Interclass Testing of Object Oriented Software

Vincenzo Martena
Politecnico di Milano
Dip. di Elettronica e Informazione
martena@elet.polimi.it

Abstract

The characteristics of object-oriented software affect
type and relevance of faults. In particular, the state of the
objects may cause faults that cannot be easily revealed with
traditional testing techniques. This paper proposes a new
technique for interclass testing, that is, the problem of de-
riving test cases for suitably exercising interactions among
clusters of classes. The proposed technique uses data-flow
analysis for deriving a suitable set of test case specifica-
tions for interclass testing. The paper then shows how to
automatically generate feasible test cases that satisfy the
derived specifications using symbolic execution and auto-
mated deduction. Finally, the paper demonstrates the effec-
tiveness of the proposed technique by deriving test cases for
a microscope controller developed for the European Space
Laboratory of the Columbus Orbital Facility.

1. Introduction

The object-oriented paradigm is successfully applied in
many software projects, and the use of object-oriented lan-
guages is increasingly widespread. Object-oriented tech-
nologies can reduce or eliminate some problems typical
of procedural software, but may introduce new problems
that can result in classes of faults hardly addressable with
traditional testing techniques [2, 30]. In particular, state-
dependent faults tend to occur more frequently in object-
oriented software than in procedural software; almost all
objects have an associated state, and the behavior of meth-
ods invoked on an object depends in general on the object’s
state. Such faults can be very difficult to reveal because
they cause failures only when the objects are exercised in
particular states.

In this paper, we extend our previous results in the auto-
matic generation of test cases for single classes [3] to ad-
dress the problem of interclass testing, i.e., test of interac-
tions among classes. We present a technique that automati-
cally produces test case specifications from object oriented
code, and automatically generates feasible test cases for a
subset of object oriented programs that include most safety

Alessandro Orso
Georgia Inst. of Technology
College of Computing
orso@cc.gatech.edu

Mauro Pezzé
Universita degli Studi
di Milano Bicocca - DISCo
pezze@disco.unimib.it

critical applications. The technique incrementally generates
test cases starting from simple classes (i.e., classes with
scalar instance variables only) and then moving to more
complex classes (i.e., classes whose instance variables are
objects or references to objects).

In the paper, we also present an empirical validation of
the technique. We describe our prototype tool that imple-
ments the technique and illustrate how we used the tool to
generate test cases for a microscope controller developed
for the European Space Laboratory of the Columbus Orbital
Facility.

2. Background

In previous work, we presented a technique for intra-
class testing® that allows for generating test cases for sin-
gle classes [3]. In this section, we present the essential in-
formation required to understand the technique proposed in
this paper for interclass testing. The technique is based on
the idea that the execution of a method is affected by the in-
stance variables used by the method, and thus by the meth-
ods that determine the values of such variables. Therefore,
we identify pairs of methods that define and use the same
instance variable and then try to select a feasible sequence
of method invocations that contains the identified definition
and use in the correct order. The identified sequences rep-
resent the test cases for the target class.

The technique consists of three main steps:

Data flow analysis. This phase computes def-use asso-
ciation, that is, ordered pairs of statements in which the
first statement defines and the second statement uses the
same instance variable. The def-use association are iden-
tified with data-flow analysis of the whole class, focusing
on instance variables only.

Symbolic execution. This phase computes conditions re-
lated to path executions and variable definitions. For every
path within each method, we identify the conditions asso-
ciated with the execution of that path, the relationship be-
tween input and output values of the method with respect

Lintraclass testing tests the interactions of the methods of a class when
they are called in various sequences.

to that path, and the set of variables defined along the path.
This information is obtained by applying well-tried sym-
bolic execution techniques to the method’s code [6]. Cycles
are treated by either fixing an upper bound to the number of
loop iterations or adding suitable invariants.

Automated deduction. This phase produces complete se-
quences of method invocations that exercise the def-use as-
sociations identified during the first phase. Such sequences
are incrementally built by applying automated deduction
techniques to method preconditions and postconditions that
are output by the second phase.

This technique is useful for unit testing of simple classes,
that is, classes whose member attributes are scalar variables
only. Although the analysis of simple classes is fundamen-
tal for generating test cases for object-oriented software, it
does not apply directly to complex classes, that is, classes
that contain instances of or references to other classes. In
the next section, we show how to extend this technique to
interclass testing.

3. Interclass Testing

Interclass testing is the testing of a set of classes compos-
ing a system or subsystem, usually performed during inte-
gration. Typically, such classes are not stand-alone entities,
but mutually cooperate in several ways. These relationships
among classes are a fundamental characteristic of object-
oriented systems and define the nature of the interactions
among objects at runtime. Different classifications exist of
interclass relationships [26]. In this paper, we are interested
in relations of aggregation and use. An aggregation relation
holds between two classes A and B when an object of type
A can include one or more objects of type B.? In such a
case, the state of an object of type A depends on the state
of the object(s) of type B it contains. A use relation holds
between two classes A and B when one or more methods
of A have at least a local variable or a parameter of type B.

The technique presented in this paper generates se-
quences of calls for a set of objects composing a subsystem.
The generated sequences cover pairs of methods that mod-
ify and use the state of the same object. By doing so, the
sequences exercise the objects in the subsystem in different
states, and can reveal errors that occur only when an object
of a class is in particular states.

To be able to extend our intraclass test-generation tech-
nique to the interclass case, we must account for the two
relationships between objects mentioned above: aggrega-
tion and use. In particular, we must (1) extend the con-
cept of def-use association to the case of variables that are
not scalar entities, but objects, and (2) extend the intra-
class data-flow analysis to be able to incrementally analyze
a set of classes by reusing summarized information for each
class. The technique first automatically produces test case

2This relation is also known as has-a or part-of relation.

specifications and then generates feasible test cases for the
produced specifications.

