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Abstract—Test suites, just like the applications they are testing,
evolve throughout their lifetime. One of the main reasons for
test-suite evolution is test obsolescence: test cases cease to work
because of changes in the code and must be suitably repaired.
There are several reasons why it is important to achieve a
thorough understanding of how test cases evolve in practice. In
particular, researchers who investigate automated test repair—an
increasingly active research area—can use such understanding to
develop more effective repair techniques that can be successfully
applied in real-world scenarios. More generally, analyzing test-
suite evolution can help testers better understand how test cases
are modified during maintenance and improve the test evolution
process, an extremely time consuming activity for any non-
trivial test suite. Unfortunately, there are no existing tools that
facilitate investigation of test evolution. To tackle this problem, we
developed TESTEVOL, a tool that enables the systematic study of
test-suite evolution for Java programs and JUnit test cases. This
demonstration presents TESTEVOL and illustrates its usefulness
and practical applicability by showing how TESTEVOL can be
successfully used on real-world software and test suites.

Demo video at http://www.cc.gatech.edu/~orso/software/testevol/

I. MOTIVATION AND OVERVIEW

Test suites are not static entities: they constantly evolve
along with the applications they test. For instance, new tests
can be added to test new functionality, and existing tests can
be refactored, repaired, or deleted. Often, test cases have to
be modified because changes in the application break them. In
these cases, if the broken test covers a valid functionality, it
should ideally be repaired. Alternatively, if the repair is unduly
complex to perform, or if the test was designed to cover a
functionality that no longer exists in the application, the test
should be removed from the test suite. To illustrate with an
example, Figure I shows two versions of a unit test case from
the test suite of PMD, one of the programs we analyzed in
previous work [8]. A change in PMD’s API broke the original
version of the test case, which had to be fixed by adding a
call to method SourceCode.readSource and removing one
parameter from the call to method Tokenizer.tokenize
(lines 6 and 7 in Figure I(b), respectively).

Because test repair can be an expensive activity, automating
it—even if only partially—could save a considerable amount
of resources during maintenance. This is the motivation behind
the development of automated test-repair techniques, such as
the ones targeted at unit test cases [3, 2, 7] and those focused
on GUI (or system) test cases [1, 4, 5, 6].

We believe that, to develop effective techniques for assisting
manual test repair, we must first understand how test suites
evolve in practice. That is, we must understand when and how
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tests are created, removed, and modified. Such understanding
can (1) provide evidence that test cases do get repaired,
(2) support the hypothesis that test repairs can be (at least
partially) automated, and (3) suitably guide research efforts.
Otherwise, we risk to develop techniques that may not be
generally applicable and may not perform the kind of repairs
that are actually needed in real-world software systems.

More generally, the ability to analyze how test suites evolve
can be beneficial for developers, as it can help them better
understand the cost and tradeoffs of test evolution (e.g., how
often tests must be adapted because of changes in the system’s
API). Similarly, project managers can use information about
test-suite evolution to get insight into the test maintenance
process (e.g., how often tests are deleted and cause loss of
coverage) and ultimately improve it.

Until recently, there were no empirical studies in the lit-
erature that investigated how unit test suites evolve, and no
tools that could support such studies existed. To address this
issue, we defined an approach that combines various static- and
dynamic-analysis techniques to (1) compute the differences be-
tween the test suites associated with two versions of a program
and (2) categorize such changes along two dimensions: the
static differences between the tests in the two test suites and
the behavioral differences between such tests [8]. By applying
our approach to a set of real-world programs, we were able
to discover several important aspects of test evolution. For
example, we found evidence that, although test repairs are
a relatively small fraction of the activities performed during
test evolution, they are indeed relevant. We also found that
repair techniques that just focus on oracles (i.e., assertions)
are likely to be inapplicable in many cases, that test cases
are rarely removed because they are difficult to fix, but rather
because they have become obsolete, and that test cases are not
only added to check bug fixes and test new functionality, as
expected, but also to validate modified code.

