Selective Capture and Replay of Program Executions

Alessandro Orso and Bryan Kennedy
College of Computing
Georgia Institute of Technology

orso@cc.gatech.edu, bck@acm.org

ABSTRACT Unfortunately, capturing complete executions is generally infea-

In this paper, we present a technique for selective capture and re_sible, for several reasons. First, there are practicality issues. To cap

play of program executions. Given an application, the technique ture a comple;e execution, we may .need to record a Ilarge vol_ume of
allows for (1) selecting a subsystem of interest, (2) capturing at data_—all the inputs _to the appllcatlon._ Also, capturing th(_a Inputs
runtime all the interactions between such subsystem and the restprowded to an appllcatlon_ can be difficult and may require cus-
of the application, and (3) replaying the recorded interactions on 1©M Mechanisms, depending on the way the application interacts
the subsystem in isolation. The technique can be used in severalVith its environment. Second, there are privacy issues. The data

scenarios. For example, it can be used to generate test cases frorﬁaptured could contain confidential information that users may not
users’ executions, by capturing and collecting partial executions in \I/;/ant to be (;ollected: Thk']rd' thgre ?‘fre ISsues r:elated to side e':feﬁtts.
the field. For another example, it can be used to perform expensive! & aptured execution has side efiects on the system on which it
dynamic analyses off-line. For yet another example, it can be used runs, replaying it may corrupt the system. Furthermore, t_he envi-
to extract subsystem or unit tests from system tests. Our techniqueror_:_mer('jtdmay hzve changled betwﬁﬁn Ca}lﬁ)tgre andbrleplay tlme.d

is designed to be efficient, in that we only capture information that |0 address t (;ssfg p(rjo ems,lw 'E st glngg e fo reproduce
is relevant to the considered execution. To this end, we disregard €X€cutions, we defined a novel technique base edective cap-

all data that, although flowing through the boundary of the subsys- (e @nd replay of execution&Siven an application, the technique
tem of interest, do not affect the execution. In the paper, we also |6t US (1) select a subsystem of interest, (2) capture at runtime all
present a preliminary evaluation of the technique performed using the interactions between such subsystem and the rest of the appli-

SCARPE, a prototype tool that implements our approach cation, and (3) replay the recorded interactions on the subsystem in
’ ' isolation. Our technique is designed to be efficient: for each execu-

1. INTRODUCTION tion, we only capture information that is relevant to that execution.
The initial motivation for this work stems from results that we 10 this end, we disregard all data that, although flowing through the
obtained while experimenting with a technique that leverages field Poundary of the subsystem of interest, do not affect its execution.
data to perform impact analysis and regression testing [5]. These!Ntuitively, our technique captures only the minimal subset of the
results clearly showed that, for the cases considered, executions ir@PPlication’s state and environment required to replay the execution
the field manifest a quite different behavior than in-house execu- considered on the selected subsystem.) o
tions. Therefore, we wanted to leverage such differences to im- OUr technique allows for addressing the issues of practicality,
prove in-house testing. Ideally, we wanted to be able to capture PrVacy, .an.d safety listed above. When practicality is concgrned,
executions in the field and then replay them in-house. we can limit the volume of data that we need to record by suitably
More generally, the possibility of capturing and replaying pro- sele_ctlng the subset of the application for which we capture infor-
gram executions can be useful for many software-engineering tasks Mation. Also, we address the problems represented by complex
In testing, for instance, the ability to capture and replay executions X€cution environments because we always capture (and replay) at
would allow for automatically getting test cases from users. Given the boundary between parts of the application. When privacy is
a deployed program, we could capture executions in the field, col- concerned, we can exclude from the subsystem of interest those
lect and group them into test suites, and then use such test suiteg@/ts 0f the application that handle confidential information. When
for validating the program in the way it is used. Capture and replay this i not possible, we envision a use of our technique in which
would also allow for performing dynamic analyses that impose a /SO the replay is performed on the users’ machines. For exam-
high overhead on the execution time. In this case, we could cap- PI€; if the technique is used to perform expensive dynamic analy-
ture executions of the uninstrumented program and then perform S€S 0N part of the application, we could capture executions for that