3.1. Generating Test Case Specifications

The test case specifications for interclass testing pro-
duced with our technique are described as pairs of methods.
The first method modifies the state of the object, whereas
the second method accesses the modified state. Pairs of
methods are generated by (1) identifying an order of classes
that allows for incremental data flow analysis, and (2) per-
forming incremental data-flow analysis that allows for deal-
ing with classes whose state consists of instances of other
classes.

Class Ordering. To perform incremental data-flow anal-
ysis at the interclass level, we must be able to analyze a
class at a time and summarize the analysis results for each
class. To this end, we must analyze classes that are used
by or contained in other classes before the using or con-
taining classes. Therefore, the first step that we perform in
our interclass analysis is the identification of an analysis or-
der based on the aggregation and use relationships among
classes.

The two binary relationships over the set of classes C
define a directed graph whose nodes are the classes in the
set, and whose edges represent use and/or aggregation re-
lations. In the following, we safely assume the graph to be
connected. A non-connected graph would imply the pres-
ence of independent subsystems, which could be analyzed
separately.

In well-designed object-oriented software, the structure
and the dependencies should result in a DAG. This is con-
firmed by the cases that we analyzed so far. If the graph is
a DAG, there exists a partial order on the elements of the
graph, and it is possible to define a topological total order
over such elements. The analysis of classes according to
this total order lets us analyze a used class before the classes
that use it and a contained class before the classes that con-
tain it. If the graph contains cycles, they can be eliminated
by deleting one or more edges and manually providing the
information that is normally computed automatically from
the edges, as described in the next subsections.

Because of the nature of the use and aggregation relation,
the first classes in the total ordering, which correspond to
leaves in the graph, are classes whose state does not depend
on other classes (i.e., classes whose member variables are
all scalar attributes). Therefore, we can apply our intraclass
technique to such classes. After analyzing this first set of
classes, we summarize the analysis results and use them to
continue the analysis on the following classes.

Interclass Data-Flow Analysis. A def-use association is a
triple (d, u, v) where d and v are statements and v is a vari-
able, d defines v, u uses v, and there exists a path from d
to u along which v is not redefined (a def-clear paths). Tra-
ditional data-flow techniques for procedural programs have

been extended by Harrold and Rothermel to handle object-
oriented code [15]. To perform intra-class testing, we apply
this technique to compute a subset of the def-use association
for a class [3]. The subset that we are interested in comput-
ing are all the def-use associations involving scalar instance
variables of a class.

To be able to perform interclass data-flow analysis, we
need to extend the data-flow technique presented by Harrold
and Rothermel [15]. For a scalar variable, definitions and
uses are syntactically identifiable in a straightforward way:
any assignment to the variable is a definition, and any access
to its value is a use. For an object, however, a definition is
not necessarily a simple assignment. Consider the example
in Figure 1.

class Foo { class Bar {

public: private:
int x; Foo foo;
1. void incX () { public:
2. X++; void m() {
5. foo.x=0;
3. int getX() { 6. foo.incX();
4. return Xx; 7. print(foo.getX());
} }
b b

Figure 1. Example of direct defs and uses of objects.

We can easily identify a definition of object f oo at state-
ment 5, but we cannot assess the effect of statement 6. State-
ment 6 may contain a definition of f 0o, a use of f 0o, or
both, depending on the semantics of method Foo: : i ncX.
Therefore, the analysis of statement 6 requires a prior anal-
ysis of class Foo. The same consideration holds for state-
ment 7. On the other hand, after analyzing class Foo,
we are able to classify its methods as methods that define,
use, or both use and define Foo’s attributes (i.e., methods
modifying, inspecting, or both inspecting and modifying
Foo’s state). For this example, we classify Foo: : i ncX()
as a method that inspects and modifies Foo’s state, and
Foo: : get X() as a method that inspects Foo’s state. By
using this summary information, we can correctly identify a
use and a definition of f 0o at statement 6 and a use of f 00
at statement 7.

In general, we say that an object is defined (resp., used)
at a statement when any of its member variables is defined
(resp., used) at that statement. This definition is recursive
because a member variable can in turn be an object. There-
fore, before analyzing a class C, we need summary infor-
mation for the set S of classes that C'is directly or indirectly
depending on. As an example, consider the slightly differ-
ent version of classes Foo and Bar in Figure 2.

To be able to analyze class Bar , we need summary in-
formation for class Foo (direct dependence) and for class
Conpl ex (indirect dependence through Foo).

class Complex; class Bar {

private:
Foo foo;
class Foo { public:
public: void m() {
Complex x;
1. void incX () { 3. foo.incX();
2. Xx.incRe();
} }
b b

Figure 2. Example of indirect defs and uses of objects.

In this context, computing summary information for a
class means classifying the methods of the class as modi-
fier, inspector, or inspector-modifier methods, according to
the effect of the method executions on the state of the class.
A method is a modifier method if its invocation causes a
modification on the state of the class, that is, an assign-
ment to a member variable of the class or the invocation
of a modifier method on a member variable. A method is
an inspector method if its invocation causes the use of the
value of a member variable or the invocation of an inspector
method on a member variable. A method is an inspector-
modifier method if it is both an inspector method and a
modifier method. Methods independent from the state of
the class (i.e., methods that neither modify nor use instance
variables) are ignored in the incremental analysis.

To analyze a class C, we need to compute summary in-
formation for the closure of both the aggregation and use
relations starting from C. The total ordering of the classes
in the system, computed in the previous step, lets us perform
such computation in an efficient way by always analyzing a
class before the classes that depend on it.