This demonstration presents TESTEVOL, a tool that imple-
ments our technique and enables other researchers and practi-
tioners to perform additional studies on test evolution. Given
two versions of a program and the corresponding test suites,
TESTEVOL automatically computes and classifies both static
and behavioral differences between the test suites for the two
program versions. Specifically, TESTEVOL identifies deleted,
added, and repaired test cases, along with the effects that such
deletions, additions, and repairs have on code coverage.

After presenting TESTEVOL’s features and technical details,
the demonstration shows how the tool can be used to study
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public void testDiscardSemicolons () throws Throwable {
Tokenizer t = new JavaTokenizer();
SourceCode sourceCode = new SourceCode(”"1”);
String data = "public class Foo {private int x;}";
Tokens tokens = new Tokens();
6 t.tokenize (sourceCode, tokens, new StringReader(data));
// Broken statement
assertEquals (9, tokens.size());

DL —

(a)
1 public void testDiscardSemicolons () throws Throwable {
2 Tokenizer t = new JavaTokenizer();
3 SourceCode sourceCode = new SourceCode(”"1”);
4 String data = "public class Foo {private int x;}";
5 Tokens tokens = new Tokens();
6 sourceCode.readSource (new StringReader(data)); // Added statement
7 t.tokenize (sourceCode, tokens); // Modified statement
8 assertEquals (9, tokens.size());
9
(b)
Fig. 1. Two versions of a test case from PMD’s unit test suite: (a)

version 1.4, broken, and (b) version 1.6, repaired.

the evolution, over the years, of a software project’s test suite.
To do so, we show examples of application of TESTEVOL to
several real-world open-source software systems. In particu-
lar, we show how to use TESTEVOL to investigate relevant
questions on test evolution, such as what types of test-suite
changes occur in practice and with what frequency, how often
test repairs require complex modifications of the tests, and why
tests are deleted and added. We demonstrate how TESTEVOL
is a useful and practically applicable tool for researchers and
practitioners interested in test repair (and test evolution in
general), and for developers and testers who want to better
understand their test maintenance process.

II. THE TESTEVOL TECHNIQUE AND TOOL

In this section, we first summarize our technique, imple-
mented in the TESTEVOL tool, and then discuss the main char-
acteristics of the tool implementation. A detailed description
of the approach can be found in Reference [8].

Before describing the characteristics of our technique, we
introduce some necessary terminology. A system S = (P,T)
consists of a program P and a test suite T'. A test suite T =
{t1,t2,...,t,} consists of a set of unit test cases. Test(P,t)
is a function that executes test case ¢ on program P and returns
the outcome of the test execution. A test outcome can be of
one of four types:

1) Pass: The execution of P against ¢ succeeds.

2) Fuailcp: The execution of P against ¢ fails because a class
or method accessed in ¢ does not exist in P.!

3) Failpp: The execution of P against ¢ fails due to an
uncaught runtime exception (e.g., a “null pointer” exception).
4) Failsp: The execution of P against ¢ fails due to an
assertion violation.

We use the generic term Fasl to refer to failures for which
the distinction among different types of failures is unnecessary.

Given a system S = (P,T), a modified version of S, S’ =
(P',T"), and a test case t in T"U T”, there are three possible

IThese failures can obviously be detected at compile-time. For
consistency in the discussion, however, we consider such cases to
be detected at runtime via “class not found” or “no such method”
exceptions. In fact, TESTEVOL detects such failures at runtime by
executing the tests compiled using the previous version of P on P.

(a) Test ¢t exists in S and S’ and is modified

Test(P’,t) = Fail A [t is repaired

Test(P’,t') = Pass [TESTREP]

Test(P',t) = Pass A tis refactorgd, updated to test a.diff.er.ent '

Test(P/ t') = Pass scenario, or is made more/less discriminating
’ [TESTMODNOTREP]

(b) Test ¢ is removed in S’
. . t is too difficult to fix
Test(P’,t) = Fail Fail
s ( ) a RE‘ Al [TESTDEL(4p|rE)]
t is obsolete or is too difficult to fix
[TESTDEL(CE)]

Test(P',t) = Failcgp

Test(P’,t) = Pass t is redundant

[TESTDEL(p) ]

(c) Test ¢’ is added in S’
; . t" is added to validate a bug fix
N —
Test(P,t') = Failgg | Failag [TESTADD 4 /)]
t" is added to test a new functionality
or a code refactoring

