
Techniques for Classifying Executions
of Deployed Software to Support

Software Engineering Tasks
Murali Haran, Alan Karr, Michael Last, Alessandro Orso, Member, IEEE,

Adam A. Porter, Senior Member, IEEE, Ashish Sanil, and Sandro Fouché, Student Member, IEEE

Abstract—There is an increasing interest in techniques that support analysis and measurement of fielded software systems. These

techniques typically deploy numerous instrumented instances of a software system, collect execution data when the instances run in

the field, and analyze the remotely collected data to better understand the system’s in-the-field behavior. One common need for these

techniques is the ability to distinguish execution outcomes (e.g., to collect only data corresponding to some behavior or to determine

how often and under which condition a specific behavior occurs). Most current approaches, however, do not perform any kind of

classification of remote executions and either focus on easily observable behaviors (e.g., crashes) or assume that outcomes’

classifications are externally provided (e.g., by the users). To address the limitations of existing approaches, we have developed three

techniques for automatically classifying execution data as belonging to one of several classes. In this paper, we introduce our

techniques and apply them to the binary classification of passing and failing behaviors. Our three techniques impose different

overheads on program instances and, thus, each is appropriate for different application scenarios. We performed several empirical

studies to evaluate and refine our techniques and to investigate the trade-offs among them. Our results show that 1) the first technique

can build very accurate models, but requires a complete set of execution data; 2) the second technique produces slightly less accurate

models, but needs only a small fraction of the total execution data; and 3) the third technique allows for even further cost reductions by

building the models incrementally, but requires some sequential ordering of the software instances’ instrumentation.

Index Terms—Execution classification, remote analysis/measurement.

Ç

1 INTRODUCTION

SEVERAL research efforts are focusing on tools and
techniques to support the remote analysis and measure-

ment of software systems (RAMSS) [1], [2], [3], [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13]. In general, these approaches
instrument numerous instances of a software system, each
in possibly different ways, and distribute the instrumented
instances to a large number of remote users. As the
instances run, execution data are collected and sent to one
or more collection sites. The data are then analyzed to better
understand the system’s in-the-field behavior.

RAMSS techniques typically collect different kinds of
data and use different analyses to achieve specific software
engineering goals. One characteristic common to many of
these techniques is a need to distinguish execution out-
comes. There are many scenarios in which this information
is useful. For example, remote analyses that use information

from the field to direct debugging effort need to know
whether that information comes from a successful or failing
execution (e.g., [7], [14]). For another example, self-mana-
ging applications that reconfigure themselves when
performance is degrading must be able to determine
when the system has entered a problematic state.
Modeling remote execution outcomes could also be useful
for identifying specific problematic behaviors in order to
prioritize debugging efforts.

Despite many recent advances, existing techniques suffer
from numerous problems. First, they often make over-
simplifying assumptions (e.g., they equate failing behaviors
with system crashes) or assume that the classification of the
outcome is provided by an external source, such as the
users. These assumptions severely limit the kinds of
program behaviors that can be analyzed and the techniques’
applicability. Second, these techniques often impose sig-
nificant overheads on every participating program instance.
Example overheads include code bloat due to code
rewriting, bandwidth occupation due to remote data
collection, and slowdown and perturbed performance due
to code instrumentation.

This paper proposes and evaluates three new techniques
for automatically classifying execution data, collected from
deployed applications, as coming from runs having
different outcomes. To be able to perform controlled
experimentation and to suitably validate our results, in this
paper we focus our empirical investigation on binary
outcomes only: “pass,” which corresponds to executions
that produce the right results, and “fail,” which corresponds

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 5, MAY 2007 287

. M. Haran is with the Department of Statistics at Pennsylvania State
University, University Park, PA 16802. E-mail: mharan@stat.psu.edu.

. A. Karr, M. Last, and A. Sanil are with the National Institute of Statistical
Sciences, Research Triangle Park, NC 27709-4006.
E-mail: {karr, mlast, ashish}@niss.org.

. A. Orso is with the College of Computing at the Georgia Institute of
Technology, Atlanta, GA 30332-0765. E-mail: orso@cc.gatech.edu.

. A. Porter and S. Fouché are with the Computer Science Department,
University of Maryland, College Park, MD 20814.
E-mail: {aporter, sandro}@cs.umd.edu.

Manuscript received 22 June 2006; revised 10 Jan. 2007; accepted 6 Feb. 2007;
published online 23 Feb. 2007.
Recommended for acceptance by P. Devanbu.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0149-0606.
Digital Object Identifier no. 10.1109/TSE.2007.1004.

0098-5589/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

to incorrect executions. The techniques are, however,
equally applicable to any discrete set of outcomes.

Our techniques use statistical learning algorithms to
model and predict execution outcomes based on runtime
execution data. More specifically, the techniques build
behavioral models by analyzing execution data collected
from one or more program instances (e.g., by executing test
cases in-house or in the field or by examining fielded
program instances running under user control). Developers
can then either analyze the models directly (e.g., for fault
localization) or use the models to gather further information
from other program instances. In the latter case, they lightly
instrument numerous instances of the software (i.e., the
instrumentation captures only the small subset of execution
data referenced by the behavioral model) and distribute
them to users who run them in the field. As the instances
run, the collected execution data is fed to the previously
built model to predict execution outcomes.

In previous work, we defined an initial classification
technique and performed a three-part feasibility study [15].
Our initial approach is effective and efficient in cases where
we can fully train the models in-house, using accurate and
reliable oracles. However, the approach is not applicable if
part (or all) of the training must be performed on deployed
instances because it imposes too much time and space
overhead during the training phase. To address this issue,
we extend our initial work by developing and evaluating
two improved classification techniques that can build
models with substantially less data than that required by
our initial technique, while maintaining its accuracy. The
first new technique can build reliable models while
observing less than 10 percent of the complete execution
data. Each instance collects a different subset of the
execution data, chosen via uniform random sampling. The
second technique is also able to reliably classify executions
based on a small fraction of execution data, but it adds the
ability to adapt the sampling over time so as to maximize
the amount of information in the data.

In this paper, we also present several empirical studies in
which we applied these techniques to multiple versions of a
medium-sized software subject and studied the techniques’
performance. The goal of the studies was to evaluate the
techniques, better understand several issues crucial to their
success, and, thereby, refine the techniques and improve
their ultimate implementations. The first set of studies looks
at whether it is possible to reliably classify program
executions based on readily available execution data,
explores the interplay between the type of execution data
collected and the accuracy of the resulting classification
models, and investigates how much data is actually
necessary for building good classification models. The
second and third studies examine the extent to which our
two newly defined classification techniques allow for
minimizing data collection (and data collection overheads),
while maintaining the accuracy of the classification.

The main contributions of this paper are:

. A high-level vision for an approach that automati-
cally and accurately classifies execution data, col-
lected with low overhead from fielded programs, as
coming from runs with specific execution outcomes.

. Three instantiations of the approach, two of which are
based on newly-defined classification techniques,
that can classify execution data according to a
binary outcome.

. An empirical evaluation of several key issues
underlying these (and similar) techniques as well
as an evaluation of the instantiated techniques
themselves.

In the rest of this paper, we first provide background
information on classification techniques and present several
example scenarios that describe possible applications of
such techniques (Section 2). Section 3 describes the
experimental subject and data we used in our experiments.
We then introduce our initial approach and present the
results of multiple empirical studies aimed at understand-
ing the approach’s performance (Section 4). Based on these
results, we define and empirically evaluate a new classifica-
tion approach called association trees (Section 5). In
Section 6, we develop and evaluate an improved association
tree algorithm, called adaptive sampling association trees.
Section 7 discusses related work, and Section 8 provides
conclusions and outlines our directions for future work.

2 BACKGROUND AND MOTIVATION

In this section, we first provide background information on
techniques for classifying program executions and then
motivate our research by presenting three applications of
classification techniques to support software engineering
tasks.

2.1 Classification of Program Executions

Machine learning techniques are concerned with the
discovery of patterns, information, and knowledge from
data. They often work by analyzing a training set of data
objects, each described by a set of measurable features (also
called predictors1), and by concisely modeling how the
features’ values relate to known or inferred higher-level
characterizations. These models can then be used to predict
the characterizations of data objects whose characterizations
are unknown. Supervised learning is a class of machine
learning techniques in which the characterization of each
training set object is known at model building time. When
the possible characterizations come from a discrete set of
categorical values (e.g., “good,” “average,” and “bad”),
supervised learning is called classification. In this paper, we
focus on classification techniques.

Classifying program executions means using readily
available execution data to model, analyze, and predict
(more difficult to determine) program behaviors. Fig. 1
shows a high-level view of the classification approach that
we use in this research. In the training phase, we instrument
program instances to collect execution data at runtime and,
in the case of collecting data in the field, attach a built-in
oracle to the deployed instances. Then, when the instances
run, we collect the resulting data. The figure shows two
extremes of training phase data collection. In one case, data
collection is performed in-house on instances running
existing test cases. In the other case, it is performed in the

288 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 5, MAY 2007

1. Hereafter, we use the terms feature and predictor interchangeably.

field on instances running under user control. In the former
case, a traditional oracle can be used to label each run based
on its outcome (e.g., “high,” “average,” and “low through-
put,” if the behavior of interest is performance; “pass” or
“fail” if the behavior of interest is functional correctness). In
the latter case, the execution data would be collected while
the instances run on the users’ platforms against actual user
input, and each run would be labeled by a built-in oracle
attached to the deployed programs.

Note that, in these two cases, there is a clear trade-off
between strength of the oracle and completeness of the data.
In-house, we can often rely on accurate oracles because we
usually have complete control over the execution and the
(computational and space) overhead of the data collection is
usually not an issue. However, in-house we can observe
only a limited number of behaviors (the ones exercised by
the test inputs available and occurring in the hardware and
software configurations available), and the models con-
structed from these observations may not be representative
of real executions. In the field, we must typically rely on
limited oracles to limit the overhead. On the other hand,
field executions are typically much more numerous, varied,
and representative than in-house test runs. Which approach
is more appropriate depends on the task at hand, as
discussed in Section 2.2.

Once the labeled training-phase data has been collected,
it is fed to a learning algorithm, which analyzes it and
produces a classification model of program executions.

In the classification phase, the code is re-instrumented to
capture only the data needed by the models. When the
instances are later run in the field by actual users,
appropriate execution data are collected and fed to the
previously built classification model to predict the label
associated with the current execution.

To carry out these processes, developers must consider
several issues. First, they must determine which specific
behaviors they want to classify. For instance, one might
want to identify previously seen behaviors, such as open

bugs identified during regression testing, or previously
unseen behaviors, such as potential performance problems
on less popular hardware platforms. The specific applica-
tion considered drives several process choices, including:

. The outcomes that must be detected. Developers may
want to classify executions in which the system
crashes, exceptions are thrown, incorrect responses
are given, transaction times are too long, and so on.
There may be only two outcomes (e.g., “pass” or
“fail”) or multiple outcomes. Developers must
create oracles and measurement instruments that
make these outcomes observable.