By using summary information, we are able to perform
interclass data-flow analysis incrementally. At each analy-
sis step, we consider a single class. Interactions with other
classes are implicitly taken into account using summary in-
formation that identifies inspector and modifier methods.

So far, we considered methods comprising a single path.
If a method contains more than one execution path, the
method can be a modifier along some paths, an inspec-
tor along some other paths, an inspector-modifier along yet
other paths, and cannot affect at all the state of the object
along different paths. If we lose the distinction among the
different paths when computing the summary information,
we can generate incorrect results. For example, we can gen-
erate a sequence of calls that contains a modifier and an in-
spector such that neither the modifier actually traverses any
definition nor the inspector traverses any use.

SAccording to the traditional object-oriented terminology [26], a
method is classifi ed as a modifi er if it changes the value of one or more
instance variables of the class it belongs to; and a method is classifi ed as
an inspector if it accesses the value of one or more instance variables of
the classit belongs to.

To consider the different characteristics of the paths
within a method, we can simply consider each path in a
method as if it were a different method of the class, and
thus apply data-flow analysis as described above to each
path. This approach works well for small- and mid-sized
applications, but may be impractical for large and complex
applications, since at every step we must consider all com-
binations of paths identified at the former steps.

A similar problem occurs also for traditional data-flow
testing techniques: in large programs the number of combi-
nations of definitions and uses can grow very large. Tradi-
tional data-flow testing techniques overcome this problem
by introducing different testing criteria that require to cover
different subsets of combinations of definitions and uses. In
this way, it is possible to contain the number of test cases
to be generated at the price of performing a less effective
test [13].

In our approach, we adopt an analogous solution. When
the size of the system does not allow to consider each path
independently, at each step we select only one path repre-
sentative of each data-flow fact occurring in the method.

The reduction can be selectively applied during the anal-
ysis, and involves user intervention. When the number of
combinations of paths considered grows bigger than a given
threshold, the user can backtrack the analysis and decide
what paths to discard, based on his or her knowledge and de-
pending on their importance. The reduction implies that the
definitions and uses occurring in an ignored path are tested
only up to the point where the path is discarded from the
analysis. This incremental abstraction of details is a com-
mon practice in testing of large and complex systems.

3.2. Generating Test Cases

The def-use associations produced by data-flow analysis
can be used to identify a set of test cases for interclass test-
ing. A test case corresponding to a def-use association is a
sequence of method invocations that starts with a construc-
tor and includes the invocation of both methods occurring
in the def-use associations through a def-clear path. We at-
tempt to generate test cases corresponding to def-use asso-
ciations by first identifying pre- and post-conditions for the
executions of paths within single methods using symbolic
execution, and then matching the generated conditions us-
ing automated deduction techniques.

Interclass Symbolic Execution. As a result of the previous
phase, we get for each class a set of pairs of methods that
define and use the state of a given object. For each pair, the
first method contains a definition of the state of the object
it belongs to. Such definition can be either direct or indi-
rect, through a call to a modifier method; in both cases, we
simply refer to it as the definition in the following. Analo-
gously, the second method contains a use of the state of the

object, which can be either direct or indirect, through a call
to an inspector method; in both cases, we simply refer to it
as the use in the following.

We use symbolic execution to compute the execution
conditions of single paths within methods. Symbolic execu-
tion has been proposed in the seventies as a method for gen-
erating test cases for procedural programs [5, 19]. In the last
decade, symbolic execution has been applied to many appli-
cation domains [7, 8, 9, 22]. In this paper, we use symbolic
execution on paths within single methods as an aid to iden-
tify feasible sequences of method invocations. We limit our
attention to paths that contain the definitions and the uses
identified in the previous step. Symbolic execution is per-
formed on each method of each class, one method at a time.
Symbolic execution lets us compute, for the relevant paths
within each method, (1) the conditions associated with the
execution of the path, and (2) the relationship between input
and output values of the method with respect to the path.

Classes are analyzed in the order identified in the first
step, that is, from classes with simple state to classes with
state that includes objects of other classes. Methods within
a class are analyzed in the order defined by the intraclass
call graph [16], starting from leaf methods. In this way,
methods are symbolically executed before their callers.
Thus, a call can be executed symbolically by checking the
validity of the pre-condition of the called method in the cur-
rent symbolic state. If the pre-condition is satisfied, we
substitute the symbolic values occurring in the current sym-
bolic state with the symbolic values of the corresponding
variables after the execution of the called method, accord-
ing to the method’s post-conditions. The path condition is
also updated with the pre-conditions of the called method.
If the method contains several paths, they must be consid-
ered with the same strategy illustrated in the previous sub-
section, that is, each method call shall be considered a call
to each different path individually. In the presence of direct
or indirect recursion, the call graph contains cycles. In this
case, the involved methods cannot be executed before their
callers, and we perform symbolic execution by unfolding
the calls up to a given threshold.

Symbolic execution may fail to compute execution con-
ditions for a path because of the presence of unsolvable con-
straints or unbounded loops. However, we apply symbolic
execution to single methods, which are usually procedures
with a simple control structure [34]. We also bind the num-
ber of executions of loops, so as to avoid potentially un-
bounded computations. Moreover, the failure of symbolic
execution on a method does not affect the possibility of an-
alyzing other methods, and can be overcome by adding suit-
able information, such as loop invariants [7].

Symbolic execution can deal with simple usages of point-
ers (e.g., in parameter passing), but cannot handle uncon-
strained dynamic allocation of memory. For generating test

cases in the presence of pointers, programs must be suitably
annotated with assertions, as illustrated in Section 6.