the expensive analyses off-line, while replaying. part while users are running the application, _replay them on an in-
strumented version when free cycles are available, and collect only

sanitized results of the analysis. When safety is concerned, our

Permission to make digital or hard copies of all or part of thikwfor technique eliminates all side effects because it replays the subsys-
personal or classroom use is granted without fee providatidbpies are tem in a sandbox—all interactions with the rest of the application
not made or distributed for profit or commercial advantage aatidbpies and with the environment are only simulated during replay.

bear this notice and the full citation on the first page. Toyooiherwise, to An additional advantage of our technique is that, by performing

republish, to pg/st on fse”’ers or to redistribute to listgunes prior specific capture and replay at the subsystem level, it enables additional ap-
permission ana/or a fee.

Workshop on Dynamic Analysis (WODA 2005) May 2005, St. Louis, plications that W(_)uld not be p_OSS|bIe for a technlque that captures
MO, USA complete executions. In particular, our technique can be used to

Copyright 2005 ACM ISBN # 1-59593-126-0%5.00.

Capture: Unobserved N
Set / |:> Output

¥~ Observed L

: D

x g Event

Log

lerarles

K "class DB{...}
,/ class Node {...}
' class Compute {
' int norm = 0Q;
/ DB db;

m ! void setu p(int x) {

, int y = db.getSomelnt();
! norm=x-y;

Users

’)...

' Subset 1 double getRatio(HugeTree ht) {
| Iterator it = ht.iterator();
"""" N while (it.hasNext()) {
\ Node n = (Node)it.next();
& v double res = n.val;

\

Replay: (Replay Scaffolding

Event _OBs_er_véd_ ‘I
Log : Set

T

________________________ a =~

Figure 2: Overview of the technique.

if (res > 0)
\ return res / norm;

Database File ‘\ return 0.0;

System v}

Figure 1: Example application.

automatically generate subsystem and unit test cases from systentechnique reads the recorded set of events and replays the corre-
test cases (or from complete executions in general). Because ofsponding interactions.

the way we capture and replay, such test cases would include all ~ Third , when recording events, our technique does not capture all
needed stubs, drivers, and even oracles, and could benefit testinghe information that traverses the boundary between the selected

activities such as regression testing. application subset and the rest of the system. Instead, it captures
In this paper, we present our technique for selective capture andonly partial dataand disregards the rest, which is of fundamental

replay. We also present a prototype tool, called SCARPE, that im- importance for the practicality of the technique.

plements our technique for Java programs, and a study that show .

the feasibility of the approach. Finally, we discuss several direction 52 2 The Technlque

for future research. Because the characteristics of the programming language tar-
geted by the technique considerably affect its definition, we define

2. SELECTIVE CAPTURE AND REPLAY our technique for a specific language: Javalthough Java is our
reference language, the technique should be generally applicable

2.1 Overview or adaptable to any object-oriented language that has the same fea-

tures of Java or a subset thereof.
In the rest of the paper, we use the following terminology. We
refer to the selected application subsystem aobserved seand

Before presenting our technique for selective capture and replay,
we provide an example that we use in the rest of the discussion to

motivate and illustrate the technique. Figure 1 shows a networked, to the classes in the observed set asiibgerved classdsr code).

multi-user application that receives inputs from users and performs Observed methodsnd observed fieldgre methods and fields of
read and write accesses to both a database and the filesystem. Th@bserved classes. We define in an analogous way the terois
example is representative of situations in which capturing all the ’

inf i red t lav th i licati 1d invol served setunobserved classgsnobserved cogenobserved meth-
information required to repiay the entiré application would Involve ods andunobserved fieldsThe termexternal codéndicates unob-
technical challenges (e.g., collecting the data that flow from the