. The environments in which the system must run.
Developers may want to observe executions on
different operating systems or with the system in
different configurations.

. The range of inputs over which system execution will be
monitored. In some cases, developers may be inter-
ested in a small set of behaviors captured by a
specific test suite. In others, they may want to see the
system execute under actual end-user workloads.

Second, developers must determine the execution data

on which the classification will be based. Many different
types of execution data can be considered, such as execution
counts, branch frequencies, or value spectra. Developers
must create appropriate instruments to capture these
different kinds of data and must be aware of the amount
of data they will capture. The more data captured, the
higher the runtime overhead and the more resources
needed to analyze the resulting data.

Third, developers must decide the location where
training-phase data collection occurs—in-house or in-the-
field. As stated above, we assume that fielded data
collection can be done on many more program instances
than in-house data collection and that fielded instances
cannot tolerate as much data collection volume as in-house
instances.

HARAN ET AL.: TECHNIQUES FOR CLASSIFYING EXECUTIONS OF DEPLOYED SOFTWARE TO SUPPORT SOFTWARE ENGINEERING... 289

Fig. 1. Overview of our general approach.

Finally, developers must decide which classification
technique to use to create the classification models. There is
a vast array of established classification techniques, each
with its strengths and weaknesses. They range from classical
statistical methods, such as linear and logistic regression, to
neural network and tree-based techniques (e.g., [16], [17]), to
the more recent Support Vector Machines [19].

Fig. 2 shows, in an intuitive way, how the various process
decisions described above are intimately intertwined. For
example, developers who want to understand possible
performance problems experienced by end users may want
to monitor different execution environments and observe
actual usage patterns. As a result, they are forced toward in-
the-field data collection, which in turn tends to limit the
volume of data collected by each instance and necessitates
observing many instances. For another example, developers
may be interested in collecting execution paths correspond-
ing to failing runs of an existing regression test suite to
study and understand specific open bugs. In this case, the
developers may opt for using sophisticated, heavyweight
test oracles and for collecting substantial amounts of data in-
house on a few instances. In either case, the learning
technique chosen must be suitable for the type of data
collected.

2.2 Scenarios

We present three techniques for classifying executions of
deployed programs. To provide context for their evaluation,
we discuss three possible scenarios where they might be
used.

2.2.1 Automated Identification of Known Failures in

Deployed Programs

In this scenario, developers want to automatically distin-
guish fielded program executions that succeed or that fail in
one of several known modes. Such information could be
used in many ways. For instance, it could be used to
automatically trigger additional data collection and report-
ing when a program fails. The information could also be
used to measure the manifestation frequencies of different
failures or to identify system configurations in which
specific failures occur. If failures can be predicted early,

this information could also be used to trigger failure
avoidance measures. One way to implement this scenario
might be to test a program in-house with a known test suite,
collect execution data and build classification models for
each known failure, and attach the resulting models to
fielded instances to predict whether and how a current run
fails (or will likely fail).

This scenario sits in the upper right corner of Fig 2.
Because developers will train the classification technique in-
house for known failures, they are free to collect a
substantial amount of data per instance and can use
heavyweight oracles. On the other hand, they will be limited
to instrumenting relatively few instances and observe a
narrower range of platforms and usage profiles than they
could if they instrumented fielded instances. In Section 4, we
describe how our first technique, based on random forests
classifiers, can support this scenario.

2.2.2 Remote Failure Modeling

In this scenario, developers are still interested in modeling
passing and failing executions. However, they want to
collect the training data from fielded instances running
under user control rather than from in-house instances
running existing test suites. The goal of the data collection is
in this case to perform some failure analysis, such as
debugging.

Developers might implement this scenario by instru-
menting fielded instances and then collecting labeled
execution data from them. The labels would indicate
various outcomes, such as “successful,” “crashed,” “not
responding,” or “exception X thrown at line Y.” The specific
labels used and the degree of confidence in the labeling
would depend on the oracles installed in the fielded
instances. The collected data is then classified to relate
execution data patterns with specific outcomes. At this
point, developers might examine the models directly and
look for clues to the outcome’s cause. (See discussion of
Liblit et al.’s approach [6] in Section 7.) Alternatively,
developers might execute a large number of test cases in-
house and use the models to flag exemplars of a given
outcome, that is, to find test cases whose behavior in-house
is similar to that of fielded runs with the same outcome.
This approach might be especially useful when multiple
root causes lead to the same outcome (e.g., different failures
leading to a system crash).

In Fig. 2, this scenario lies below and to left of the
previous one. In this case, developers collect data in the
field to model previously unseen failures. To avoid
affecting users, developers need to limit their data collection
per instance and must use lighter-weight oracles than they
could have used if operating entirely in-house. On the other
hand, they can instrument many instances and can observe
a wide range of platforms and usage profiles. Section 5
describes how our second technique, based on association
tree classifiers, can be used to support this scenario.

2.2.3 Performance Modeling of Field Executions

In this scenario, developers want to investigate the causes of
a performance problem believed to be due to system aging
(e.g., memory leaks or improperly managed locks). Because
these kinds of problems occur infrequently and may take a

290 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 5, MAY 2007

Fig. 2. Building a classification process.

long time to manifest, developers instrument a large
number of instances in batches—with each batch collecting
data over increasingly longer time periods—hoping to
increase the chances of observing the problem early. They
can achieve this goal by lightly instrumenting deployed
program instances running under user control and model-
ing the collected data to predict incidences of the
performance problem. The models can then be attached to
program instances deployed at beta test sites, where they
will trigger deeper data collection when impending
performance troubles are predicted (this scenario assumes
that predictions can be made before the execution ends.)

This scenario lies at the bottom left of Fig. 2. In this case,
developers must be particularly careful to limit data
collection overhead to avoid overly perturbing the instan-
ce’s performance. They must likewise use very simple
oracles. However, they can instrument many instances and
are likely to observe a wide range of platforms and usage
profiles. One new aspect of this scenario is that, because
each run can take a long time to complete, some incremental
analysis might help limit overall costs. Section 6 describes
our third technique, based on adaptive sampling associa-
tion tree classifiers, which can be used to support this
scenario.

3 EXPERIMENTAL SUBJECT AND DATA

As part of this research, we designed and conducted several
empirical studies to guide the development of the
techniques, evaluate them, and improve our understanding
of the issues underlying our proposed approaches. To
perform controlled experiments, we used the same subject
for all studies and targeted a version of the general
classification problem involving a behavior that we can
measure using an accurate oracle: passing and failing
execution outcomes. Therefore, our executions have one of
two possible labels: “pass” or “fail.” In this section we
introduce our experimental subject and data.

3.1 Experimental Subject

As a subject program for our studies, we used JABA (Java
Architecture for Bytecode Analysis),2 a framework for
analyzing Java programs that consists of about 60,000 lines
of code, 400 classes, and 3,000 methods. JABA performs
complex control-flow and data-flow analyses of Java
bytecode. For instance, it performs stack simulation (Java
is stack-based) to track the types of expressions manipu-
lated by the program, computes definitions and uses of
variables and their relations, and analyzes the interproce-
dural flow of exceptions.

We selected JABA as a subject because it is a good
representative of real, complex software that may contain
subtle faults. We considered 19 real faults extracted from
JABA’s CVS repository by a student in a different research
group. The student inspected all CVS commits starting from
January 2005, identified the first 19 bug fixes reported in the
CVS logs, and distilled the related faults as source-code
differences. We then selected the latest version of JABA as
our golden copy of the software and generated 19 different

versions by inserting one fault into the golden copy. In this
way, we were able to use the golden copy as an accurate
oracle. We also created nine versions of JABA containing
multiple faults.

3.2 Execution Data and Labels

To build a training set for the JABA versions considered, we
used the executions of the test cases in JABA’s regression
test suite. Because JABA is an analysis library, each test
consists of a driver that uses JABA to perform one or more
analyses on an input program. There are seven such drivers
and 101 input programs, divided into real programs
(provided by users) and ad hoc programs (developed to
exercise a specific functionality). Thus, overall, there are
707 test cases. The entire test suite achieves about 60 percent
statement coverage and 40 percent method coverage.

For each of the versions, we ran the complete regression
test suite and collected 1) information about passing and
failing test cases and 2) various types of execution data. In
particular, we collected statement counts, branch counts,
call-edge counts, throw and catch counts, method counts,
and various kinds of value spectra (e.g., relations between
variable values at methods’ entry and exit or maximum
values of variables).

Considering all versions, we ran about 20,000 test cases.
The outcome of each version v and test case t was stored in
binary form: “1” if the execution of t on v terminated and
produced the correct output; “0” otherwise. Because the test
drivers output, at the end of each test-case execution, an
XML version of the graphs they build, we were able to
identify failures of t for v by comparing the golden
version’s output to that produced by t when run on v.
(We canonicalize the XML representation to eliminate
spurious differences).

Table 1 summarizes the distribution of failures across the
different versions. Each row in the table shows the version
number (Version), the list of faults included in each version
(Faults), and the total number of failures (Total failures),
both in absolute terms and in percentage. Versions 1 to 19
are single-fault versions. Because we numbered these
versions based on the ID of the fault they contain, the
single fault ID associated with each version is the same as
the version number. Versions 20 to 28 contain multiple
faults, and column “Faults” lists the IDs of the faults for
each such version. For example, version 28 contains six
faults: 5, 9, 11, 12, 13, and 19. Versions with a failure rate
greater than 8 percent are highlighted in boldface. We use
this information in Section 4.2.1.

4 CLASSIFICATION USING IN-HOUSE DATA

COLLECTION

Our goal in this part of the work is to define a technique
that can classify executions of deployed programs using
models built from data collected in-house. As illustrated in
the upper part of Fig. 1, the models would be built by
collecting execution data in-house and using an accurate
oracle to label these executions. The oracle could be of
different kinds, such as a golden version of the program, an
ad-hoc program, or a human oracle. This scenario makes
sense when attaching oracles to deployed programs would

HARAN ET AL.: TECHNIQUES FOR CLASSIFYING EXECUTIONS OF DEPLOYED SOFTWARE TO SUPPORT SOFTWARE ENGINEERING... 291

2. http://www.cc.gatech.edu/aristotle/Tools/jaba.html.

be too demanding in terms of resources (space, computa-

tional, or both) or in terms of setup costs, which is typically

the case for accurate oracles.
As stated in Section 3, we consider classification of

remote executions as passing or failing executions. The

other two aspects that we need to define within our

approach are the machine-learning technique to use and

the kind of execution data to consider. The family of

learning techniques that we use to define our approach is

tree-based classifiers. In terms of execution data, we

consider different control-related and value-related types

of execution information and assess their predictive power

using an empirical approach.
In the following sections, we first describe our approach

based on tree-based classifiers. Then, we discuss the

empirical studies that we performed to assess and refine

the approach.