Test Case Generation. The last step of our technique con-
sists in the generation of sequences of calls to methods that
exercise each def-use association.*

In the rest of this section, we use the following terminol-
ogy: u is a statement that contains a use of variable v; d is a
statement that contains a definition of variable v; m,, is the
method that contains u; my is the method that contains d;
PCU is the path-condition of m,,;° a def-free method with
respect to a variable v is a method whose execution does
not cause a redefinition of v; finally, a def-free path with re-
spect to a variable v is a sequence of def-free methods with
respect to v.

Given a def-use association (d,u,v) for a class C, a se-
quence of method invocations that exercises the association
must satisfy the following properties:

e Begin with the invocation of a constructor of class C'.
(The constructor instantiates C and all classes that de-
fine directly or indirectly the state of C'.)

e Contain an invocation of method m 4 that causes the
execution of statement d (Such statement can be a sim-
ple assignment or an invocation of either a modifier or
an inspector-modifier method.)

e Contain an invocation of method m,, that causes the
execution of statement w. (Like statement d, such
statement can be a direct use or an invocation of either
an inspector or an inspector-modifier method.)

e The sequence of invocations between m 4 and m,, must
be a def-clear path with respect to variable v (i.e., it
cannot cause the execution of any statement that de-
fines, either directly or indirectly, variable v).

We generate such a method sequence in reverse order,
starting from m,, and applying a set of backward-chained
deductions. In brief, our initial goal is condition PCU. If
there is a method whose postconditions imply PCU, we add
the method to the front of the sequence. If no such method
is found, we look for a method whose postconditions do not
contradict PCU, and add it to the front of the sequence—
we refer to the added method as m, hereafter. To compute
the new goal, we (1) simplify the current condition by elim-
inating those clauses (if any) satisfied by my’s postcondi-
tions, (2) perform the union of the simplified condition and
my,’s preconditions, and (3) further simplify the resulting
condition, if possible. Because, at each chaining step, there
can be multiple suitable m;, methods, the deductive process

41t isworth noting that, by construction, def-use associations identifi ed
in Step 2 consist of defi nitions and uses within the same class.

SFor the sake of clarity, we present the test case generation phase as-
suming that each method contains exactly one path. The case of methods
containing more paths can be addressed by treating each path as a different
method and by possibly considering only subsets of paths, if the number
of paths becomes unmanageable.

for a given def-use association can be represented as a tree.
Each tree node corresponds to a pair consisting of a method
and a condition (a predicate on the instance variables of the
class and on the parameters of the method). The root of the
tree corresponds to method m,, and condition PCU. Notice
that our method does not impose a given sequence of meth-
ods’ invocations, but finds at least one sequence of methods’
invocations for each pair.

The first objective of the deductive process is to add a
node corresponding to mgq to the tree. The second objective
is to add a class constructor to the subtree rooted at m.
The deductive process ends when this second objective is
satisfied. A constraint on the deductive process is that only
def-free methods with respect to v can be added to the tree
before the first objective is met (i.e., the path between mg4
and m,, must be a def-clear path).

The deductive process may end for one of three reasons:
(1) both the above objectives are met, that is, the search
for a feasible method sequence is completed successfully;
(2) the tree cannot be further expanded, which means that
the def-use association is infeasible; or (3) the depth of the
tree reaches a given threshold before a feasible sequence is
found.

To improve the efficiency of the deductive process, we
use several heuristics. First, we reduce the deduction-tree
size by pruning subtrees whose roots have conditions that
imply a predecessor’s condition. This is achieved by avoid-
ing further exploration of such roots, unless they correspond
to either method mg4 or a constructor, whose inclusion in the
tree represents an objective of the deduction process. Sec-
ond, we insert a node corresponding to the method respon-
sible for the definition (i.e., my) as soon as possible and as
a unique successor. Also, when exploring the successors of
mg, We insert a constructor in the tree as soon as possible.

Our technique for the construction of the tree is based on
the use of automated deduction. Even if automated deduc-
tion techniques, such as constraint solving, may fail when
coping with complex expressions, nowadays there are sev-
eral efficient constraint solvers that can efficiently handle
large sets of expressions (e.g., [31, 32]). In addition, fail-
ures of the constraint solver can be overcome by requiring
user intervention.

4. Tool Support

In this section, we outline the architecture of a tool for the
automatic generation of test cases based on the technique
presented in the paper. We also describe a prototype that has
been implemented to experimentally evaluate the technique.

Figure 3 shows the main components of the tool. Each
component performs one of the main steps of the method.
The Class Analyzer parses the source code, generates the
interclass control-flow graph, and computes the method and
class ordering to be used by the data-flow analyzer and the

bj ect Oriented

Source Code
C++
source code

I nf ormati ons
for elimnating cycles

C ass Anal yzer)

Dat a- Fl ow description
of related classes

Execution Conditions
of related classes

Inter-class
Control Flow G aph

Synbol i ¢ Execut or

Dat a- Fl ow Anal yzer

Test Cases

Figure 3. Software architecture for the test-
case generator.

symbolic executor for their incremental analysis. At this
stage, the analysis may require additional user-provided in-
formation for eliminating cycles from the graph.

The Data-Flow Analyzer computes def-use associations
in the classes under test. The analysis is performed starting
from simple to more complex classes, according to the order
identified by the Class Analyzer.

Externally-provided data-flow information may be used
for classes that have been already analyzed, such as external
code belonging to previously-analyzed packages, or that we
cannot analyze (e.g., binary libraries).