2 X served and library code together. The teunmodifiable classes
users to the application and vice versa), storage problems (e.g., we denotes classes whose code cannot be modified (e.g., some system
may have to record consistent portions of the database), and privac

yclasses such gsava. | ang. d ass, or classes containing native
issues (e.g., the information provided by the users may be confiden- methods), and the termodifiable classe®fers to all other classes.
tial). We use this kind of application as an example because it lets Our technique is divided in two main phases: capture and replay.
us stress that many systems are complex and operate in a varied an‘;_lI

licated O the ab I gure 2 informally depicts the two phases.
complicated environment. However, the above issues would arise, The capture phase takes place while the application is running
to different extents, for most applications (e.g., mail clients, word

b (e.g., in the field or during testing). Before the application starts,

pr<())cestsorrs], we S(lalrversf). ing th . b idi based on the user-provided list of observed classes, the technique

ur technique aflows Tor overcoming these ISSUes by providing j4qniifies the boundaries of the observed set and suitably modifies
a fle>_(|ble and efﬁue_nt way to capture ?‘”d replay e_xe_cutlons. More the application to be able to capture interactions between the ob-
prcle:qstely{ our Eechnlqug hasl three mal?.;rgragter;stﬁs. served set and the rest of the system. The application is modified

Irst, 1t captures and replays Execuliosesectively USers can by inserting probes (i.e., instructions added to the code through in-
specify the subset of the application that they are interested in Cap'strumentation) into the code. When the modified application runs
turing and replaying, and the technique only captures execution !

data f h subsyst E | idering Fi 1 the probes in the code suitably generate events for the interactions
ata for such subsystem. "or exampie, considering FIgure L, Wey, o yeen the observed classes and the external code. The events,
could specify that we are interested in capturing only the parts of

X . o . together with their attributes, are recorded inesrent lo
the execution that involve the highlightegplication subset g9 9

S d techni ¢ d reol . int In the replay phase, the technique automatically provides a
econgour technique captures and replays executions in terms play scaffolding The replay scaffolding inputs the event log pro-
of events. During capture, the technique records every relevant in-

i A uced during capture and replays each event in the log by acting as
teraction between the selected application subset and the rest oP gcap play 9 by 9

the system as an event with a set of attributes. During replay, the *We refer to Java before the introduction of generic classes.

both a driver and a stub. Replaying an event corresponds to eithercan disregard the objects’ state. For instance, in the example con-
performing an action on the observed set (e.g., writing an observedsidered, the only data we need to store to replay the considered call
field) or consuming an action from the observed set (e.g., receiving are the boolean values returned by the calls to the iterator's method
a method invocation originally targeted to external code). Based hasNext , which determine the value of thwhi | e predicate, and

on the event log, the replay scaffolding is able to generate and con-thedoubl e values associated with the five nodes accessed.

sume appropriate actions, so that during replay the right classes are Althoughiitis in general not possible to identify in advance which
created and the interactions among these classes are reproducegubset of the information being passed to a method is relevant for a

We now discuss the two phases in detail. given call, we can conservatively approximate such subset by col-
lecting it incrementally. To this end, we leverage our object-ID
2.3 Capture Phase mechanism to record only minimal information about the objects

As stated above, the capture phase works by (1) identifying all involved in the computation. When logging data that cross the
the interactions between observed and external code, (2) suitablyPoundaries of the observed set (e.g., parameters and exceptions)
instrumenting the application code, and (3) efficiently capturing in- We record the actual value o_f the_ data only for scalar values. For
teractions at runtime. objects, we only record their object ID and type. (We need to

Before discussing the details of this phase, we need to introduce®cord the type to be able to recreate the object during replay, as
the concept of object ID. In the context of our techniquephject ~ €xplained in Section 2.4.) With this approach, object IDs, types,
ID is a positive numeric ID that uniquely identifies a class instance. @nd scalar values are the only information required to replay execu-
To generate such IDs, our technique uses a nungéotsal 1D that tions, which can dramatically reduce the cost of the capture phase.