4.1 Random Forests Classifiers

Tree-based classifiers are an especially popular class of

learning techniques with several widely used implementa-

tions, such as CART [19] and ID4 (see http://www.

rulequest.com). These algorithms follow a recursive parti-

tioning approach which subdivides the predictor-space into

(hyper) rectangular regions, each of which is assigned a

predicted outcome label (“pass” or “fail” in our case). The

resulting models are trees in which each nonleaf node

denotes a predicate involving one predictor, each edge

represents the true or false branch of a predicate, and each

leaf node represents a predicted outcome. Based on a
training set of data, classification trees are built as follows:

1. For each predictor, partition the training set based
on the observed ranges of the predictor data.

2. Evaluate each potential partition based on how
well it separates failing from passing runs. This
evaluation is often realized based on an entropy
measure [20].

3. Select the range that creates the best partition and
make it the root of the tree.

4. Add one edge to the root for each subset of the
partition.

5. Repeat the process for each new edge. The process
stops when further partitioning is impossible or
undesirable.

To classify new observations, tree classifiers identify the
region to which that observation belongs; the predicted
outcome is the outcome label associated with that particular
region. Specifically, for each execution we want to classify,
we begin with the predicate at the root of the tree and
follow the edge corresponding to the value of the
corresponding predictor in the execution data. This process
continues until a leaf is encountered. The outcome label
found at the leaf is interpreted as the predicted outcome for
the new program run.

For example, Fig. 3 shows a hypothetical tree-classifier
model that predicts the “pass”/“fail” outcome based on the
value of the program running time and input size. The
decision rules prescribed by the tree can be inferred from
the figure. (While traversing the tree, by convention, we
follow the left edge when the predicate is true and the right
edge otherwise.) For instance, an execution with Size < 8:5
would be predicted as “pass,” while if

ð8:5 � Size < 14:5Þ AND ðTime < 55Þ;

the execution would be predicted as “fail.”
The main reason why we chose tree-based classifiers

over other classification approaches is that they create
interpretable models. However, because the models are
built by greedy procedures, they can be quite sensitive to
minor changes in the training data [20]. To address these
problems, we use a generalization of tree-based classifica-
tion, called random forests, as our classification technique.
Random forests is an ensemble learning method that builds
a robust tree-based classifier by integrating hundreds of
different tree classifiers via a voting scheme. This approach

292 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 5, MAY 2007

TABLE 1
JABA Versions Used in the Studies

Fig. 3. Example of tree classifier for executions with two features (i.e.,

predictors), size and time, and two possible labels, “pass” and “fail.”

maintains the power, flexibility, and interpretability of tree-
based classifiers while greatly improving the robustness of

the resulting model. Consider the case in which we have
M predictors and a training set with N elements. We grow

(i.e., incrementally create) each tree classifier as follows:

1. Sample N cases at random with replacement (boot-
strap sample) from the original data. This sample will
be the training set for growing the tree.

2. Specify a number m << M such that, at each tree
node, m variables are selected at random out of the
M, and the best split on these m is used to split the
node.3

The forest consists of a large set of trees (500 in our
approach), each grown as described above. For prediction,

new input is fed to the trees in the forest, each of which
returns a predicted classification label. The most selected
label is returned as the predicted label for the new input. In

the case of a tie, one of the outcomes is arbitrarily chosen.
Random forests have many advantages. First, they

efficiently handle large numbers of variables. Second,

ensemble models are quite robust to outliers and noise.
Finally, the random forests algorithms produce error and

variable-importance estimates as by-products. We use the
error estimates to study the accuracy of our classifiers and
use the variable importance estimates to determine which

predictors must be captured (or can be safely ignored) in
the field in order to classify executions.

4.2 Experimental Refinement of the Technique

To evaluate and refine the initial definition of our
classification technique, we applied our approach to the

subject and data presented in Section 3. In the study, we
excluded versions with error rates below an arbitrarily

chosen cutoff of 8 percent, which effectively removed only
four versions from consideration (versions with zero
failures would not be considered anyway). Admittedly, an

8 percent failure rate is much higher than what we would
expect to see in practice, which may affect the generality of

our results. Nevertheless, we felt we had to take this step for
several reasons. In particular, we would have needed many

more test cases (which would have been prohibitively
expensive to generate) in order to reliably classify program
versions with lower failure rates. There are special machine

learning techniques that have been developed to handle this
kind of situation and, as we discuss in Section 7, could be

grafted onto our technique in future studies. However,
integrating such techniques now would only make our
initial analyses more difficult to interpret.

As discussed above, our technique could be instantiated

in many ways, depending on the different types of
execution data considered. Instead of simply picking a

possible instance of the technique and studying its
performance, we used an empirical approach to evaluate

different possible instances. To this end, we designed and
conducted a multipart empirical study that explored three
main research questions:

Research Question 1 (RQ1). Can we reliably classify program
outcomes using execution data?

Research Question 2 (RQ2). If so, what kinds of execution data
should we collect?

Research Question 3 (RQ3). Is all the data we collect actually
needed to produce accurate and reliable classifications?

We addressed RQ1 by measuring classification error rates.
We addressed RQ2 by examining the relationship between
classification error rates and the type of execution data used
in building classification models. We addressed RQ3 by
examining the effect of predictor screening (i.e., collecting
only a subset of the predictors) on classification error rates.
In the following sections, we describe the design, metho-
dology, and results of our exploratory studies in detail.

4.2.1 Empirical Design

Initially, we considered only single-fault versions of our
subject (see Table 1). (The study involving multiple faults is
discussed in Section 4.2.5.) For each program version and
type of execution data collected, we fit a random forest of
500 classification trees using only predictors of that type.
We then obtained the most important predictors by using
the variable importance measures provided automatically
by the random forest algorithm, and we identified the
subset of important predictors that resulted in the lowest
error rate.

For each resulting classification model,we computed an
error estimate, called the Out Of Bag (OOB) errors estimate.
To compute this quantity, the random forest algorithm
constructs each tree using a different bootstrap sample from
the original data. When selecting the bootstrap sample for
the kth tree, only two-thirds of the elements in the training
set are considered (i.e., these elements are in the bag). After
building the kth tree, the one-third of the training set that
was not used to build the tree (i.e., the OOB elements) is fed
to the tree and classified. Given the classification for an
element n obtained as just described, let j be the class that got
most of the votes every time n was OOB. The OOB error is
simply the proportion of times that j is not equal to the actual
class of n (i.e., the proportion of times n is misclassified),
averaged over all elements. This evaluation method has
proven to be unbiased in many studies. More detailed
information and an extensive discussion of this issue is
provided in Breiman’s original paper [20].

4.2.2 Study 1—Research Question 1

The goal of this first study is to assess whether execution
data can be used at all to predict the outcome of program
runs. To do this, we selected one obvious type of execution
data, statement counts (i.e., the number of times each basic
block is executed for a given program run), and used it
within our technique. We chose statement counts because
they are a simple measure and capture diverse information
that is likely to be related to various program failures. For
each JABA version, there are approximately 12,000 nonzero
statement counts, one for each executed basic block in the
program. Following the methodology described in Sec-
tion 4.1, we built a classification model of program behavior
for each version of the subject program. We then evaluated

HARAN ET AL.: TECHNIQUES FOR CLASSIFYING EXECUTIONS OF DEPLOYED SOFTWARE TO SUPPORT SOFTWARE ENGINEERING... 293

3. A split is a division of the samples at the node into subsamples. The
division is done using simple rules based on the m selected variables.

those models by computing OOB error estimates and found
that statement counts were nearly perfect predictors for this
data set: Almost every model had OOB error rates near
zero, which shows that at least this kind of execution data
can predict program execution outcomes.

Although statement counts were good predictors, cap-
turing this data at user sites can be expensive. For our
subjects, instrumentation overhead accounted for an in-
crease around 15 percent in the total execution time. While
this might be acceptable in some cases, it is still a
considerable slowdown that may not be practical for many
applications. Moreover, the amount of information col-
lected, one integer per basic block, can add considerable
memory and bandwidth overhead for large programs and
large numbers of executions.

4.2.3 Study 2—Research Question 2

In Study 2, we investigate whether other more compact and
cheaper to collect execution data can also be used to reliably
estimate execution outcomes. Using statement counts as a
starting point, we investigated whether other data might
yield similar prediction accuracy, but at a lower runtime
cost. Note that, because statement counts contained almost
perfect predictors, we did not consider richer execution
data, such as data values or paths. Instead, we considered
three additional kinds of data that require the collection of a
smaller amount of information: throw counts, catch counts,
and method counts.

Throw Counts and Catch Counts. Throw counts measure
the number of times each throw statement is executed in a
given run. Analogously, catch counts measure the number
of times each catch block is executed. Each version of JABA

has approximately 850 throw counts and 290 catch counts,
but most of them are always zero (i.e., the corresponding
throw and catch statements are never exercised). This is a
typical situation for exception handling code, which is
supposed to be invoked only in exceptional situations.

As with statement counts, we built and evaluated
classification models using throw counts as predictors. We
found that throw counts are excellent predictors for only
one version (v17), with error rates well below 2 percent, but
are very poor predictors for all other versions. Further
examination of the fault in v17 provided a straightforward
explanation of this result. Fault #17 causes a spurious
exception to be thrown almost every time that the fault is
executed and causes a failure. Therefore, that specific
exception is an almost perfect predictor for this specific
kind of failure. Most of the other throw counts refer to
exceptions that are used as shortcuts to rollback some
operations when JABA analyzes certain specific program
constructs. In other words, those exceptions are used to
control the flow of execution and are suitably handled by
catch blocks in the code, so they are typically not an
indicator of a failure.

The results that we obtained using catch count predictors
were almost identical to those obtained using throw counts.
Overall, it appears that, for the data considered, throw and
catch counts cannot by themselves predict different failures.
Although this may be an artifact of the specific subject
considered, we believe that the results will generalize to
other subjects. Intuitively, we expect throw (and catch)

counts to be very good predictors for some specific failures
(e.g., in the trivial case of executions that terminate with
fatal failures related to explicitly thrown exceptions). We do
not expect them to predict reliably other kinds of (more
subtle) failures and to work well in general, which is
consistent with what we have found in our study.