The Symbolic Executor computes the execution condi-
tions of paths containing definitions or uses. Symbolic exe-
cution of the methods in the classes compasing the system is
performed following the order computed by the Class Ana-
lyzer. Like for the Data-Flow Analyzer, externally-provided
information may be used for classes that have been already
analyzed or for classes whose source code is not available.

The Sequence Generator is responsible for computing se-
quences of method invocations that exercise def-use associ-
ations within classes. To this end, the generator exploits the
information provided by the Data-Flow Analyzer (i.e., the
def-use associations) and by the Symbolic Executor (i.e.,
the execution conditions for paths within methods). Both
the Symbolic Executor and the Sequence Generator rely on
a constraint solver for the simplification of expressions.

Based on above architecture, we implemented a proto-

type test-case generator for C++ code. The grey boxes in
Figure 3 provide the details of the implementation of the
corresponding architectural elements (white boxes). The
Class Analyzer implementation relies on the EDG front-end
compiler [12], which handle the complete C++ language.

The Data-Flow Analyzer is based on a polynomial algo-
rithm specialized for the computation of def-use associa-
tion involving class members [29]. The current implemen-
tation of the analyzer handles only C++ code that does not
use exception-handling constructs, polymorphic calls, and
pointers.

The Symbolic Executor implementation is based on
SAVE, a symbolic executor for C [6]. To be able to use
SAVE, we translate single C++ methods to C code.

Both the Sequence Generator and the Symbolic Execu-
tor use the Constraint Solver based on the Sicstus prolog
libraries for simplification [32].

5. Empirical Study

In this section, we illustrate a case study performed on an
application provided by our industrial partners to assess the
applicability of our approach. We used the prototype de-
scribed in Section 4 to generate test cases for a microscope
controller developed for the European Space Laboratory of
the Columbus Orbital Facility (hereafter MSController).

MSController is part of the on-board system that controls
(1) the motors responsible for the movement along the three
axes of the microscope’s slide support, (2) the automatic
focus of the microscope, and (3) the selection of different
slides and different lenses.

Class Lines Methods | Paths | Included
of code Objects

Coord 67 6 6 0

Slide 37 3 3 0

Lens 47 4 4 0

Motor 85 5 14 0

Arm 81 5 14 0

SlideSelector | 58 3 23 1

MScope 121 5 89 7

Total | 496 | 31 | 139 |

Table 1. Characteristics of the analyzed C++
code.

Table 1 summarizes the main characteristics of the ana-
lyzed code. The numbers of lines of code shown in the table
do not include comments. Classes Mot or and Ar mcontain
cycles and thus an unbounded number of paths. The number
of paths indicated in Table 1 refers to the bounded number
of paths automatically analyzed by the tool, which consid-
ers up to two iterations of each loop. The complete code of
MSController is given in Reference [24].

We performed the study by (1) seeding state-dependent
faults in the program, (2) using our tool for generating test
cases for the system, and (3) assessing the effectiveness of
the generated test cases in revealing the seeded faults. We
inserted faults by randomly picking a set of definitions and
uses of instance variables and modifying them. The seeded
faults affected both direct and indirect definitions and uses
of instance variables. Seeded faults were distributed as fol-
lows: two faults in class Mot or, one fault in class Ar m
two faults in class Sl i deSel ect or, and four faults in
class Mscope.

The interclass control-flow graph produced by the Class
Analyzer does not contain cycles. The Class Analyzer com-
puted the following class order: Coord, Sli de, Lens,
Mot or ,Arm Sl i deSel ect or,and MScope. The Data-
Flow Analyzer automatically computed 471 def-use associ-
ations and the Symbolic Executor successfully produced the
execution conditions for all paths without requiring man-
ual inputs. The Sequence Generator automatically produced
128 test cases cases. The generated test cases revealed seven
of the nine seeded faults. The two unrevealed faults were lo-
cated in paths that were infeasible due to other seeded faults.
After removing the seven revealed faults, the tool was able
to reveal the two remaining faults.

Class def use covered execution
associations | def use ass. | time

Coord 18 18 < 1sec
Slide 2 2 < 1sec
Lens 4 4 < 1sec
Motor 50 37 43 sec
Arm 40 29 82 sec
SlideSelector | 240 109 1630 sec
MScope 627 257 4536 sec
Total | 981 | 456 | 6294 sec

Table 2. Def-use associations for the analyzed
C++ code.

After removing all the nine seeded faults, we generated
test cases for the resulting system and we did not find any
additional fault. Table 2 lists, for each class, the number of
def-use associations generated by the Data Flow Analyzer,
the number of associations covered by the generated test
cases, and the execution times of the prototype. For the
study, we used a system running Linux (kernel 2.4.18) on
an 850 MHz Athlon with 512 megabytes of RAM.

The considerable number of def-use associations is due to
the combinatorial effect of combining paths while travers-
ing the aggregation hierarchy, as discussed in Section 3.
The combinatorial effect is also responsible for the increas-
ing percentage of infeasible def-use associations because
the def-use associations of higher-level classes include also

combinations of infeasible paths within lower-level classes.
Obviously, the combinatorial effect could be significantly
reduced by discarding, through user intervention, a subset
of paths while traversing the aggregation hierarchy. The ex-
ecution times of the data-flow analyzer and the symbolic
executor are almost negligible. Most of the computation
time is spent by the constraint solver used by the Sequence
Generator. The interested reader can refer to Reference [24]
for a detailed description of the technique that we used to
seed faults, a complete list of the generated faults, and de-
tails about the set of test cases generated by the tool for the
considered subject.