is initialized to zero when capture starts. For modifiable classes, 2.3.2 Interactions Observed—External Code
the object ID is generated by adding a numeric field to the classes ~

and by adding a probe to the classes’ constructors. The probe in-Method Calls.The most common way for two parts of an ap-
crements the global ID and stores the resulting value in the numeric pjication to interact is through method calls. In our case, we must
field of the object being created. Therefore, given an instance of a account for both calls from the unobserved to the observed code
modifiable class, the technique can retrieve its object ID by simply (jncalls) and calls from the observed to the unobserved code (
accessing the ID field in the instance. For unmodifiable classes, calls). Note that the technique does not need to record calls among
we associate IDs to instances usingference mapThe reference observed methods because such calls occur naturally during replay.
map contains information about how to map an objecttoitsIDand oyr technique records four kinds of events related to method
is populated incrementally. Every time the technique needs an ob-cajis: (1)OUTCALLevents, for calls from observed to unobserved
ject ID for an instance of an unmodifiable class, it checks whether ¢ode; (2)INCALL events, for calls from unobserved to observed
there is an entry in the reference map for that instance. If so, the ¢ode; (3)DUTCALLRETevents, for returns from outcalls; and (4)
technique gets from the map the corresponding ID. Otherwise, it [NCALLRETevents, for returns from incalls. OUTCALL and IN-
increments the global ID and creates a new entry in the map for caLL events have the following attributes:
that instance with the current value of the global ID. . Receiver: Fully qualified type and object ID of the receiver ob-

In the rest of the section, we first discuss how our technique ject, For static calls, the object ID is set+d.
can efficiently capture interactions by minimizing the amount of * \ethod called: Signature of the method being called.
information to be recorded. Then, we discuss the differentkinds of parameters: A list of elements, one for each parameter. For

interactions identified by our technique, the corresponding events scajar parameters, the list contains the actual value of the parame-

captured, and the approach used to capture them. ters, whereas for object parameters, the list contains the type of the
. . . parameter and the corresponding object ID (or a zero value, if the
2.3.1 Capturing Partial Information parameter isul |).

A major issue, when capturing data flowing through the bound- ~ OUTCALLRET and INCALLRET events contain only one at-
ary of a subsystem (e.g., values assigned to a field) is that thetribute: the value returned. Analogous to call parameters, the at-
types of such data range from simple scalar values to complex tribute is the actual value in the case of scalar values, whereas it
and composite objects. Whereas capturing scalar values can beconsists of the type of the value and the corresponding object ID if
done inexpensively, collecting object values is computationally and an object is returned.
space expensive. A straightforward approach that captures all val- To capture OUTCALL events, our technique modifies each ob-
ues through the system (e.g., by serializing objects passed as paserved method by adding a probe before each call to an external
rameters) would incur in a tremendous overhead and would rendermethod. The signature of the method called is known statically,
the approach impractical. (In preliminary work, we measured time whereas the receiver’s type and object ID and the information about
overhead of over 500% for a technique based on object serializa-the parameters is generally gathered at runtime.
tion.) Our key intuition to address this problem is that (1) we only =~ To capture INCALL and INCALLRET events, our technique
need to capture the subsets of those objects that affect the compuperforms two stepgFirst, it replaces each public observed method
tation, and (2) we can conservatively approximate such subset bymwith a proxy method and an actual method. Hwtual method
capturing it incrementally and on demand. has the same body as(modulo some instrumentation), but has a