Test(P,t') = Failcg

[TESTADD (¢ ]

t" is added to test an existing feature
or for coverage-based augmentation

[TESTADD (p) |

Test(P,t') = Pass

Fig. 2. Scenarios considered in our approach, given two system versions
S = (P,T) and 8" = (P’,T'): (a) t exists in T and T and is modified,
(b) t exists in 7" but not in 17, (c) ¢’ exists in 7" but not in 7T".

scenarios to consider: (1) ¢ exists in 7" and in T”, (2) t exists
in T but not in 7" (i.e., t was removed from the test suite),
and (3) t exists in 7" but not in T (i.e., t was added to the
test suite). These scenarios can be further classified based on
the behavior of ¢ in S and S/, as summarized in Figure 2 and
discussed in the rest of this section. (Note that we assume that
all tests in 7" pass on P and all tests in 7’ pass on P’.)

Test Modifications: Figure 2(a) illustrates the scenario
in which ¢ is present in the test suites for both the old and
the new versions of the system. To study different cases, we
consider whether ¢ is modified (to ') and, if so, whether the
behaviors of ¢ and ' differ. For behavioral differences there
are two cases, shown in the two rows of the table: either ¢
fails on P’ and t’' passes on P’ or both ¢ and ¢’ pass on P’.

a) Category TESTREP (Repaired Tests) corresponds to cases
where ¢ is repaired so that, after the modifications, it passes
on P’. (See Figure I and discussion in Section I.)

For this category, we wish to study the types of modifica-
tions that are made to ¢. A test repair may involve changing the
sequence of method calls, assertions, data values, or control
flow. Based on our experience, for method-call sequence
changes, we consider five types of modifications:

1) Method call added: a new method call is added.

2) Method call deleted: an existing method call is removed.

3) Method parameter added: a method call is modified such

that one or more new parameters are added.

4) Method parameter deleted: a method call is modified

such that one or more existing parameters are deleted.

5) Method parameter modified: a method call is modified

via changes in the values of its actual parameters.

A test repair may involve multiple such changes. For
example, the repair shown in Figure I involves the addition of
a method call (line 6) and the deletion of a method parameter
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(line 7). For assertion changes, we consider cases in which an
assertion is added, an assertion is deleted, the expected value
of an assertion is modified, or the assertion is modified but
the expected value is unchanged. Finally, we currently group
together data-value changes and control-flow changes.

The rationale underlying this classification into subcate-
gories is that different classes of changes may require different
types of repair techniques. If nothing else, at least the search
strategy for candidate repairs would differ for the different
classes of changes. Consider the case of method-parameter
deletion, for instance, for which one could attempt a repair by
simply deleting some of the actual parameters. Whether this
repair would work depends on the situation. For the code in
Figure I, for example, it would not work because deleting one
of the parameters in the call to tokenize () is insufficient by
itself to fix the test—a new method call (to readSource ())
has to be added as well, for the test to work correctly.

b) Category TESTMODNOTREP (Refactored Tests) captures
scenarios in which a test ¢ is modified in S’ even though ¢
passes on P’.

Test Deletions: Figure 2(b) illustrates the scenario in
which a test ¢ is deleted. To study the reasons for this, we
examine the behavior of ¢ on the new program version P’ and
consider three types of behaviors.

a) Category TESTDEL (4| rE) (Hard-To-Fix Tests) includes
tests that fail on P’ with a runtime exception or an assertion
violation. These may be instances where the tests should have
been fixed, as the functionality that they test in P still exists
in P’, but the tests were discarded instead. One plausible
hypothesis is that tests in this category involve repairs of
undue complexity, for which the investigation of new repair
techniques to aid the developer might be particularly useful.

b) Category TESTDEL cg)(Obsolete Tests) includes tests
that are obsolete because of API changes, and thus fail with a
compilation error on the new program version. Although for
this category of deletion too, one could postulate that the tests
were removed because they were too difficult to fix, we believe
this not to be the case in most practical occurrences. Instead,
the more likely explanation is that the tests were removed
simply because the tested methods were no longer present.

c) Category TESTDELp)(Redundant Tests) includes tests
that are removed even though they pass on P’. These tests
would typically be redundant according to some criterion, such
as code coverage.

