related work [8] and was developed as part

of a class project. Checkers is a typical example of a web
application; it accepts input from the user through a web
form and uses the input to build queries to an underlying
database.

Evaluation Protocol.To evaluate the effectiveness of our
technique, we first manually generated a set of inputs to the
two subjects that included both legitimate and malicious in-
puts. Then, we submitted the inputs to the two subjects,
assessed which inputs were actually leading to a SQLIA, and
tagged the inputs accordingly. Finally, we used AMNESIA

on the subjects, resubmitted all the inputs tagged as “legit-
imate” to the subjects, and measured the number of queries
reported as SQLIAs by AMNESIA. Similarly, we reran all
of the “malicious” inputs and measured which queries were
blocked and reported.

To define the set of inputs, we first identified one rele-
vant entry point for each of the two subjects. For Check-
ers, we targeted the login verification function, which inputs
a user-provided login and password and inserts them into
queries sent to the underlying database. These functions
performed only minimal input validation and were therefore
likely to be vulnerable. In the case of ExampleSQL, the ap-
plication has only one entry point, purposefully designed to
be vulnerable to SQLIAs. We then defined a set of legit-
imate and malicious inputs by surveying various web sites
(e.g., US-CERT, http://www.us-cert.gov/) and security-
related mailing lists. We used SQLIAs similar to the ones
discussed on these sites as representative examples of the
types of attacks that could be performed on ExampleSQL
and Checkers. In total, we used 17 legitimate accesses and
10 attacks.

4.3 Results
In the study, AMNESIA achieved a perfect score: For

both subjects, it was able to correctly identify all attacks
as SQLIAs, while allowing all legitimate queries to be per-
formed. In other words, for the cases considered, AMNE-

SIA generated no false positives and no false negatives. On
the one hand, the lack of false positives is guaranteed by
the fact that the SQL models are built using a conservative
analysis, and this results only provides some initial evidence
of the correct implementation of the tool. The lack of false
negatives, on the other hand, is not a guarantee (see Sec-
tion 3.3). Our results, although obtained on two simple
examples and for a fairly small number of data points, are
very encouraging because we considered realistic attacks.
However, more extensive experimentation is needed before
drawing more definitive conclusions.

5. CONCLUSION AND FUTURE WORK
In this paper, we presented a novel technique against

SQLIAs. Our approach is based on the intuition that the
web-application code implicitly contains a policy that al-
lows for distinguishing legitimate and malicious queries. The
technique is fully automated and detects, prevents, and re-
ports SQLIAs using a model-based approach that combines
sound static analysis and runtime monitoring. In its static
phase, our technique uses an existing string analysis tech-
nique [5, 9] to extract from the web-application’s code a
conservative model of all the query strings that could be
generated by the application. In the dynamic phase, the
technique monitors queries generated at runtime for con-

formance with the statically-built model. Queries that do
not match the model are identified as SQLIAs, blocked, and
reported, together with relevant information.

In this paper, we also presented a preliminary evaluation
of the technique in which we used a prototype tool that
implements our technique on two small subjects. The re-
sults of our evaluation are encouraging: our technique was
able to correctly identify the attacks that we performed on
the applications without blocking legitimate accesses to the
database (i.e., the technique produced neither false positives
nor false negatives). These results show that our technique
represents a promising approach to countering SQLIAs and
motivate further work in this direction.

Our first goal in future work is to further evaluate our
technique using more subjects and attacks. We have already
started the development of a testbed that includes several
subjects and a large pool of attacks. Using this testbed, we
will measure the effectiveness and efficiency of our technique
and use the results to fine tune and refine the approach.

Why the approach may fail.Although our preliminary
results are encouraging, and the basic idea behind the tech-
nique is sound, we can envision situations in which the tech-
nique would not be successful for scalability reasons. We
have not tried to use our technique on any medium or large
program, and we may find that the approach does not scale.
We also have not used the approach on many subjects, and
there may be problems with the analysis in the presence of
certain coding patterns or program constructs (e.g., massive
use of reflection). Another possible issue for the approach
is the presence of black-box components in the web applica-
tion, which the technique may not be able to analyze.

These potential issues will drive additional future work.
We will evaluate the technique on subjects of different types
and increasing sizes to assess the limits of the approach in
terms of practical applicability. If the approach fails in some
cases, for example because the static analysis is too expen-
sive or the SQL-query models built are too imprecise, we will
identify the causes of the failure and investigate improve-
ments to the technique for handling them. This investiga-
tion may also lead to the definition of alternative techniques,
static, dynamic, or combined, for building SQL models.

