
A Classification of SQL Injection
Attack Techniques and

Countermeasures

William G.J. Halfond, Jeremy Viegas
& Alessandro Orso

Georgia Institute of Technology
This work was partially supported by DHS contract FA8750-05-2-0214 and

NSF award CCR-0209322 to Georgia Tech.

William Halfond – ISSSE 2006 – March 14th, 2006

Vulnerable Application

String queryString = "SELECT info FROM userTable WHERE ";

if ((! login.equals("")) && (! pin.equals(""))) {

 queryString += "login='" + login + "' AND pin=" + pin ;

} else {

 queryString+="login='guest'";

}

ResultSet tempSet = stmt.execute(queryString);

William Halfond – ISSSE 2006 – March 14th, 2006

Attack Scenario

String queryString = "SELECT info FROM userTable WHERE ";

if ((! login.equals("")) && (! pin.equals(""))) {

 queryString += "login='" + login + "' AND pin=" + pin ;

} else {

 queryString+="login='guest'";

}

ResultSet tempSet = stmt.execute(queryString);

Normal Usage
¬User submits login “doe” and pin “123”

¬SELECT info FROM users WHERE login= `doe’ AND pin= 123

William Halfond – ISSSE 2006 – March 14th, 2006

Malicious Usage
¬Attacker submits “admin’ -- ” and pin of “0”

¬SELECT info FROM users WHERE login=‘admin’ -- ’ AND
pin=0

Attack Scenario

String queryString = "SELECT info FROM userTable WHERE ";

if ((! login.equals("")) && (! pin.equals(""))) {

 queryString += "login='" + login + "' AND pin=" + pin ;

} else {

 queryString+="login='guest'";

}

ResultSet tempSet = stmt.execute(queryString);

William Halfond – ISSSE 2006 – March 14th, 2006

Presentation Outline

• SQL Injection Attacks
• Intent

• Input Source

• Type

• Countermeasures

• Evaluation of countermeasures

• Lessons learned

William Halfond – ISSSE 2006 – March 14th, 2006

Intent

• Extracting data

• Adding or modifying data

• Performing denial of service

• Bypassing authentication

• Executing remote commands

William Halfond – ISSSE 2006 – March 14th, 2006

Sources of SQL Injection

Injection through user input
• Malicious strings in web forms.

Injection through cookies
• Modified cookie fields contain attack strings.

Injection through server variables
• Headers are manipulated to contain attack strings.

Second-order injection
• Trojan horse input seems fine until used in a

certain situation.

William Halfond – ISSSE 2006 – March 14th, 2006

Second-Order Injection

Attack does not occur when it first reaches
the database, but when used later on.

Input: admin’-- ===> admin\’--

queryString =
 "UPDATE users SET pin=" + newPin +
 " WHERE userName=’" + userName + "’ AND pin=" + oldPin;

queryString =
 “UPDATE users SET pin=’0’
 WHERE userName= ’admin’--’ AND pin=1”;

William Halfond – ISSSE 2006 – March 14th, 2006

Types of SQL Injection

• Piggy-backed Queries

• Tautologies

• Alternate Encodings

• Inference

• Illegal/Logically Incorrect Queries

• Union Query

• Stored Procedures

William Halfond – ISSSE 2006 – March 14th, 2006

Type: Piggy-backed Queries

Insert additional queries to be executed
by the database.

queryString = “SELECT info FROM userTable WHERE” +
 “login=‘” + login + “' AND pin=” + pin;

Input pin as “0; DROP database webApp”

queryString = “SELECT info FROM userTable WHERE
 login=‘name' AND pin=0; DROP database webApp”

William Halfond – ISSSE 2006 – March 14th, 2006

Type: Tautologies

Create a query that always evaluates to
true for entries in the database.

queryString = “SELECT info FROM userTable WHERE” +
 “login=‘” + login + “' AND pin=” + pin;

Input login as “user’ or 1=1 --”

queryString = “SELECT info FROM userTable WHERE
 login=‘user‘ or 1=1 --' AND pin=“

William Halfond – ISSSE 2006 – March 14th, 2006

Type: Alternate Encodings

Encode attacks in such a way as to avoid
naïve input filtering.

queryString = “SELECT info FROM userTable WHERE” +
 “login=‘” + login + “' AND pin=” + pin;

Input pin as “0; declare @a char(20) select
@a=0x73687574646f776e exec(@a)“

“SELECT info FROM userTable WHERE
 login=‘user' AND pin= 0;
 declare @a char(20) select @a=0x73687574646f776e exec(@a)”

William Halfond – ISSSE 2006 – March 14th, 2006

Type: Alternate Encodings

SHUTDOWN

William Halfond – ISSSE 2006 – March 14th, 2006

Countermeasures

Detection

• Detect attacks at
runtime

Prevention

• Augment Code

• Detect vulnerabilities
in code

• Safe libraries

T
ec

hn
iq

ue

DB
X

William Halfond – ISSSE 2006 – March 14th, 2006

Prevention Techniques

• Defensive Coding Best Practices

• Penetration Testing

• Static Analysis of Code

• Safe Development Libraries

• Proxy Filters

William Halfond – ISSSE 2006 – March 14th, 2006

Detection Techniques

• Anomaly Based Intrusion Detection

DB

Network

William Halfond – ISSSE 2006 – March 14th, 2006

Detection Techniques

• Anomaly Based Intrusion Detection

• Instruction Set Randomization
Decrypt

Proxy

Server
DB

SELECT4287 SELECT

William Halfond – ISSSE 2006 – March 14th, 2006

Detection Techniques

• Anomaly Based Intrusion Detection

• Instruction Set Randomization

• Dynamic Tainting

• Model-based Checkers

William Halfond – ISSSE 2006 – March 14th, 2006

Dynamic Tainting

Taint
Policy
Checker

DB

login = “doe”

pin = 123

SELECT info FROM users WHERE login= `doe’ AND pin= 123

Taint
Policy
Checker

DBX

login = “admin’--”

pin = 0

SELECT info FROM users WHERE login=‘admin’ -- ’ AND pin=0

William Halfond – ISSSE 2006 – March 14th, 2006

Model-based Checkers: AMNESIA

Basic Insights
1. Code contains enough information to

accurately model all legitimate queries.