6. Limitations and Applicability of the Tech-
nique

In the former sections, we indicated some limitations for
the applicability of our technique. In this section, we sum-
marize such limitations. We first discuss a set of object-
oriented features that are not handled by our technique,
but that may be handled orthogonally using different ap-
proaches. We then discuss the main limitations of the tech-
nique proposed in this paper. Finally, we briefly recall the
current limitations of the prototype that constraint the ex-
perimental evaluation of the technique.

Object-Oriented Features.

Obiject-oriented programs contain several features that re-
quire specific attention during testing: hidden state of ob-
jects, inheritance, polymorphism and dynamic binding, and
exception handling. The technique proposed in this pa-
per mostly accounts for problems related to the objects’
state, and does not specifically address problems related
to other object-oriented features. (However, the presence
of such features does not prevent the applicability of our
technique.) Therefore, the test cases generated with our ap-
proach must be complemented with test cases generated us-
ing approaches specifically designed for addressing differ-
ent object-oriented features. The generation of different test
suites for dealing with different characteristics of the appli-
cation under test is common good practice, and allows for a
useful and sometime needed separation of concerns.

Carefully considering inheritance allows for reducing the
testing effort by avoiding re-testing methods already tested
in the ancestor classes. Ignoring inheritance by flattening
class hierarchies simply results in the generation of redun-
dant test cases. Specific techniques, such as the testing his-
tory approach presented by Harrold, McGregor, and Fitz-
patrich [14], can be used to reduce the number of test cases
to be generated.

Testing object-oriented programs in the presence of poly-
morphism and dynamic binding requires considering dif-
ferent bindings for each polimorphic call. Such bindings
can be computed with specialized techniques (e.g., the tech-
nique proposed by Orso and Pezz & in Reference [28]). The

presence of information about which bindings to test could
be used to generate additional test-case specifications for
our technique.

Exception-handling constructs complicate testing due to
the presence of implicit transfers of control that occur when
exceptions are raised. Again, there are testing techniques
that are specifically designed to address exception handling
(e.g., the technique proposed by Sinha and Harrold in Ref-
erence [33]) and that could be used in conjunction with our
technique.

Limitations of the Technique.

Our technique comprises two main phases: generation of
test-case specifications through data-flow analysis and gen-
eration of feasible test cases through symbolic execution
and automated deduction.

Test-case specifications can be automatically generated
for almost any object-oriented program. To apply the tech-
nique, we need the source code of the program, and we
require that the aggregation and use relationships among
classes do not form cycles. The availability of the source
code is a common requirement of structural testing ap-
proaches, but excludes the possibility of handling pre-
compiled libraries. The presence of such libraries can be
overcome by indicating inspector and modifier methods in
the libraries and by providing pre- and post-conditions for
method execution. Absence of cycles in aggregation and
use relationships is considered good practice in the de-
sign of object-oriented software. (Cycles are in fact not
present in several object-oriented programs that we exam-
ined.) Moreover, even in the presence of cycles, it is always
possible to break such cycles by eliminating one or more ag-
gregation or use relations—although the breaking requires
the involvement of the user.

The presence of pointers does not affect the applicabil-
ity of our technique. The only requirement for our data-
flow analysis in the presence of pointers is the availability
of some kind of alias analysis, such as the one provided
by SUIF [35]. The presence of methods with multiple or
even virtually infinite paths is not a problem for data-flow
analysis. However, as discussed in Section 3, incrementally
reducing the number of paths can largely reduce the compu-
tations costs (and can be done with little overhead by expert
users).

Test case generation from test case specifications is
based on symbolic execution and automated deduction
techniques. Despite the presence of powerful tools (e.g.,
[6, 32]), such techniques have some intrinsic limitations.
Symbolic execution can handle all static data structures, in-
cluding arrays [7], but cannot deal with unconstrained dy-
namic memory allocation. Therefore, although our tech-
nigue can automatically generate test-case specifications for
almost all object-oriented programs, it can automatically
generate corresponding test cases only for programs that do

not make use of unconstrained dynamic memory allocation.
Safety critical applications belong to this class of programs.
In fact, we successfully applied our tool for generating test
cases for safety critical applications, such as the one pre-
sented in Section 5.

Moreover, the presence of dynamic memory allocation
can be partially overcome by manually inserting pre- and
post-conditions for methods that make use of such feature.
For example, method pop of a class st ack that uses a
linked list can be annotated with a pre-condition that re-
quires the stack not to be empty and a post-condition that
indicates the modification in the number of elements in the
stack. A good use of encapsulation can greatly simplify the
job of annotating programs. However, the presence of un-
constrained use of dynamic memory may greatly reduce the
applicability of our technique for automatically generating
test cases. In these cases, our technique will only generate
test-case specifications and, possibly, a subset of test cases
for those parts of the program that do not use dynamic mem-
ory.

Loops do not constitute a problem for the application of
our technique because the technique does not need to con-
sider all possible paths. It is always possible to limit the
number of paths by constraining the number of loop itera-
tions or by manually adding invariants [7].

Undecidability of automated deduction may affect the
generation of test cases. However, the tools currently avail-
able on the market can handle more and more complex ex-
pression and give us confidence in the applicability of the
technique for a meaningful set of systems.

Limitations of the Prototype.

The prototype described in Section 4 and used in our ex-
periments on C++ programs is not fully implemented and
has some additional limitations that constraint its applica-
bility. The data-flow analyzer does not accept code that con-
tains inheritance, polymorphism, exception-handling con-
structs and gotos (although, conceptually, none of these fea-
tures constitute a problem for our technique). Similarly,
we do not perform alias analysis yet and information about
aliases must be pre-computed and provided to the tool. The
symbolic executor has not been extended to treat arrays yet,
and requires all methods using pointers to be suitably an-
notated. Annotations are not required for a limited use of
pointers, such as in parameter passing. The Sicstus sim-
plifier [32] used for automated deduction is programmed to
handle integers and floating point numbers only.