Consider again methogkt Rat i o in Figure 1 and assume that, different signature that takes an additional parameter of a special
for a given call, the first node whose value is greater than zero is the type. Theproxy methodconversely, has exactly the same signature
fifth node returned by the iterator. For that call, eventifcontains asm but a different implementation. The proxy method (1) creates
millions of nodes, we only need to store the five nodes accessedand logs an appropriatelCALL event, (2) calls the actual method
within the loop. We can push this approach even further: in gen- by specifying the same parameters it received plus the parameter of
eral, we do not need to capture objects at all. Ultimately, what af- the special type, (3) collects the value returned by the actual method
fects the computation are the scalar values stored in those objects ofif any) and logs an INCALLRET event, and (4) returns to its caller
returned by methods of those objects. Therefore, as long as we carthe collected value (if any). In this case, all the information needed
automatically identify and intercept accesses to those values, weto log the events, except for the object ID and the return value, can

be computed staticallySecond the technique modifies all calls To capture interactions that occur due to exceptions, our tech-
from observed methods to public observed methods by adding thenique records two types of events: @XCIN, for exceptions that
additional parameter of the special type mentioned above. In this propagate from external to observed code; andERLCOUT, for
way, we are guaranteed that calls that do not cross the boundarieexceptions that propagate from observed to external code. EXCIN
of the observed code invoke the actual (and not the proxy) method and EXCOUT events have only one attribute that consists of the
and do not log any spurious INCALL or INCALLRET event (these type and object ID of the corresponding exception.
calls and returns occur naturally during replay). To collect EXCOUT events, our technique wraps each observed
Finally, to capture OUTCALLRET events, our technique again methodmwith an exception handler that includes the entire method’s
modifies the observed methods by instrumenting each call to anbody and handles exceptions of any type. (In Java, this instrumenta-
external method. For each such call, the technique adds a probetion is realized by adding &r y- cat ch block that includes the en-
that stores the value returned by the call (if any) and logs it. tire method and catches exceptions of typea. | ang. Thr owabl e.)
) The handler's code checks, by inspecting the call stack, whether
Access to Fieldsinteractions between different parts of an ap- s caller is an external method. If so, it records the type and object
plication also occur through accesses to fields. To account for these|D of the exception, logs the corresponding EXCOUT event, and
interactions, our technique records accesses to observed fields fronte-throws the exception. Conversely,nit caller is an observed
unobserved code and accesses from observed code to unabservemethod, the exception is still re-thrown, but is not logged as an
fields and fields of library classes. In the case of accesses from un-EXCOUT event because it does not propagate to external code.
observed code to observed fields, we only record write accesses— Similarly, to collect EXCIN events, our technique instruments all
read accesses do not affect the behavior of the observed clasises a call sites in observed methods that call external methods. The tech-
thus, do not provide any useful information for replay. Further, un- nique wraps each such call site with an exception handler that also
like events generated in the observed code (e.g., OUTWRITE and handles exception of any type. In this case, the handler’s code gath-
OUTCALL events), read accesses cannot be used as oracles beers the type and object ID of the exception, logs the corresponding
cause they are generated by code that is not going to be executed gEXCIN event, and re-throws the exception.
all during replay. Note that a single exception could result in multiple EXCIN and
Our technique records three kinds of events for accesses to fieldSEXCOUT events, in the case in which it traverses the boundary
(1) OUTREADevents, for read accesses from observed code to between the observed and the external code multiple times.
unobserved or library fields; (PUTWRITEevents, for write ac-
cesses from observed code to unobserved or library fields; and (3)2'4 Replay Phase .)
INWRITEevents, for modifications to an observed field performed In th? replay phase, our technique first performs two step§ gnal-
by external code. OUTREAD, OUTWRITE, and INWRITE events ©90US in nature to the first two steps of the capture phase: it (1)
have the following attributes: identifies all the interactions between observed and external code,

Receiver: Fully qualified type and object ID of the object whose and (2.) suitably instruments the applicatipn code. Then, the tech-
field is being read or modified. As before, valué is used in the nique inputs an event log generated during capture and, for each
case of access to a static field ' event, either performs some action on the observed code or con-

Field Name: Name of the field being accessed sumes some action coming from the observed code. In the rest of
value: Valu.e being either read from or assig.ned to the field this section, we discuss how the replay phase handles the different