Method Counts. Method counts measure the number of
times each method has been executed in a given run. For
each version of JABA considered, there are approximately
3,000 method counts—one for each method in the program.
As for statement counts, the random forest algorithm
considered, among these 3,000, only the 1,240 nonzero
method counts. The models built using method counts
performed extremely well for all program versions. As with
statement counts, method counts led to models with OOB
error rates near zero. Interestingly, these results are obtained
from models that use only between two and seven method
count predictors (for each program version). Therefore,
method counts were as good predictors as statement counts,
but had the advantage of being much less expensive to
collect.

More generally, these results suggest that there are
several kinds of execution data that may be useful for
classifying execution outcomes. In fact, in our preliminary
investigations, we also considered several other kinds of
data. For example, we considered branch counts and call-
edge counts. Branch counts are the number of times each
branch (i.e., method entries and outcomes of decision
statements) is executed. Call-edge counts are the number
of times each call edge in the program is executed, where a
call edge is an edge between a call statement and the entry
to the called method. Both branch counts and call-edge
counts were as good predictors as statement or method
counts.

Note that the execution data that we considered are not
mutually independent. For example, method counts can be
computed from call-edge counts and throw counts are a
subset of statement counts. It is also worth noting that we
initially considered value-based execution data and cap-
tured data about the values of specific program variables at
various program points. However, we later discarded these
data from our analysis because the compact and easy-to-
gather count data defined above yielded almost perfect
predictors. In particular, because method counts are
excellent and fairly inexpensive to collect, we decided to
consider only method counts for the rest of our investiga-
tion. (There is an additional reason to use method counts,
which is related to the statistical validity of the results, as
explained in Section 4.2.5.)

4.2.4 Study 3—Research Question 3

The results of Study 2 show that our approach could build
good predictors consisting of only a small number of
method counts (between two and seven). This finding
suggests that, at worst, our technique needs to instrument
less than 130 of the 3,000 methods (assuming seven
different methods over 19 faulty versions) to perform an
accurate classification. We use this result as the starting
point for investigating our third research question.

One possible explanation for this result is that only these
few counts contain the relevant “failure signal.” If this is the

294 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 5, MAY 2007

case, choosing exactly the right predictors is crucial.
Another possibility is that the signal for program failures
is spread throughout the program, and that multiple counts
carry essentially the same information (i.e., they form, in
effect, an equivalence class). In this case, many different
predictors may work equally well, making it less important
to find exactly the right predictors. Moreover, if many
different predictor subsets are essentially interchangeable,
then lightweight instrumentation techniques are more likely
to be widely applicable.

To investigate this issue, we randomly sampled a small
percentage of the method counts and investigated the
predictive power of this small subset. More precisely, we
1) randomly selected 1 percent (about 30) and 10 percent
(about 300) of the method counts, 2) built a model based
only on these counts, and 3) validated the model as
described in Section 4.2.1. We repeated this experiment
100 times, selecting different 1 percent and 10 percent
subsets of method counts every time. This is an effective
way to uncover whether there are many sets of common
predictors that are equally significant. Without random
sampling, it is easy to be misled into identifying just a few
important predictors, when in fact there are other predictors
which have comparable predictive capabilities. Also, ran-
dom sampling provides a way of assessing how easy (or
difficult) it may be to find good predictors. For instance, if
1 percent subsamples return a good subset of predictors
90 percent of the time, the number of equally good
predictors is very high. Conversely, if 10 percent subsets
contain good predictors only 5 percent of the time, we
would conclude that good predictors are not as easily
obtained.

We found that the randomly selected 1 percent and
10 percent of method counts invariably contained a set of
excellent predictors over 80 percent and 90 percent of the
time, respectively. This result suggests that many different
predictor subsets are equally capable of predicting passing
and failing executions. This is especially interesting because
most previous research has assumed that one should
capture as much data as possible at the user site, possibly
winnowing it during later postprocessing. Although this is
still a preliminary result, it suggests that large amounts of
execution data might be safely ignored, without hurting
prediction accuracy and greatly reducing runtime overhead
on user resources.

4.2.5 Possible Threats to the Validity of the Studies

Generality Issues. All the results presented so far are related
to the prediction of the outcomes within single versions.
That is, each model was trained and evaluated on the same
version of the subject program. Although a classification
approach that works on single versions is useful, an
approach that can build models that work across versions
is much more powerful and applicable. Intuitively, we can
think of a model that works across versions (i.e., a model
that can identify failures due to different faults) as a model
that, to some extent, encodes the “correct behavior” of the
application. Conversely, a model that works on a single
version and provides poor results on other versions is more
likely to encode only the “wrong behavior” related to that
specific fault.

Since one of our interests is in using the same models
across versions, we also studied whether there were
predictors that worked consistently well across all versions.
We were able to find a common set of 11 excellent
predictors for all of the programs versions that we studied.
Classification using these predictors resulted in error rates
below 7 percent for all versions of the data. Moreover, the
models that achieved these results never included more
than five of those 11 predictors.

Another threat to the generality of our results is that we
considered only versions with a single fault (like most of the
existing literature). Therefore, we performed a preliminary
study in which we used our technique on the versions of
JABA containing multiple faults (see Table 1). In the study,
we selected predictors that worked well for single-error
versions and used them for versions with multiple errors.
We found that, although there are instances in which these
predictors did not perform well and produced error rates
around 18 percent, the predictors worked well most of the
time, with error rates below 2 percent. In Sections 5 and 6,
we further discuss the use of our approach in the presence
of multiple errors. In this first set of studies, our focus is
mostly on investigating and defining techniques that can
successfully classify program executions, rather than
techniques specifically designed to recognize failures under
different conditions.

Multiplicity Issues. When the number of predictors is
much larger than the number of data points (test cases, in
our case), it is possible to find good predictors purely by
chance. When this phenomenon happens, predictors that
work well on training data do not have a real relationship to
the outcome and therefore perform poorly on new data. If
the predictors are heavily correlated, it becomes even more
difficult to decide which predictors are the best and most
useful for lightweight instrumentation. Inclusion of too
many predictors may also have the effect of obscuring
genuinely important relationships between predictors and
outcome. This issue, which has been overlooked by many
authors in this area, is a fundamental one because multi-
plicity issues can essentially mislead statistical analysis and
classification.

Our first step to deal with multiplicity issues was to
reduce the number of potential predictors by considering
method counts, the execution data with the lowest number
of entities. Furthermore, we conducted a simulation study
to understand how having too many predictors may result
in some predictors that have strong predictive powers
purely by chance. The simulation was conducted as follows:
We selected a version of the subject and treated the method
counts for that version as a matrix (i.e., we arranged the
counts column by column, with each row representing the
counts for a particular test case). To create a randomly
sampled data set, we then fixed the row totals (counts
associated with each test case) and randomly permuted the
values within each row. In other words, we shuffled the
counts among methods, so as to obtain a set of counts that
does not relate to any actual execution.

We repeated this process for each row in the data set to
produce a new randomly sampled data set. With the data
set so created, we randomly sampled 10 percent subsets of

HARAN ET AL.: TECHNIQUES FOR CLASSIFYING EXECUTIONS OF DEPLOYED SOFTWARE TO SUPPORT SOFTWARE ENGINEERING... 295

the column predictors. Our simulations of 100 iterations
each showed that a random 10 percent draw never (for all
practical purposes) produced a set of predictors able to
classify executions as “pass”/“fail” in a satisfactory
manner. Therefore, the probability of obtaining, purely by
chance, good predictors from a 1 percent random subset of
the predictors 80 percent of the time (which is what we
observed in our study on the real data) is very slim. We can
thus conclude that the results we obtained are due to an
actual relation between the occurrence of a failure and the
value of the method counts.

4.3 Summary Discussion

So far, our studies suggest that, for the subject and
executions considered, we can 1) reliably classify program
outcomes using execution data, 2) do it using different
kinds of execution data, and 3) at least in principle, do it
while ignoring a substantial percentage of potential data
items. According to these results, we can use our technique
based on random forests and on the collection of method
counts to classify remote executions. This technique would
be useful as long as we can build our classification models
through in-house training under the developer supervision.

5 CLASSIFICATION USING LIGHTWEIGHT,
IN-THE-FIELD DATA COLLECTION

In contrast to the previous technique, which used data
collected in-house, our goal here is to define a technique
that can classify executions of deployed programs using
models built from data collected in the field. As illustrated
in the middle panel of Fig. 1, the models would be built by
collecting execution data in the field while using a
lightweight, built-in oracle to label these executions. The
oracle could be based on various mechanisms, such as
assertion checking, monitoring of error handling code, or
crash detection. This scenario refers to situations where we
want to train the models in the field (e.g., because the
number of configurations/parameters is large, and we want
to focus on the ones actually used by the users) and more
accurate oracles are too expensive or impossible (e.g., in the
case of human oracles) to attach to a deployed program. In
these cases, a classification technique needs to operate on
readily-collectible execution data collected in the field, use
these data to train the models, and later classify executions
according to the models. The initial data collection would
typically involve a subset of software instances (e.g.,
instances used by beta testers), whereas the later classifica-
tion could be performed on execution data coming from any
instance and would not require the use of a built-in oracle.

As a specific instance of this general problem, we again
consider classification of remote executions as passing or
failing. The machine-learning technique that we use to
define our approach is, in this case, a learning technique
that we have invented called association trees. In terms of
execution data, we consider only method counts, which
proved effective when used with our first technique (see
Section 4).

In the following sections, we first describe our approach
based on association trees. Then, we discuss the empirical

studies that we performed to assess and refine the
approach.

5.1 Association Trees

Our first approach, based on random forests, created very
accurate models for the system and test cases studied. It
requires, however, that every program instance capture the
same, large set of features. When the training-data collec-
tion is performed completely in house, and on sufficiently
powerful computers, this will not be a problem. In other
situations, however, the data collection and transmission
overhead could be unacceptable. Consider the remote
failure modeling scenario of Section 2.2, for example, in
which developers may wish to capture low-level execution
data from fielded instances, hoping that the resulting
classification models will allow for precisely locating
potential failure causes. Capturing lots of low-level data
increases overhead, which will eventually affect system
performance in an unacceptable way.

In the random forest studies, we found that from a large
(thousands) pool of potential predictors only a very small
fraction (less than 1 percent) were important for classifica-
tion. Unfortunately, the approach based on random forests
must actually collect the data and conduct the analysis
before it can determine which predictors are actually useful.
These results suggest that an alternative approach—assum-
ing one can be found—could eliminate a substantial amount
of the data collection overhead, be it measured in data
transmission bandwidth, runtime overhead, or code bloat.
Such an approach would also save considerable data-
analysis costs, which tend to grow polynomially with the
number of potential predictors. All of these costs are
substantial, especially when training data is captured in
the field.