Acknowledgments
This work was supported in part by National Science Foun-
dation awards CCR-0306372, CCR-0205422, and CCR-0209322
to Georgia Tech. Wenke Lee and David Dagon provided use-
ful comments on an early version of the paper. Carl Gould,
Zhendong Su, and Premkumar Devanbu provided us with
an implementation of their JDBC Checker tool.

6. REFERENCES
[1] K. Ashcraft and D. Engler. Using programmer-written

compiler extensions to catch security holes. In Proceedings
of the IEEE Symposium On Security and Privacy, pages
143–159, May 2002.

[2] D. Aucsmith. Creating and maintaining software that
resists malicious attack.
http://www.gtisc.gatech.edu/aucsmith_bio.htm,
September 2004. Distinguished lecture.

[3] S. W. Boyd and A. D. Keromytis. Sqlrand: Preventing sql
injection attacks. In Proceedings of the 2nd Applied
Cryptography and Network Security (ACNS) Conference,
pages 292–302, June 2004.

[4] A. Chawla and A. Orso. A generic instrumentation
framework for collecting dynamic information. In Online

Proceeding of the ISSTA Workshop on Empirical Research
in Software Testing (WERST 2004), Boston, MA, USA,
july 2004.
http://www.sce.carleton.ca/squall/WERST2004.

[5] A. S. Christensen, A. Möller, and M. I. Schwartzbach.
Precise analysis of string expressions. In Proceedings of the
10th International Static Analysis Symposium, SAS 03,
volume 2694 of LNCS, pages 1–18. Springer-Verlag, June
2003.

[6] H. Debar, M. Dacier, and A. Wespi. Towards a taxonomy
of intrusion-detection systems. Computer Networks,
31:805–822, 1999.

[7] S. Forrest, S. A. Hofmeyr, A. Somayaji, and
T. A.Longstaff. A sense of self for unix processes. In IEEE
Symposium on Security and Privacy, pages 120–129,
Oakland, California, May 1996.

[8] C. Gould, Z. Su, and P. Devanbu. Jdbc checker: A static
analysis tool for sql/jdbc applications. In Proceedings of
the 26th International Conference on Software Engineering
(ICSE 04) – Formal Demos, pages 697–698, 2004.

[9] C. Gould, Z. Su, and P. devanbu. Static checking of
dynamically generated queries in database applications. In
Proceedings of the 26th International Conference on
Software Engineering (ICSE 04), pages 645–654, 2004.

[10] A. R. Group. Java Architecture for Bytecode Analysis
(JABA), 2004.
http://www.cc.gatech.edu/aristotle/Tools/jaba.html.

[11] M. Howard and D. LeBlanc. Writing Secure Code.
Microsoft Press, Redmond, Washington, 2nd ed., 2003.

[12] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai.
Web application security assessment by fault injection and
behavior monitoring. In Proceedings of the 11th
International World Wide Web Conference (WWW 03),
May 2003.

[13] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D. T. Lee, and
S.-Y. Kuo. Securing web application code by static analysis
and runtime protection. In Proceedings of the 12th
International World Wide Web Conference (WWW 04),
May 2004.

[14] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering
code-injection attacks with instruction-set randomization.
In Proceedings of the ACM Conference on Computer and
Communications Security (CCS 03), pages 272–280,
October 2003.

[15] E. Larson and T. Austin. High coverage detection of
input-related security faults. In Proceedings of the 12th
USENIX Security Symposium, pages 121–136, 2003.

[16] O. Maor and A. Shulman. Sql injection signatures evasion.
http://www.imperva.com/application_defense_center/
white_papers/sql_inje%ction_signatures_evasion.html,
April 2004. White paper.

[17] S. McDonald. Sql injection: Modes of attack, defense, and
why it matters. http://www.governmentsecurity.org/
articles/SQLInjectionModesofAttackDef%
enceandWhyItMatters.php, April 2004. White paper.

[18] OWASPD – Open Web Application Security Project. Top
ten most critical web application vulnerabilities.
http://www.owasp.org/documentation/topten.html, 2005.

[19] D. Scott and R. Sharp. Abstracting application-level web
security. In Proceedings of the 11th International
Conference on the World Wide Web (WWW 2002), pages
396–407, 2002.

[20] SecuriTeam. Sql injection walkthrough. http://www.
securiteam.com/securityreviews/5DP0N1P76E.html, May
2002. White paper.

[21] D. Wagner and D. Dean. Intrusion detection via static
analysis. In IEEE Symposium on Security and Privacy,
Oakland, California, May 2001.

[22] G. Wassermann and Z. Su. An analysis framework for
security in web applications. In Proceedings of the FSE
Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2004), pages 70–78,
October 2004.