Also in this case, the value corresponds to the actual values for logged events to correctly replay executions of the observed code.

scalar fields and to an object ID or zero (farl |) otherwise. 2.4.1 Object Creation

To capture OUTREAD and OUTWRITE events, the technique In Section 2.3, we discussed how our technique associates object
first analyzes the observed code and identifies all the accesses tdDs to objects during capture. We now describe how object IDs are
fields of external classes. Then, the technique adds a probe to eaclused in the replay phase, while generating and consuming events.
identified access: if the access is a read access, the probe logs aAlthough we use a global ID and a reference map, analogous to the
OUTREAD event with the value being read; if the access is a write capture phase, the handling of IDs is different in this case. Unlike
access, the probe logs an OUTWRITE event with the value being the capture phase, which associates IDs to objects flowing across
written. The information about the field name is computed stati- the boundaries of the observed code, the replay phase extracts ob-
cally and added to the probes, whereas the information about theject IDs from the events’ attributes and retrieves or creates the cor-
type and object ID is computed dynamically. responding objects. Another difference between the two phases is

The method to capture INWRITE events is analogous to the one that, during replay, all object IDs are stored in a reference map (not
we just described for OUTWRITE events. The only difference is only the ones for instances of unmodifiable classes).
that the technique analyzes the modifiable external classes, insteacf fE Te . .
of the observed ones, and instruments accesses to observed fields. nstances of Externa .assesvery_tlme the_technlq_ue pro-

cesses an event whose attributes contain an object ID, it looks for

Exceptions.Exceptions too can cause interactions between dif- @ corresponding entry in the reference map. (The only exception is
ferent parts of an application. Moreover, interactions due to ex- the case of object IDs with values zero-et, which correspond to
ceptions occur through implicit changes in the applications’ con- Nnul | values and static accesses, respectively.) If it finds an entry,
trol flow and are typically harder to identify than other types of it retrieves the object associated with that entry and uses it to re-
interactions. For example, for the code in Figure 1, if the call to Produce the event. Otherwise, the technique increments the global
ht.iterator() in methodget Rat i o terminated with an excep- ~ counter, creates a placeholder object of the appropriate type (ob-
tion, the rest of the code in the method would not be executed. Not ject IDs are always paired with a type in the events), and creates
reproducing the exception during replay would result in a complete & Néw entry in the map for that instance with the current value of
execution of the method, which does not correctly reproduce the the global ID. Aplaceholder objects an object whose type and
recorded behavior. However, there is no poingét Rat i o’s code identity are meaningful, but whose state (i.e., the actual value of its

in which the fact that an exception has occurred is explicit. fields) is irrelevant. We need to preserve objects’ identity and type
during replay for the execution to be type safe and to support some

forms of reflection (e.gi,nst anceof). Our technique usgsace- eters. After the call, the control flows to the observed code. Note

holder constructordo build placeholder objects. For modifiable that passing a placeholder object (i.e., an object with an undefined
classes, the placeholder constructor is a new constructor added bystate) does not compromise the replay because all interactions of
our technique. The constructor takes a parameter of a special typethe observed code with external objects are suitably identified and
to make sure that its signature does not clash with any existing con-intercepted by our technique.

S};ﬁﬁ&gg&%ﬂﬁrft;my one statement—a call to its superclass SINCALLRET EVentsINCALLRET events occur as a conse-

P For unmodifiable claéses our technique searches for a suitabled'"e of an INCALL event and are consumed by the replay scaf-

constructor among the exis’ting constructors for the class. In our folding. . When the observed code rgturns after an INCALL, the
X . . ' scaffolding stores the return value, if any, and retrieves the next

current implementation, we simply hard-coded the constructor to

be used in these special cases, but other approaches could be use vent from the event log. If the event is of type INCALLRET, the
P ' PP ssociated value is retrieved in the usual way (i.e., as a scalar value