To address this problem, we first changed our instru-
mentation strategy. Instead of capturing each potential
predictor in each execution, we capture only a small subset
(less than 10 percent) of predictors in each instance. This
sampling drastically reduces the data collection overhead,
but creates a data set in which nearly all of the entries are
missing, which greatly reduces the performance of tree-
based techniques; traditional tree-based classifiers, like
random forests, do not work well when many predictors
are missing. For example, one tree-based algorithm applied
to this reduced data for one JABA version produced an error
rate of 8.5 percent, compared to an error rate below
1 percent when applied to the complete data sets. To solve
this problem, we developed a new classification technique,
called association trees, that works well even when different
instances capture different predictors.

The training set for the association trees algorithm is, as
usual, a set of labeled execution data. Each data vector has
one slot for each potential predictor. If a predictor is
collected during a given run (i.e., the corresponding
program entity is instrumented), its value is recorded in
the vector. Otherwise, a special value (NA) is recorded,
indicating that the predictor was not collected for that run.
Also as usual, the algorithm’s output is a model that
predicts the outcome of a run based on the contents of an
execution data vector. However, unlike with our tree-based
technique, in this approach the models will predict one of

296 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 5, MAY 2007

{“pass,” “fail,” ”unknown”}, where “unknown” means that
the model is unable to make a prediction (because of the
lack of data).

The association trees algorithm has three stages: 1) trans-
form the predictors into items that are present or absent,
2) find association rules from these items, and 3) construct a
classification model based on these association rules.

In the first stage, the algorithm transforms the predictors
into items that are considered either present or absent, in
two steps. First, it screens each predictor and checks that the
Spearman rank correlation between the predictor and the
observed outcomes exceeds a minimum threshold. (Spear-
man’s rank correlation is similar to the traditional Pearson’s
correlation, except that the actual value of each variable is
replaced with a rank: 1 for the largest value, 2 for the second
largest value, and so on, which makes the correlation
measure less sensitive to extreme values.) The goal of this
step is to discard predictors whose values are not correlated
with outcomes and, thus, are unlikely to be relevant for the
classification.

Second, the algorithm splits the distribution of each
remaining predictor into two parts, such that the split point
is the point that minimizes the p-value of the t-test for
outcome. Ideally, after the split, all runs with one outcome
would have values above the split, while all runs with the
other outcome would have values below it. If the p-value is
below a maximum threshold of .0005, the algorithm creates
two items: The first item is present in a given run if the
predictor’s value is below the split point; the second item is
present if the value is above the split point. Neither item is
present if the corresponding predictor was not being
measured during the run. We also represent outcomes as
separate items (“pass” and “fail” for the data used in this
paper).

After the algorithm completes Stage 1, the original set of
training data has been transformed into a set of observa-
tions, one per run, where each observation is the set of items
considered present for that run. The goal of the second stage
of the algorithm is to determine which groups of frequently
occurring items are strongly associated with each outcome.
To this end, it applies the well-known a priori data-mining
algorithm [21], where it sets outcome as the item to predict.
The a priori algorithm is used extensively by the data-
mining community to efficiently find items that frequently
occur together in a data set (e.g., to discover which items,
such as peanut butter and jelly, are frequently purchased
together). The algorithm can then determine which of these
frequently occurring sets of items are good predictors of the
presence of another item of interest (e.g., if someone buys
peanut butter and jelly, then they often buy bread as well).
In our case, we want to know which sets of items are
correlated with successful executions or failures. These sets
of items, together with their correlations with outcomes are
called association rules. Association rules are of the form A
implies B. We call A the antecedent, and B the consequent of
the rule. Each rule needs a minimum support: The
antecedent must appear in a certain fraction of all
observations for the rule to be considered potentially valid.
Each rule also needs a minimum confidence: When the
antecedent is present in an observation, the consequent

must also be present in the observation for a predefined
fraction of the observations (the value of this fraction
represents the confidence). Typically, we set the confidence
level to 1 if we assume outcomes are deterministic. The
confidence level can be decreased if we wish to consider
nondeterministic outcomes as well. As explained in Section
5.2, in our empirical evaluation of the approach, we vary the
required supports to experiment with different settings.
However, because failures tend to occur far less often than
successes, we typically set the support for rules predicting
passing executions to be several times greater than the
support for predicting failing ones. Finally, to reduce
computation times, we choose to limit the length of
association rules to three. Therefore, if four items must be
present to perfectly predict an outcome, our algorithm will
not be able to find the corresponding rule (in these studies).
The third and last stage of the algorithm performs outcome
prediction using the association rules produced in the
previous stage. Given a new run, the algorithm finds the
rules that apply to it. If all applicable rules give the same
outcome, it returns that outcome as the prediction. If there
is disagreement, or there are no applicable rules, the
algorithm returns a prediction of “unknown.” We chose
this unanimous voting scheme to be conservative. One
might also decide to use majority voting or a weighted
voting scheme (if the penalties for incorrectly predicting
different outcomes are uneven).

5.2 Empirical Evaluation

5.2.1 Setup

In this study, we use the data discussed in Section 3. The
instrumentation measured the 1,240 method-entry counts
greater than zero as possible features. From this complete
data set, we created simulated program instances that
represented a hypothetical situation in which each instance
is instrumented to collect measures for 100 features only. To
do this, for each simulated instance, we randomly selected
100 features; the remaining ones correspond to features
whose instrumentation was not activated and, thus, whose
measures were not collected for that instance. We then
applied the association tree algorithm to this data under
various parameter settings. Note that the goal of these
initial tests is simply to determine whether some points in
the parameter space yield good classifications models. We
leave a more exhaustive analysis of parameter effects and
trade-offs to later investigations. We list and discuss the
parameters considered.

. Test suite size. We assigned a random sample of b test
cases to each simulated instance. Therefore, each
instance executed b test cases, producing 100 unique
predictors for each test case run. For each program
version, we executed 18,000 total test runs, with test
suite sizes of b = 6, 12, or 24 across 3,000, 1,500, and
750 simulated instances, respectively. One half of the
data was used as a training set. The rest was used for
cross validation.

. Support and confidence. We used a minimum support
of 1 for both failures and successes because we
consider the outcomes to be deterministic. We set

HARAN ET AL.: TECHNIQUES FOR CLASSIFYING EXECUTIONS OF DEPLOYED SOFTWARE TO SUPPORT SOFTWARE ENGINEERING... 297

minimum confidences of .0066, .0033, and .0016 for
rules predicting success, and .001 and .0005 for rules
predicting failure.

. Correlation thresholds. In Stage 1 of the algorithm, we
discarded predictors from consideration if they did
not have a minimum Spearman rank correlation
with outcomes of at least 0.4, 0.3, or 0.2.

Performance measures: For every run of the algorithm,
we captured several performance measures:

. Coverage. Percentage of runs for which the model
predicts either “pass” or “fail” (i.e., 1 percent of
“unknown”).

. Overall misclassification. Percentage of runs whose
outcome was incorrectly predicted.

. False positives. Percentage of runs predicted to be
“pass” that instead failed.

. False negatives. Percentage of runs predicted to be
“fail” that instead passed.

5.2.2 Results

We constructed about 90 different association tree models

across the single-fault and multiple-fault versions of JABA

used in the previous study. Fig. 4 depicts the various
performance metrics. For each metric, the figure shows the

aggregated results for all versions (All Data), the results for
single-fault versions only (1-Flt), and the results for multi-

ple-fault versions only (N-Flt). Across all versions and
settings, we found coverages ranging from 2 percent to

95 percent with a median of 63 percent. Coverage was

substantially higher for single-fault versions (median of
74 percent) than for multiple-fault versions (median of

54 percent).
Overall misclassification ranged from 0 percent to

10 percent, with a median of 2 percent. There was little

difference between single-fault and multiple-fault versions.
False positives had a median of 0 percent and a

75th percentile of 3 percent. Due to a few outliers, however,
the distribution ranged from 0 percent to 100 percent. We

found that all seven of these outliers occurred on multiple-
fault versions, with correlation thresholds of .3 or .4, and

when coverage was less than 20 percent. Also, in each case,

the accompanying false negative percentage was always
0 percent. In these cases, the high correlation threshold
caused many predictors to be discarded. Few rules for
passing runs were generated and, thus, all of the passing
runs in the test data were predicted to be “unknown” or
“fail.” False negatives, like false positives, were generally
low. The median false negative percentage was 10 percent.
The 75th percentile was also low, 22 percent. Again, there
were some (3) outliers with 100 percent false negative
percentage and 0 percent false positive percentages. This
time however, the outliers were all for runs of version 11, a
single-fault version, and had 70 percent or more coverage.

Because one of the goals of this evaluation is to refine
and tune our approach, we have also analyzed and made
some tentative observations concerning the parameters
used in building association trees.

Test suite size appeared uninfluential. We found results
of various quality with every size. Given that we restricted
the length of association rules to three and that we observed
between 750 and 3,000 instances, with each instance having
roughly 1/12th of the possible predictors in it, we should
expect to have good coverage of all potential items by
chance.

Increasing support for passing runs strongly affected
coverage, but much less effect for the failing runs. This
situation occurs because, with a lower support for passing
runs, we find more rules for predicting “pass” (the much
more frequently appearing class), and can thus predict
correctly in more cases. The main effect of increasing
support for failing runs was to decrease false negatives and
to increase false positives.

The coarsest tuning parameter was the minimum
correlation needed between the predictors and the out-
comes. When set too low (0.1), far too many rules were
found, which can greatly slow down the algorithm and
even make it run out of memory while trying to find rules.
Conversely, when the minimum correlation was set too
high, too few rules were found. In our experiment, settings
of 0.2 or 0.3 tended to give good results, while settings of 0.1
or 0.4 tended to perform much worse.

5.3 Summary Discussion

Although still preliminary, our results suggest that our
association-tree technique performed almost as well as our
tree-based technique defined in Section 4, albeit with a few
outliers. In terms of data collection costs per instance,
however, this new approach is considerably less expen-
sive. Our random-forests technique, like all classification
techniques that we know, measures all possible predictors
across all instances. (Even techniques that do sampling,
such as the one in [6] and [7], still collect data for each
predictor, therefore missing opportunities for reducing
instrumentation and data-transfer costs.) Conversely, our
association trees approach instrumented only about 8 per-
cent of the potential predictors in any given instance.
Therefore, this second technique is likely to be applicable in
cases where lightweight instrumentation is preferable (or
necessary), and where a slightly less accurate classification
is acceptable.

This new approach, although successful, has some issues
that may limit its applicability in some contexts.

298 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 5, MAY 2007

Fig. 4. Association tree results.

First, the technique requires all (sampled) data to be
collected before modeling begins, but gives no help in
determining how many instances and test cases are needed
to build adequate models. In our studies, we arbitrarily
chose to use a number of instances and executions (test
cases) that goes from 3,000 instances running 6 test cases
each to 750 instances running 24 test cases each. We
currently lack theoretical or heuristic support for deciding
how much data to collect.