2. A SQL Injection Attack will violate the
predicted model.

Solution:

Static analysis => build query models

Runtime analysis => enforce models

William Halfond – ISSSE 2006 – March 14th, 2006

Model-based Checkers: AMNESIA

SELECT info FROM userTable WHERE

login

= ‘ guest ‘

login

= ‘ ‘ β AND pin = β

String queryString = "SELECT info FROM userTable WHERE ";

if ((! login.equals("")) && (! pin.equals(""))) {

 queryString += "login='" + login + "' AND pin=" + pin ;

} else {

 queryString+="login='guest'";

}

ResultSet tempSet = stmt.execute(queryString);

William Halfond – ISSSE 2006 – March 14th, 2006

Model-based Checkers: AMNESIA

SELECT info FROM userTable WHERE

login

= ‘ guest ‘

login

= ‘ ‘ β AND pin = β

SELECT info FROM userTable WHERE login = ‘ ‘doe AND pin = 123

Normal Usage:

William Halfond – ISSSE 2006 – March 14th, 2006

Malicious Usage:

SELECT info FROM userTable WHERE login = ‘ ‘ AND pin = 0-- ‘admin

Model-based Checkers: AMNESIA

SELECT info FROM userTable WHERE

login

= ‘ guest ‘

login

= ‘ ‘ β AND pin = β

William Halfond – ISSSE 2006 – March 14th, 2006

Evaluation

• Qualitative vs. Quantitative

• Evaluate technique with respect to
1. Injection Sources

2. SQLIA Types

3. Deployment Requirements

4. Degree of automation

William Halfond – ISSSE 2006 – March 14th, 2006

Summary of Results

Prevention Techniques
• Most effective: Java Static Tainting [livshits05]

and WebSSARI [Huang04]

• Not completely automated

• Runner-ups: Safe Query Objects [cook05], SQL
DOM [mcclure05] (Safe development libraries)

• Require developers to learn and use new APIs

• Effective techniques automated enforcement
of Best Practices

William Halfond – ISSSE 2006 – March 14th, 2006

Summary of Results

Detection Techniques
• Problems caused by Stored Procedures, Alternate

Encodings

• Most accurate: AMNESIA [halfond05], SQLCheck
[su06], SQLGuard [buehrer05] (Model-based
checkers)

• Of those, only AMNESIA is fully automated

• Runner-ups: CSSE [pietraszek05], Web App.
Hardening [nguyen-tuong05] (Dynamic tainting)

• Fully automated

• Require custom PHP runtime interpreter

William Halfond – ISSSE 2006 – March 14th, 2006

Conclusions and Lessons Learned

1. SQLIAs have:
a) Many sources

b) Many goals

c) Many types

2. Detection techniques can be effective,
but limited by lack of automation.

3. Prevention techniques can be very
effective, but should move away from
developer dependence.

William Halfond – ISSSE 2006 – March 14th, 2006

Questions

Thank you.

William Halfond – ISSSE 2006 – March 14th, 2006

References

V. B. Livshits and M. S. Lam. Finding Security Errors in Java
Programs with Static Analysis. In Proceedings of the 14th
Usenix Security Symposium, pages 271–286, Aug. 2005.

Y. Huang, F. Yu, C. Hang, C. H. Tsai, D. T. Lee, and S. Y.
Kuo. Securing Web Application Code by Static Analysis and
Runtime Protection. In Proceedings of the 12th International
World Wide Web Conference (WWW 04), May 2004.

W. R. Cook and S. Rai. Safe Query Objects: Statically Typed
Objects as Remotely Executable Queries. In Proceedings of
the 27th International Conference on Software Engineering
(ICSE 2005), 2005.

R. McClure and I. Kr¨uger. SQL DOM: Compile Time
Checking of Dynamic SQL Statements. In Proceedings of
the 27th International Conference on Software Engineering
(ICSE 05), pages 88–96, 2005.

W. G. Halfond and A. Orso. AMNESIA: Analysis and
Monitoring for NEutralizing SQL-Injection Attacks. In
Proceedings of the IEEE and ACM International Conference
on Automated Software Engineering (ASE 2005), Long
Beach, CA, USA, Nov 2005.

Z. Su and G. Wassermann. The Essence of Command
Injection Attacks in Web Applications. In The 33rd Annual
Symposium on Principles of Programming Languages
(POPL 2006), Jan. 2006.

G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti. Using
Parse Tree Validation to Prevent SQL Injection Attacks. In
International Workshop on Software Engineering and
Middleware (SEM), 2005.

A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and
D. Evans. Automatically Hardening Web Applications Using
Precise Tainting Information. In Twentieth IFIP International
Information Security Conference (SEC 2005), May 2005.

T. Pietraszek and C. V. Berghe. Defending Against Injection
Attacks through Context-Sensitive String Evaluation. In
Proceedings of Recent Advances in Intrusion Detection
(RAID2005), 2005.