7. Related Work

The problem of revealing state-dependent faults in
object-oriented software is extremely relevant and has been
tackled in several papers. Most of the papers that address
this problem propose functional testing techniques to de-
rive test cases. In particular, several techniques are based

on the generation of test cases from either formal specifica-
tions [10, 11, 36], or from UML diagrams [1, 17, 25].

Structural testing for object-oriented software has not
been widely investigated yet. Some work investigates
mutation-based techniques [21]. Other work focuses on the
combination of functional and structural testing, but does
not tackle the problem of generating structural-based test
cases [4, 20]. Yet other work focuses on algorithmic as-
pects of data-flow analysis, thus building the basis for test
case generation [15, 34].

Our technique is code-based rather than specification-
based. To our knowledge, the only other technique for gen-
erating test cases from code was defined by Kung and col-
leagues [23]. That technique generates message sequences
for class testing from a state-based model extracted from
the source code. The intermediate state-based model is a
set of finite state machines—one machine for each instance
variable. These state machines are built through a combina-
tion of symbolic execution and deductive techniques. Sub-
sequently, message sequences are generated through an ex-
haustive reachability analysis performed by combining the
different state machines.

Analogously to our method, the approach of Kung and
colleagues performs well when instance variables are scalar
and when symbolic execution can be completed success-
fully. However, their technique fails to produce any useful
information when these assumptions do not hold. This is in
contrast with our approach, which always produces infor-
mation useful to testers. An additional disadvantage of their
approach is that it does not consider possible dependencies
among instance variables in the preconditions on method
execution. For instance, if a precondition on the execution
of a given path includes even a very simple predicate of
the form (z < y), where z and y are instance variables,
their approach fails to take this predicate into account when
constructing method sequences. Finally, their technique is
defined only for single classes.

Some authors tackle the issue of class test automation
from a different viewpoint, mostly concerned with the prob-
lems related to the generation of scaffolding code [27, 18].
Those approaches start from the tester’s knowledge of the
source code and seek to generate automatically drivers and
stubs for the class under test. Because these techniques are
concerned with the automation of the execution of tests,
rather than their generation, they are complementary to the
technique presented in this paper.

8. Conclusion

We described an approach for the automatic generation of
test cases for interclass testing of object-oriented systems.
Our approach seems to be quite powerful in that the test
cases that we generate automatically can detect faults due
to the combined effects of method invocations on the ob-

jects’ state. An additional advantage of our technique is that
it works in phases of increasing complexity; the analysis
of a system considers the simple classes in the system first
and then uses the results to further analyze more complex
classes. Furthermore, by using an incremental approach,
we can also account for the possible failure of some of the
analysis phases due to their computational complexity; at
every step, the technique can exploit user-provided infor-
mation (in the form of summary information) to abstract
details of the analyzed classes and to complete the test-case
generation process. Finally, our approach is a generative
technique. Consequently, it does not require code instru-
mentation to ensure the adequacy of the generated test cases
because coverage is granted by construction.

The applicability of the approach has been evaluated by
examining an application implementing a microscope con-
troller developed for the European Space Laboratory of the
Columbus Orbital Facility. We successfully generated a set
of test cases for the system using our prototype, and the gen-
erated test cases were able to reveal a set of faults seeded in
the program.

We are currently working on improving the implemented
prototype to reduce some of its limitations and on identify-
ing additional systems to be used as subjects for experimen-
tation.

Acknowledgments

Giordano Sassaroli helped with the design and the imple-
mentation of the prototype. This work was supported in part
by the ESPRIT Project TWO (EP n.28940), by the MIUR in
the framework of the QUACK Project, by a grant from Boe-
ing Aerospace Corporation to Georgia Tech, by NSF awards
CCR-9988294, CCR-0096321, and EIA-0196145 to Geor-
gia Tech, and by the State of Georgia to Georgia Tech under
the Yamacraw Mission.

References

[1] A. Abdurazik and J. Offutt. Using UML collaboration dia-
grams for static checking and test generation. In A. Evans,
S. Kent, and B. Selic, editors, Proceeedings of the Third In-
ternational Conference on The Unified Modeling Language,
Advancing the Standard, York, UK, volume 1939 of LNCS,
pages 383-395. Springer, October 2000.

[2] S. Barbey and A. Strohmeier. The problematics of testing
object-oriented software. In M. Ross, C. A. Brebbia, G. Sta-
ples, and J. Stapleton, editors, Proceedings of the Second
Conference on Software Quality Management, Edinburgh
(Scotland, UK), volume 2, pages 411-426, July 1994.

[3] U. Buy, A. Orso, and M. Pezzé. Automated testing of
classes. In Proceedings of the International Symposium in
Software Testing and Analysis (ISSTA ’00), pages 39-48,
2000.

[4]

5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

H. Y. Chen, T. H.Tse, F. T.Chan, and T. Y.Chen. In black
and white: an integrated approach to class-level testing of
object-oriented programs. ACM Transactions on Software
Engineering and Methodology, 7(3):250-295, July 1998.

L. A. Clarke. A system to generate test data and symboli-
cally execute programs. Transactions on Software Engineer-
ing, 2(3):215-222, September 1976.

A. Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezz®.

Using symbolic execution for verifying safety critical sys-
tems. In Proceedings of the 9th ACM SIGSOFT Inter-
national Symposium on the Foundations of Software Engi-
neering (FSE01), ACM Software Engineering Notes, NY,
September 2001.