Second, the technique gives no help in selecting the
modeling parameters. Thus, developers must rely on trial
and error, which can be problematic in some situations. For
example, in some cases we created good models with a
correlation threshold of 0.1; in other cases, we ran out of
memory on a machine with 1 GB of RAM using the same
parameter value. Third, the technique may undersample
useful predictors. This issue is related to the first problem,
in that the algorithm does not help in determining the
minimum number of runs needed to build good models. If
there are very few useful predictors and not enough runs,
then it is possible to miss important predictors (or
combinations thereof).

Finally, the technique does not adapt easily to changes in
the observed systems and in their usage; it must be rerun
from scratch when changes occur. It would be useful and
much more cost-effective if the models could be adapted
incrementally.

6 CLASSIFICATION USING ADAPTIVE SAMPLING

As in the previous section, our goal here is to define a
technique that can classify executions of deployed pro-
grams using models built from data collected in the field.
The key difference is that here we also want our data
collection strategy to be adaptive: Information gleaned from
early runs should help determine which data to collect
during later runs. This approach can be used to reduce the
process’ time to completion and also reduce the total
amount of data collected. All other aspects of the overall
technique, such as oracle characteristics, classification tasks,
type of data collected, and underlying assumptions, are the
same as for the previous technique.

6.1 Adaptive Sampling

One limitation of the association tree technique described in
Section 5 is that the algorithm treats all potential predictors
as equally important all the time. That is, the algorithm
selects which predictors to collect in a given instance by
taking uniform random samples of all possible predictors.
Because of this limitation, the association tree algorithm
may take a considerably long time to complete and may fail
to capture important association rules in some cases. This
may happen, for instance, if only a small percentage of the
predictors are actually useful for building good classifica-
tion models. It may also happen in the case of problems that
manifest themselves only after the program has been
running for some time (see the scenario about performance
modeling of fielded executions discussed in Section 2.2.3).

Suppose, for instance, that a given system fails only
when method x and method y are each executed more than
64 times in the same run. Suppose further that there are

many possible predictors, a small percentage of them are
enabled on each instance, and there are relatively few
failing runs. In this case, it is possible that methods x and y
are rarely sampled together in the same run. Therefore, the
failure cause will not be identified or will at least take a long
time to be identified. Basically, by giving all predictors the
same likelihood of being collected, the algorithm can spread
its resources too thinly, leading to poor models.

In these situations, finding ways to rule out useless
predictors early could greatly improve the algorithm’s costs
effectiveness. To tackle this problem, we created an
incremental association tree algorithm called adaptive sam-
pling association trees. This algorithm incrementally learns
which predictors have demonstrated predictive power in
the past and preferentially instruments them in future
instances, while deemphasizing the other predictors. Im-
portant expected benefits of such an approach are that it
should allow for 1) reducing the amount of data collection
required, 2) eliminating the need to guess at many of the
parameter settings, and 3) naturally adapting models over
time (instead of requiring complete recalibration every time
the system, its environment, or its usage patterns change).

To do adaptive sampling, our algorithm first associates a
weight with each predictor. Initial weights can be set in
many different ways. For example, they can be based on the
developers’ knowledge of interesting (i.e., problematic)
modules or paths. In the experiments described below, we
simply used a uniform weighting of 1 for each predictor.

When a new instance is ready to run, the algorithm
queries a central server for the k predictors to be collected in
the instance. The server selects without replacement the
k features to be measured from the set of possible features.
Unlike the basic association trees algorithm, which gives
equal weights to all predictors, the adaptive sampling
association trees algorithm sets the selection probability of
each predictor to be the predictor’s weight divided by the
total weight of all predictors. Next, the measurement of the
selected features is enabled in the instance so that, when it is
executed, the resulting execution data are returned to a
central collection site.

At this point, the algorithm tests whether the collected
predictors are related to the outcome. For each predictor
measured, the algorithm computes the Spearman rank
correlation between the values observed for this predictor
and the outcomes of all runs in which the predictor was
collected. If the Spearman’s rank correlation is above a
minimum threshold, the algorithm increases the predictor’s
weight by one. If, over the universe of all possible inputs,
the Spearman rank correlation of any useful predictor is
above our threshold, it is easy to show that, asymptotically
in the number of executions, the algorithm will sample it at
a high rate. Similarly, if any predictor has a Spearman rank
correlation below the threshold, it will eventually drop out
of the set of predictors sampled.

Once the algorithm has collected data from a sufficient
number of instances, it creates association rules following
the same approach as the basic association trees algorithm.
The key difference is that, by using a nonuniform sampling
strategy, the algorithm is more likely to have heavily
sampled useful predictors, while lightly sampling less

HARAN ET AL.: TECHNIQUES FOR CLASSIFYING EXECUTIONS OF DEPLOYED SOFTWARE TO SUPPORT SOFTWARE ENGINEERING... 299

useful ones. Consequently, with this new algorithm, we
expect to find more accurate rules and fewer incorrect ones
at any support level.

6.2 Empirical Evaluation

6.2.1 Setup

We used the same data in this study that we used in the
previous studies: method counts as execution features
measured, and “pass” and “fail” as the possible behaviors.
We then simulated 500 instances of each of the single-fault
and multiple-fault JABA versions (see Table 1) as follows:
For each instance, we randomly selected 100 features (i.e.,
method counts) to collect and k runs (i.e., test case
executions), where k is a random number following a
Poisson(12) distribution. Half of the runs were allocated to
the training set, and the rest were used for cross validation.
As discussed above, we assigned to all features an initial
weight of 1. After each run, the algorithm increased by 1 the
weights of features that were strongly correlated with the
outcome (i.e., Spearman rank correlation above 0.3 in
absolute value).

Overall, our training and our test sets comprised an
average of 3,000 test cases, each collecting 100 predictors.
Basic association trees, in contrast, executed 9,000 test cases
with 100 predictors each. (Note that we actually considered
18,000 test runs for the basic association trees, but used only
half of the data as a training set, as discussed in Section 5.2).
We measured the performance of each adaptive sampling
association tree using the same four measures used in the
previous study (see Section 5.2).

6.2.2 Results

Using the adaptive sampling algorithm, we constructed
models (i.e., association rules) for each of the JABA versions
used in earlier studies. In the few cases where a given
model performed poorly (i.e., produced a false positives
rate over 20 percent or coverage below 80 percent), we
allowed ourselves to change support levels for failure rules
and/or for success rules. This strategy mimics the tuning
process a developer could perform in practice. There was
some variability in the number of iterations needed for the

results to converge. This variability is present because the
time to discover relevant features varies—if it takes a while
to discover good features, then, obviously, more iterations
of the process are needed before obtaining good results.

Fig. 5 depicts the various performance metrics for the
final models (the metrics shown and the notation are the
same used in Fig. 4. Across all models, coverage ranged
from 67.3 percent to 99.6 percent. The median coverage was
88.3 percent. As the figure shows, coverage was substan-
tially higher for single-fault versions (median of 91.25 per-
cent for 1-Flt) than for multiple-fault versions (median of
79.86 percent for N-Flt).

Overall misclassification ranged from 0 percent to
7 percent, with a median of 0.7 percent. Misclassification
was lower for single-fault versions than for multiple-fault
versions (0.09 percent median versus 4.2 percent median),
although both are quite low in practical terms.

False positive percentage ranged from 0 percent to about
10 percent due to a few outliers. The third quartile, for
instance, is 2.2 percent false positives. Also in this case, single-
fault versions had fewer false positives than multiple-fault
versions (0.02 percent median versus 1.4 percent median),
but both were low in practical terms.

Finally, false negative percentages ranged from 0 percent
to 28.6 percent. The median was 4 percent, and the third
quartile was 8.2 percent. Single-fault versions had fewer
false negatives than multiple-fault versions (0.33 percent
median versus 6.4 percent median).

To examine the scalability of this approach, we also
applied it to the much more voluminous statement count
data (about 12,000 possible features, as opposed to about
1,240 possible features in the case of nonzero method
counts). We applied the technique to the six single-fault
JABA versions using less than 450 instances and collecting
less than 600 predictors (less than 5 percent of the total) per
run. The results are shown in Table 2. As the table shows,
coverage is over 90 percent on average, and false positives,
false negatives, and overall misclassification are close to
zero in every case. These results suggest that adaptive
sampling may scale nicely and, thus, allow for classification
of the larger programs and much larger data sets that we
would expect to see in practice.

6.3 Summary Discussion

Our results suggest that the adaptive sampling association
trees approach can perform almost as well as the random
forest approach used in Section 4, and as well or better than
the basic association tree approach.

Fig. 6 depicts the results obtained for the basic associa-
tion trees side by side with those obtained for the adaptive

300 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 5, MAY 2007

Fig. 5. Adaptive sampling association tree results.

TABLE 2
Adaptive Sampling Associaton Trees Using Statement Counts

sampling association trees. To perform this comparison as
fairly as possible, we selected the “best” basic association
trees results for each version. This is necessary because our
basic association trees study included models built with
nonoptimal parameter settings. Note, however, that since
we have four different performance measures, the defini-
tion of best is necessarily subjective. In this case, we have
preferred models with higher coverage and lower false
negatives because software developers are often more
interested in identifying failing runs than passing runs. As
shown in the figure, by sampling adaptively we generally
achieved higher coverage and lower misclassification rates,
with significantly less variability between versions.

In addition, in terms of data collection costs, our new
approach is significantly cheaper than the previous two
approaches. Random forests instrumented all possible
1,240 predictors over 707 test case runs. Association trees
instrumented only 100 predictors, but used 9,000 runs. This
approach, instead, instrumented only 100 predictors over
3,000 runs. Moreover, since the adaptive sampling approach
often converged well before processing the execution data
from all scheduled runs, this result is an upper bound on
the number of runs needed by the algorithm. One important
implication of these savings is that we were able to generate
all desired models, whereas the basic association trees
algorithm occasionally ran out of memory. Finally, adaptive
sampling allowed us to successfully scale up to more
voluminous, lower-level data (statement counts instead of
method counts).

Although quite effective in our tests, adaptive sampling
has some limitations as well. The key limitation we found is
that the approach necessarily introduces a sequential
dependence among instrumented instances. That is, in its
simplest implementation, adaptive sampling would not
select the predictors for instance i and deploy it until
1) instance i-1 had returned its data and 2) predictor
weights had been updated (we call this dependence lag-1
dependence). There are many workarounds for this issue. For
example, we could instrument instances in batches or
loosen the dependences by considering lag-k rather than
lag-1 approaches. Nevertheless, some sequential ordering
would necessarily remain (or the technique would simply
degenerate to basic association trees).