Test Additions: Figure 2(c) illustrates the cases of test-
suite augmentation, where a new test ¢’ is added to the test
suite. The behavior of ¢’ on the old program can indicate the
reason why it might have been added.

a) Category TESTADD sg|rE) (Bug-Fix Tests) includes
added tests that fail on P with a runtime exception or an
assertion violation. In this case, the functionality that ¢’ was
designed to test exists in P but is not working as expected
(most likely because of a fault). The program modifications
between P and P’ would ostensibly have been made to fix
the fault, which causes ¢’ to pass on P’. Thus, ¢ is added to
the test suite to validate the bug fix.

b) Category TESTADD (¢ (New-Features Tests) includes
tests that fail on P with a compilation error, which indicates
that the API accessed by the tests does not exist in P. Thus,
the added test ¢’ is created to test new code in P’.

c) Category TESTADD p) (Coverage-Augmentation Tests)
considers cases where the added test ¢’ passes on P. Clearly,
t’ would have been a valid test in the old system as well.
One would expect that the addition of ¢’ increases program
coverage. Moreover, if ¢’ covers different statements in P and
P’, the plausible explanation is that ¢’ was added to test the
changes made between P and P’. However, if ¢’ covers the
same statements in both program versions, it would have been
added purely to increase code coverage, and not to test added
or modified code.

III. DETAILS OF THE IMPLEMENTATION

TESTEVOL works on Java programs and JUnit test suites
(http://www.junit.org/). We chose Java and JUnit because the
former is a widely used language, and the latter is the de-
facto standard unit-testing framework for Java. TESTEvOL
analyzes a sequence of versions of a software system, where
each version can be an actual release or an internal build and
consists of application code and test code.

TESTEVOL is implemented as a Java-based web application
that runs on Apache Tomcat (http://tomcat.apache.org/). Al-
though the tool can be installed locally, users can also run it by
accessing it remotely at http://cheetah.cc.gt.atl.ga.us:8081/testevol/
and specifying user “icse” and password “icse2013” (or re-
questing an account).

Due to space limitations, we can only provide a few
examples of TESTEVOL’s graphical interface. Figure 3 shows
the summary report generated by TESTEVOL for two pairs
of versions of project google—-gson. The report shows the
number of tests, both total and per version, that fall in each
of the eight test-evolution categories. By clicking on a pair of
versions, the user can obtain a detailed report for those two
versions. To illustrate, Figure 4 shows the detailed report for
versions v.1.1-v.1.2 and for a specific category of differences
(TESTREP). By further clicking on a test case in the list, users
can also inspect, in case the test is modified, the differences
between the two versions of that test, as shown in Figure 5
for test case TypeInfoTest.

In terms of design, TESTEVOL consists of five components,
as illustrated in Figure 6. The compiler component builds each
system version and creates two jar files, one containing the
application classes and the other containing the test classes.
The test-execution engine analyzes each pair of system ver-
sions (5,S5"), where S = (P,T) and S’ = (P’,T"). First,
it executes T' on program P and 7" on program P’ (i.e., it
runs the tests on the corresponding program versions). Then,
it executes 77 on P and T on P’. For each execution, it
records the test outcome: Pass, Failcg, Fail sg, or Failgg.
The differencing component compares T and T’ to identify
modified, deleted, and added tests. It matches tests between
T and T’ by comparing their fully qualified names and
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TestEvol
Projects / Project google-gson / Analysis / 02/11/2012 / Summary report
@ New Project
8 Project list 0 summary for Project google-gson - Analysis "02111/2012" [
TESTREP TESTMODNOTREP TESTDEL TESTADD
frecchar
Jreeehe (AEIRE)  (CE) ®) (AEIRE) (cE) ®
"
— Al 9 (3.19%) 6(2.13%) 0 53 126 57
e — Versions (0.00%) (461%) (6.38%)  (18.79%)  (44.68%)  (20.21%)
commonsmatn || VL0-V11  1(1.33%) 1(133%) 0 0(000%) 0(0.00%) 12 50 (78.67%) 2 (2.67%)
(0.00%) (16.00%)
commons-ang
Vil-v12 8(3.86%) 5(242%) 0 a1 67 (32.37%) 55
(000%)  (628%) (870%)  (19.81%) (26.57%)

Fig. 3. Summary report for two pairs of versions of a project.