A. Coen-Porisini, F. D. Paoli, C. Ghezzi, and D. Mandri-
oli. Software specialization via symbolic execution. IEEE
Transactions on Software Engineering, (SE-17(9)):884 -
899, September 1991.

R. A. DeMillo and A. J. Offutt. Constraint-based automatic
test-data generation. IEEE Transactions on Software Engi-
neering, 17(9):900-910, Sept. 1991.

L. K. Dillon. Using symbolic execution for verification of
Ada tasking programs. ACM Transactions on Programming
Languages and Systems, (12(4)):643 — 669, 1990.

M. Donat. Automating Formal Specification Based Testing.
In M. Bidoit and M. Dauchet, editors, Proceedings of the
International Conference on Theory and Practice of SW De-
velopment (TAPSOFT 97), volume 1214 of Lecture Notes
in Computer Science, pages 833-847, Lille, France, 1997.
Springer-Verlag, Berlin.

R.-K. Doong and P. G. Frankl. The ASTOOT approach
to testing object-oriented programs. ACM Transactions
on Software Engineering and Methodology, 3(2):101-130,
April 1994.

Edison Design Group. C++ front end. Technical report,
Edison Design Group Inc., 2000.

P. G. Frankl and E. G. Weyuker. Provable improvements on
branch testing. IEEE Transactions on Software Engineering,
19(10):962-975, October 1993.

M. J. Harrold, J. D. McGregor, and K. J. Fitzpatrich. Incre-
mental Testing of Object-oriented Class Structures. In Pro-
ceedings of the 14th International Conference on Software
Engineering, pages 68-80, May 1992.

M. J. Harrold and G. Rothermel. Performing data flow test-

ing on classes. In 2nd ACM-SIGSOFT Symposium on the
foundations of software engineering, pages 154-163. ACM-
SIGSOFT, December 1994.

M. J. Harrold and G. Rothermel. A coherent family of an-
alyzable graph representations for object-oriented software.
Technical Report OSU-CISRC-11/96-TR60, The Ohio State
University, November 1996.

J. Hartmann, C. Imoberdorf, and M. Meisinger. UML-based
integration testing. In Proceedings of the International Sym-
posium in Software Testing and Analysis (ISSTA ’00), pages
60-70. IEEE Computer Society Press, 2000.

D. Hoffman and P. Strooper. ClassBench: A framework for
automated class testing. Software Practice and Experience,
27(5):573-597, May 1997.

W. E. Howden. Symbolic testing and the DISSECT sym-
bolic evaluation system. Transactions on Software Engi-
neering, 3(4), July 1977.

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

P. Jorgensen and C. Erickson. Object-oriented integration
testing. Communications of the ACM, 37(9):30-38, Septem-
ber 1994.

S. Kim, J. A. Clark, and J. A. McDermid. Class mutation:
mutation testing for object-oriented programs. In Proceed-
ings of the Net.ObjectDays Conference on Object-Oriented
Software Systems, 2000.

B. Korel. Dynamic method for software test data generation.
JSTVR, 2(4):203-213, 1992.

D. Kung, J. Gao, P. Hsia, Y. Toyoshima, C. Chen, Y.-S. Kim,
and Y.-K. Song. Developing and oject-oriented software
testing and maintenance environment. Communications of
the ACM, 38(10):75-86, October 1995.

V. Martena, A. Orso, and M. Pezzé. Experimental evalaution
of interclass testing of object oriented software. Technical
Report LTA-2002-01, Testing and Analysis Lab. - Universit a
degli Studi di Milano - Bicocca, 2002.

J. D. McGregor. Testing models: the requirement model.
Journal of Object-Oriented Programming, 1998.

B. Meyer. Object-oriented Software Construction. Prentice
Hall, New York, N.Y., second edition, 1997.

G. C. Murphy, P. Townsend, and P. S. Wong. Experiences
with cluster and class testing. Communications of the ACM,
37(9):39-47, September 1994.

A. Orso and M. Pezz®. Integration testing of procedural
object-oriented languages with polymorphism. In Proceed-
ings of the 16th International Conference on Testing Com-
puter Software: Future Trends in Testing (TCS’99), Wash-
ington, D.C., June 1999.

A. Orso, F. Saini, and N. Trevisan. Un algoritmo per il cal-
colo di coppie definizione-uso interprocedurali. Technical
report, Politecnico di Milano, 1999. (in Italian).

A. Orso and S. Silva. Open issues and research directions in
Object Oriented testing. In Proceedings of the 4th Interna-
tional Conference on ’Achieving Quality in Software: Soft-
ware Quality in the Communication Society” (AQUIS’98),
Venice, April 1998.

J. Rushby, S. Owre, and N. Shankar. Subtypes for specifi-
cations: Predicate subtyping in PVS. IEEE Transactions on
Software Engineering, 24(9):709-720, September 1998.
SICStus prolog 3 - user manual. Technical report, SICStus,
2000.

S. Sinha and M. J. Harrold. Criteria for testing exception-
handling constructs in Java programs. In Proceedings of the
International Conference on Software Maintenance, pages
265-274, Setember 1999.

A. Souter, L. Pollock, and D. Hisley. Inter-class Def-Use
analysis with partial class representations. In Proceedings of
the ACM SIGPLAN-SIGSOFT Workshop on Program Anal-
ysis for Software Tools and Engineering, volume 24.5 of
Software Engeneering Notes (SEN), pages 47-56, N. Y.,
September 1999. ACM Press.

SUIF Compiler System. Technical report, The Stanford
SUIF Compiler Group, September 2001.

C. D. Turner and D. J. Robson. The state-based testing
of object-oriented programs. In Proceedings of the Inter-
national Conference on Software Maintenance, pages 302—
310. IEEE Society Press, September 1993.