Such dependences might make adaptive sampling
unacceptable in certain situations, such as cases where
many instances are deployed at the same time and it is
impossible or undesirable to update them in the field, and
cases where observation periods are relatively short, but
many runs must be instrumented. In the first case, adaptive
sampling is impossible. In the second case, it might result in
unacceptable slow-downs of the deployed instances. In both
cases, thus, developers might prefer using the uniform
sampling offered by basic association trees.

7 RELATED WORK

Several software engineering researchers have studied
techniques for modeling and predicting program behavior.
Researchers in other fields have also studied one or more of
the general techniques underlying this problem. In this
section, we discuss some recent work in these areas.

Classifying Program Executions. Podgurski et al. [4], [12],
[22], [23], [24] present a set of techniques for clustering
program executions. They show that the resulting clusters
help to partition execution profiles stemming from different
failures. This work differs from ours in that their model
construction requires the collection of all predictors for all
executions and assumes that a program’s failure status is
either obvious or externally provided.

Bowring et al. [2] classify program executions using a
technique based on Markov models. Their models consider
only one specific feature of program executions: program
branches. Our work considers a large set of features and
assesses their usefulness in predicting program behaviors.
Also, the models used by Bowring et al. need complete
branch-profiling information, whereas our approaches can
generally perform well with only minimal information.

Execution Profiling. Our work draws heavily on methods
and techniques for runtime performance measurement,
especially for what concerns program instrumentation
issues. One way to instrument a program is to place probes
(code snippets) at all relevant program points (e.g., basic
block entries). As the programs runs, the probes that gets
executed compute and record data about the ongoing
execution. Obviously, this simple approach can generate
enormous amounts of data and can substantially perturb the
very performance developers are trying to observe. Conse-
quently, researchers have explored various techniques to
lower instrumentation overhead.

Arnold and Ryder [25] present an approach for reducing
instrumentation costs through sampling. The approach is
based on 1) having two versions of the code, one instrumen-
ted and one noninstrumented, and 2) switching between
these two versions according to a sample frequency that is
dynamically modifiable. They investigate the trade-off
between overhead and accuracy of the approach and
show that it is possible to collect accurate profiling
information with low overhead.

Traub et al. [26] present an approach based on using few
probes and collecting data infrequently. In this approach,
called ephemeral instrumentation, probes and groups of
probes that work together are statically inserted into the
host program. The probes cycle between enabled and
disabled states. The approach can accurately estimate

HARAN ET AL.: TECHNIQUES FOR CLASSIFYING EXECUTIONS OF DEPLOYED SOFTWARE TO SUPPORT SOFTWARE ENGINEERING... 301

Fig. 6. Basic association trees versus adaptive sampling association

trees.

branch biases while adding only 1 percent to 5 percent
overhead to the program. Miller et al. [27] have developed a
dynamic runtime instrumentation system called ParaDyn
and an associated API called DynInst. This system allows
developers to change the location of probes and their
functionality at runtime. This general mechanism can be
used to implement many instrumentation strategies, such as
ephemeral instrumentation.

Anderson et al. [28] present an approach to data
collection alternative to instrumentation. While the program
is running, they randomly interrupt it and capture the value
of the program counter (or other available hardware
registers). Using this information they estimate the percen-
tage of times each instruction is executed. They claim that
their technique can generate a reasonably accurate model
with overheads of less than 5 percent. A chief disadvantage
of this approach is that it is very limited in the kind of data
it can gather.

There are numerous other approaches to instrumenta-
tion; among the most prominent are techniques such as
ATOM [29], EEL [30], ETCH [31], and Mahler [32].

Machine Learning and Statistical Analysis. Our work is also
closely related to machine learning techniques that distin-
guish program outcomes, such as passing runs from failing
runs. In this context, one particularly important issue is
dealing with data sets in which failures are rare. For
example, if a system’s failure rate is 0.1 percent, then a data
set of 1 M runs would be expected to contain only 100 failing
runs. In these situations, it can be difficult to classify the
rare outcome. Several general strategies have been pro-
posed to deal with this problem. One approach, called
boosting, involves multiphase classification techniques that
place special emphasis on classifying the rare outcome
accurately. For example, Joshi et al. [33] developed a two-
phase approach in which they first learn a good set of
overall classification rules and then take a second pass
through the data to learn rules that reduce misclassifica-
tions of the rare outcome. Similarly, Fan et al. [34]
developed a family of multiphase classification techniques,
called AdaCost and AdaBoost, in which each instance to be
classified has its own misclassification penalty. Over time,
the penalties for wrongly classified training instances are
increased, while those of correctly predicted instances are
decreased.

Partial Data Collection. Our research is also related to
approaches that aim to infer properties of executions by
collecting partial data, either through sampling or by
collecting data at different granularities.

Liblit et al. [6], [7] use statistical techniques to sample
execution data collected from real users and use the
collected data to perform fault localization. Their approach
is related to our work, but is mostly targeted to supporting
debugging and has, thus, a narrower focus. Furthermore,
although their data collection approach is time efficient
because it aggressively samples execution data, it may still
introduce space-related issues: It must add instrumentation
to measure all predictors (predicates, in their case) in all
instances, which may lead to code bloat; it must also collect
one item per predictor for each execution, which may result
in a considerable amount of data being collected from each

deployed instance. Our techniques based on association
trees do not have these problems because they can build
reliable models collecting only a small fraction of execution
data from each instance.

Pavlopoulou and Young [11] developed an approach,
called residual testing, for collecting program coverage
information in program instances deployed in the field.
This approach restricts the placement of instrumentation
in fielded instances to locations not covered during in-
house testing. This approach is related to ours because it
also partially instruments deployed software. However, it
has a very different focus and uses completely different
techniques. In particular, it does not perform any kind of
classification of program outcomes.

Elbaum and Diep [3] perform an extensive analysis of
different profiling techniques for deployed software, in-
cluding the one from Pavlopoulou and Young discussed
above. To this end, they collect a number of execution data
from deployed instances of a subject program and assess
how such data can help quality-assurance activities. In
particular, they investigate how the granularity and com-
pleteness of the data affect the effectiveness of the
techniques that rely on such data. This work provides
information that we could leverage within our work (e.g.,
the cost of collecting some kinds of data and the usefulness
of such data for specific tasks) and, at the same time, could
benefit from the results of our work (e.g., by using predicted
outcomes to trigger data collection).

8 CONCLUSION AND FUTURE WORK

In this paper, we have presented and studied three
techniques—random forests, basic association trees, and
adaptive sampling association trees—whose goal is to
automatically classify program execution data as coming
from program executions with specific outcomes. These
techniques can support various analyses of deployed
software that would be otherwise impractical or impossible.
For instance, they can allow developers to gather detailed
information about a wide variety of meaningful program
behaviors. They can also allow programs to trigger targeted
measurements only when specific failures are likely to
occur.

The empirical evaluation and investigation of our
techniques suffers, like all empirical studies, from various
threats to validity. The main threats are that we studied
only a single system, considered only two possible out-
comes, exercised the system with a limited set of test cases,
and focused only on versions with failure rates higher than
8 percent. Nevertheless, the system is sufficiently large and
complex to have nonobvious behaviors, the faults are real,
and the test suite includes tests (obtained from users) that
represent real usages of the system. Therefore, we can use
the results of our evaluation to draw some initial conclu-
sions about the effectiveness and applicability of our
techniques.

In our initial studies, we examined three fundamental
questions about classification techniques. Our results
showed that we could reliably classify binary program
outcomes using various kinds of execution data. We were
able to build accurate models for systems with single or

302 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 5, MAY 2007

multiple faults. We also found that models based on method
counts were as accurate as those built from finer-grained
data. Finally, we conducted several further analyses that
suggested that 1) our results are unlikely to have occurred
by chance and 2) many predictors were correlated (i.e.,
many predictors were irrelevant). An important implica-
tion of this latter finding is that the signal for failure may
be spread through the program, rather than associated
with a single predictor or small set thereof.

In general, all three techniques performed well with
overall misclassification rates typically below 2 percent. The
key differences between the techniques lie in 1) how much
data must be collected and 2) whether the training phase is
conducted in a batch or sequential fashion. These differ-
ences make each technique more or less applicable in
different scenarios and contexts. For example, the random-
forests technique requires for the training to be performed
in-house, by using an accurate oracle and capturing all
predictors in every program instance. The basic association
trees algorithm randomly and uniformly instruments a
small percentage of all potential predictors (8 percent in our
study) but still allows reliable predictive models to be built.
Our third technique, called adaptive-sampling association
trees, was also almost as accurate as random forests, while
improving on the basic association trees algorithm and
being much cheaper than both.

In future work, we will continue our investigations in
several directions. First, we will study our techniques in
increasingly more realistic situations and on increasingly
larger systems. Specifically, we will apply these techni-
ques to modeling faults in several large, open source
systems. We will also extend our investigation beyond
binary classifications to assess whether our techniques can
capture behaviors other than passing and failing (e.g.,
performance).

Second, we will investigate new weighting schemes for
use with adaptive sampling association trees. We will
explore weighting schemes that also take into account the
runtime overhead imposed by the measurement and
collection of each predictor. One possibility, for instance,
is to reward good predictors that are on lightly executed
paths more than good predictors on heavily executed paths.

Finally, we intend to explore the analysis of multiple,
simultaneous data streams, as opposed to a single data
stream as we do now. In particular, we want to collect
distinguished data streams from multiple components in
component-based or service-oriented systems, with the goal
of not only detecting problems, but also associating them to
specific components.

ACKNOWLEDGMENTS

This work was supported in part by US National Science
Foundation awards CCF-0205118 to the US National
Institute of Statistical Sciences (NISS), CCR-0098158 and
CCR-0205265 to the University of Maryland, and CCR-
0205422, CCR-0306372, and CCF-0541080 to the Georgia
Institute of Technology. The authors used the R statistical
computing software and the randomForest library,
available at http://cran.r-project.org/, to perform all
statistical analyses. Jim Jones prepared and provided the
19 single-fault program versions. Any opinions, findings,
and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily
reflect the views of the US National Science Foundation.

REFERENCES

[1] J. Bowring, A. Orso, and M.J. Harrold, “Monitoring Deployed
Software Using Software Tomography,” Proc. ACM SIGPLAN/
SIGSOFT Workshop Program Analysis Software Tools and Eng.
(PASTE ’02), pp. 2-8, Nov. 2002.

[2] J.F. Bowring, J.M. Rehg, and M.J. Harrold, “Active Learning for
Automatic Classification of Software Behavior,” Proc. Int’l Symp.
Software Testing and Analysis (ISSTA ’04), pp. 195-205, July 2004.

[3] S. Elbaum and M. Diep, “Profiling Deployed Software: Assessing
Strategies and Testing Opportunities,” IEEE Trans. Software Eng.,
vol. 31, no. 4, pp. 312-327, Apr. 2005.