TestEvol

Projects / Project google-gson / Analysis / 024

Summary report / Detailed report for versions v.1.1 and v.1.2

TESTREP 3 .
8 (3.86%) Comparison between versions v.1.1and v.1.2
TESTMODNOTREP  Tests on category TESTREP
5 2.42%
com.google.gson. TypelnfoTest
TESTDEL (AE|RE)
0(0.00%) testGenericizedGenericType
TESTDEL (CE)
13 (6.28%)

testObject

testObjectType
TESTDEL (P,

18 @.70% testParameterizedTypes

TESTADD (AE|RE) testPrimitive.
96)

a1 (1

testPrimitiveType
TESTADD (CE)

67 (32.37%) testPrimitiveWrapper

TESTADD (P, teststring

55 25.57%
Fig. 4. Detailed report for a pair of versions.

signatures. This component is implemented using the WALA
analysis infrastructure for Java (http://wala.sourceforge.net).
The test outcomes, collected by the test-execution engine,
and the test-suite changes, computed by the differencing com-
ponent, are then passed to the fest classifier, which analyzes
the information about test outcomes and test updates to classify
each update into one of the eight categories presented in
Section II. For each pair, consisting of a broken test case and
its repaired version, the test classifier also compares the test
cases to identify the types of repair changes, as we discussed
in Section II. This analysis is also implemented using WALA.
TESTEVOL performs a further step for the test cases in
categories TESTDEL pyand TESTADD p). For these tests, the
test classifier leverages the coverage analyzer to compute the
branch coverage achieved by each test; this facilitates the
investigation of whether the deleted or added tests cause any
variations in the coverage achieved by the new test suite.

IV. CONCLUSION

Test suites evolve throughout their lifetime and change
together with the applications under test. Adapting existing test
cases manually can be extremely tedious, especially for large
test suites, which has motivated the recent development of
automated test-repair techniques. To support the development
of more effective repair techniques, and to help developers
and testers better understand test maintenance in general, we
developed TESTEvOL. TESTEVOL is a tool for systematic
investigation of test-suite evolution that can provide its users
with a comprehensive understanding of how test cases evolve
throughout the lifetime of a software system. This demonstra-
tion presents TESTEVOL, its main features, and its technical
characteristics. It also shows how TESTEVOL can be run on
real-world software systems and produce a wealth of useful
information on how test-suite changes.

L icse
Test details E I 4

Package: com.google.gson
Class: TypelnfoTest
Test name: tesiObjectType

1. @SuppressWarRings{unsheocked™)

2. public void testObjectType() throws Exception {

3 TypeInfo typeInfo = new TypeInfo(String.class);

4. assertFalse(typeInfo.isArray());

5. assertTrue(typelnfo.isString());

6 assertEquals(String.class, typelnfo.getSeeendieveltlassiii
7 =

8
9
0

B i T <3
i P ett ¥

n

o | qualeiString-elass typelnfe- 1C1ass());
, 18]

TE |1. public void testObjectType() throws Exception {

1 |2. TypeInfo typeInfo = new Typelnfo(String.class);
3. assertFalse(typeInfo.isArray());
4 assertTrue(typeInfo.isString());
5
[

TE
4 assertEquals(String.class, typeInfo.getRawClass());

Fig. 5. Differences between two versions of a test case.

Version V1

V.jar + tests-Vjar
V'.jar + tests-V'.jar
Vjar + tests-V'jar
V'.jar + tests-V.jar

tests-V1.jar

- tests-VIn]jar
Compiler Test Execution Engine
" | ™~
: Vi=V
: Test Classifier \ m

Differencing Component

Coverage Analyzer

Fig. 6. High-level design of TESTEVOL.

Complete and updated information on TESTEVOL can be
found at http://www.cc.gatech.edu/~orso/software/testevol/.
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