[4] P. Francis, D. Leon, M. Minch, and A. Podgurski, “Tree-Based
Methods for Classifying Software Failures,” Proc. 15th Int’l Symp.
Software Reliability Eng. (ISSRE ’04), pp. 451-462, Nov. 2004

[5] D.M. Hilbert and D.F. Redmiles, “Extracting Usability Information
from User Interface Events,” ACM Computing Surveys, vol. 32,
no. 4, pp. 384-421, Dec. 2000.

[6] B. Liblit, A. Aiken, A.X. Zheng, and M.I. Jordan, “Bug Isolation via
Remote Program Sampling,” Proc. Conf. Programming Language
Design and Implementation (PLDI ’03), pp. 141-154, June 2003.

[7] B. Liblit, M. Naik, A.X. Zheng, A. Aiken, and M.I. Jordan,
“Scalable Statistical Bug Isolation,” Proc. Conf. Programming
Language Design and Implementation (PLDI ’05), June 2005.

[8] “Microsoft Online Crash Analysis,” http://oca.microsoft.com,
2007.

[9] A. Orso, T. Apiwattanapong, and M.J. Harrold, “Leveraging Field
Data for Impact Analysis and Regression Testing,” Proc. Ninth
European Software Eng. Conf. and 11th ACM SIGSOFT Symp.
Foundations of Software Eng. (ESEC/FSE ’03), pp. 128-137, Sept.
2003.

[10] A. Orso and B. Kennedy, “Selective Capture and Replay of
Program Executions,” Proc. Third Int’l ICSE Workshop Dynamic
Analysis (WODA ’05), May 2005.

[11] C. Pavlopoulou and M. Young, “Residual Test Coverage
Monitoring,” Proc. 21st Int’l Conf. Software Eng. (ICSE ’99),
pp. 277-284, May 1999.

[12] A. Podgurski, D. Leon, P. Francis, W. Masri, M.M. Sun, and B.
Wang, “Automated Support for Classifying Software Failure
Reports,” Proc. 25th Int’l Conf. Software Eng. (ICSE ’03), pp. 465-
474, May 2003.

[13] C. Yilmaz, M.B. Cohen, and A. Porter, “Covering Arrays for
Efficient Fault Characterization in Complex Configuration
Spaces,” Proc. ACM SIGSOFT Int’l Symp. Software Testing and
Analysis (ISSTA ’04), pp. 45-54, 2004.

[14] A. Orso, J.A. Jones, and M.J. Harrold, “Visualization of Program-
Execution Data for Deployed Software,” Proc. ACM Symp. Software
Visualization (SOFTVIS ’03), pp. 67-76, June 2003.

[15] M. Haran, A. Karr, A. Orso, A. Porter, and A. Sanil, “Applying
Classification Techniques to Remotely-Collected Program Execu-
tion Data,” Proc. 10th European Software Eng. Conf. and 13th ACM
SIGSOFT Symp. Foundations of Software Eng. (ESEC/FSE ’05),
pp. 146-155, Sept. 2005.

[16] R. Duda, P. Hart, and D. Stork, Pattern Classification. Wiley, 2000.
[17] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical

Learning. Springer, 2001.
[18] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern

Analysis. Cambridge Univ. Press, 2004.
[19] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone, Classifica-

tion and Regression Trees. CRC Press, 1984.
[20] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1,

pp. 5-32, Oct. 2001.
[21] R. Agrawal and R. Srikant, “Fast Algorithms for Mining

Association Rules in Large Databases,” Proc. 20th Conf. Very Large
Databases, pp. 487-499, 1994.

[22] W. Dickinson, D. Leon, and A. Podgurski, “Pursuing Failure: The
Distribution of Program Failures in a Profile Space,” Proc. Eighth
European Software Eng. Conf. Ninth ACM SIGSOFT Symp. Founda-
tions of Software Eng. (ESEC/FSE ’01), pp. 246-255, Sept. 2001.

[23] W. Dickinson, D. Leon, and A. Podgursky, “Finding Failures by
Cluster Analysis of Execution Profiles,” Proc. 23rd Int’l Conf.
Software Eng. (ICSE ’01), pp. 339-348, May 2001.

[24] D. Leon, A. Podgurski, and L.J. White, “Multivariate Visualization
in Observation-Based Testing,” Proc. 22nd Int’l Conf. Software Eng.
(ICSE ’00), pp. 116-125, May 2000.

[25] M. Arnold and B.G. Ryder, “A Framework for Reducing the Cost
of Instrumented Code,” Proc. ACM SIGPLAN Conf. Programming
Language Design and Implementation (PLDI ’01), pp. 168-179, 2001.

HARAN ET AL.: TECHNIQUES FOR CLASSIFYING EXECUTIONS OF DEPLOYED SOFTWARE TO SUPPORT SOFTWARE ENGINEERING... 303

[26] O. Traub, S. Schechter, and M. Smith, “Ephemeral Instrumenta-
tion for Lightweight Program Profiling,” unpublished technical
report, Harvard Univ., June 2000.

[27] B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. Irvin, K.
Karavanic, K. Kunchithapadam, and T. Newhall, “The ParaDyn
Parallel Performance Measurement Tools,” Computer, vol. 28,
no. 11, pp. 37-46, Nov. 1995.

[28] J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger, S.-T.
Leung, R. Sites, M. Vandevoorde, C. Waldspurger, and W. Weihl,
“Continuous Profiling: Where Have All the Cycles Gone?” ACM
Trans. Computer Systems, vol. 15, no. 4, Nov. 1997.

[29] A. Srivastava and D. Wall, “Link-Time Optimization of Address
Calculation on a 64-bit Architecture,” Proc. SIGPLAN Conf.
Programming Language Design and Implementation (PLDI ’94), 1994.

[30] J. Larus and E. Schnarr, “EEL: Machine-Independent Executable
Editing,” Proc. SIGPLAN Conf. Programming Language Design and
Implementation (PLDI ’95), 1995.

[31] T. Romer, G. Voelker, A. Wolman, S. Wong, H. Levy, B. Chen, and
B. Bershad, “Instrumentation and Optimization of Win32/Intel
Executables Using Etch,” Proc. USENIX Windows NT Workshop,
Aug. 1997.

[32] D. Wall and M. Powell, “The Mahler Experience: Using an
Intermediate Language as the Machine Description,” Proc. Second
Int’l Symp. Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’87), Oct. 1987.

[33] M.V. Joshi, R.C. Agarwal, and V. Kumar, “Mining Needle in a
Haystack: Classifying Rare Classes via Two-Phase Rule Induc-
tion,” SIGMOD Record, vol. 30, no. 2, pp. 91-102, 2001.

[34] W. Fan, S.J. Stolfo, J. Zhang, and P.K. Chan, “AdaCost:
Misclassification Cost-Sensitive Boosting,” Proc. 16th Int’l Conf.
Machine Learning, pp. 97-105, 1999.

Murali Haran received the BS degree in compu-
ter science (with honors) from Carnegie Mellon
University, Pittsburgh, Pennsylvania, in 1997. In
2001 and 2003, he received the MS and PhD
degrees in statistics from the University of
Minnesota, Minneapolis. He was a postdoctoral
fellow at the National Institute of Statistical
Sciences, Research Triangle Park, North Car-
olina, in 2004-2005. He has been an assistant
professor at the Department of Statistics at

Pennsylvania State University (Penn State) since 2004. His research
interests include Markov chain Monte Carlo algorithms and hierarchical
models for spatial data. He has had several interdisciplinary collabora-
tions, including projects with plant pathology, geography, and meteor-
ology at Penn State. He has also worked with computer scientists on
statistical issues in software engineering.

Alan Karr is the director of the National Institute
of Statistical Sciences (NISS), a position he has
held since 2000. He is also a professor of
statistics as well as operations research and
biostatistics at the University of North Carolina at
Chapel Hill (since 1993), as well as associate
director of the Statistical and Applied Mathema-
tical Sciences Institute (SAMSI). Before going to
North Carolina, he was a professor of mathe-
matical sciences and associate dean of the

School of Engineering at Johns Hopkins University. His research
activities are cross-disciplinary collaborations involving statistics and
such other fields as data confidentiality, data integration, data quality,
software engineering, information technology, education statistics,
transportation, and social networks. He is the author of three books
and more than 100 scientific papers. He is a fellow of the American
Statistical Association and the Institute of Mathematical Statistics and an
elected member of the International Statistical Institute, and served as a
member of the Army Science Board from 1990 to 1996.

Michael Last received the MA degree in
statistics from UC Berkeley in 2002 and the
PhD degree in statistics from the University of
California, Davis, in 2005. He is a postdocotoral
fellow at the National Institute of Statistical
Sciences.

Alessandro Orso received the MS degree in
electrical engineering (1995) and the PhD
degree in computer science (1999) from Poli-
tecnico di Milano, Italy. He was a visiting
researcher in the EECS Department of the
University of Illinois at Chicago in 1999. Since
March 2000, he has been with the College of
Computing at the Georgia Institute of Technol-
ogy, first as a research faculty and then as an
assistant professor. His area of research is

software engineering with emphasis on software testing and analysis.
His interests include the development of techniques and tools for
improving software reliability and trustworthiness, and the validation of
such techniques on real systems. He is a member of the IEEE.

Adam A. Porter received the BS degree summa
cum laude in computer science from California
State University, Dominguez Hills, in 1986. In
1988 and 1991, he earned the MS and PhD
degrees from the University of California at
Irvine. Currently an associate professor, he has
been with the Department of Computer Science
and the Institute for Advanced Computer Studies
at the University of Maryland since 1991. His
current research interests include empirical

methods for identifying and eliminating bottlenecks in industrial
development processes, experimental evaluation of fundamental soft-
ware engineering hypotheses, and development of tools that demon-
strably improve the software development process. He is a senior
member of the IEEE.

Ashish Sanil received the BSc degree (honors)
and the MSc degrees in mathematics from the
Indian Institute of Technology at Kharagpur and
received the MS and PhD degrees in statistics
from Carnegie Mellon University. He is currenly
a quantitative analyst with Google. Previously,
he worked at the Bristol-Myers Squibb Company
as a senior research Biostatistician. Prior to that,
he was a research statistician at the US National
Institiute of Statistical Sciences. His current

research interests include applications of statistical prediction models,
e.g., as applied to the software development process. He is also
interested in applying Bayesian methodology for devising efficient
adaptive experimental designs.

Sandro Fouché is a doctoral candidate in
computer science at the University of Maryland,
College Park. His research interests include
empirical validation of large-scale systems,
systems for deploying and managing high-
reliability computational services, and experi-
mental evaluation of fundamental software en-
gineering hypotheses. He is a student member
of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

304 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 5, MAY 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