Instances of Observed Classa®e case of observed classes or as an object ID) and compared to the value actually returned. If
is simpler. When replaying the incall to a constructor, the technique the values match, the replay continues with the next event. Other-
retrieves the object ID associated with the INCALL event, creates Wwise, an error is reported and user intervention is required.

the object by calling the constructor (see Section 2.4.2), and addSOUTCALL EventsOUTCALL events are also consumed by
an entry to the reference map for that instance and object ID. Note the replay scaffolding. The technique instruments all observed classes

that, because of th? way in which we replay events, instances V‘,”" so that each call to external classes is divided into two parts: the in-
always be created in the same order. Therefore, we can use Obje%ocation of a specific method of the scaffoldingéisumecal 1),

IDs to correctly identify corresponding instances intht_e capture and whose parameters contain information about the call, and an as-

replay phases, and to correctly reproduce events during replay. signment that stores the value returneddoysuneCal | , if any,

2.4.2 Events Replaying in the right variable in the observed code. For example, for the
During replay, our technique acts as both a driver and a stub. It code in Figure 1, statemenitt‘erator it = ht.iterator();”

provides the scaffolding that mimics the behavior of the external would be replaced by the code (assuming that classgsTr ee

code for executing the observed code in isolation. The replay scaf-andl t er at or are defined in packageo):?

folding processes the events in the event log and passes the contrdTopject tnp = scaf fol di ng. consumeCal | (* * f oo/ HugeTr ee’ *

to the observed code for INCALL, OUTCALLRET, and EXCIN < object ID for ht >,
events. When control returns to the scaffolding (e.g., because an ““iterator:()Lfool/lterator’ ",
incall returns or an exception is thrown), the scaffolding checks < empty array of paramters >);

whether the event received from the code matches the next eventin |terator it = (Iterator)tnp;
the log. If so, it reads the following event and continues the replay.
Otherwise, it reports the problem and waits for a decision from the
user, who can either stop the execution or skip the unmatched even
and continue. The case of events that do not macit-¢f-sync
event¥ can occur only when replaying events on a different version
of the observed code than the one used during capture. OUTCALLRET EventsTo replay OUTCALLRET events, our

Note that, whereas recording INCALL, INWRITE, OUTCALL- technique extracts from the event the returned value, by retrieving
RET, and EXCIN events is necessary to replay executions, the needt in the usual way based on its type (scalar or object), and simply
for recording the events generated in the observed code depends oreturns that value.

the specific use of our technique. For example, if we use the teCh_OUTREAD and OUTWRITE Eventso handle OUTREAD

nigue to generate unit or subsystem test cases for regression testing .
events originated in the observed code are useful because they ca nd OUTWRITE events, the reP'?‘y phase instruments all pbserved
lasses so that each access to fields of external classes is replaced

be used as oracles. For another example, if we use the technique t It i thod of th froldirm read f

compute def-use coverage off-line, we can disregard those events.Oyu"’_II_CR""E A%aeflgﬁ(t:;Icarr?«(iaonosur?ewtiats:afof Oll%\r;\jFu{T'?E gver?trs

We now describe the handling of the different events during replay. ' ST)
9 greplay For example, for the code in Figure 1, statemefttubl e res =

INCALL Events.To replay INCALL events, our technique first n. val : ” would be replaced by the following code (assuming that

extracts from the event its three attributes: (1) receiver, which con- classNode is defined in packagear):

sists of type and object ID, (2) method called, and (3) parameters.
Second, it retrieves from the reference map the instance corre-

sponding to the receiver’s object ID. In this case, the object is nec- Covalty

essarily already in the map, unless the method called is a construc- -
y y b, MethodconsuneRead retrieves the next event from the event log

tor or the invoked method is static. If the INCALL does correspond . .
to a constructor, the technique calls the constructor to create the ob-and checks Whether the eventis of the rlght type and the parameters
ject and associates it with the object ID in the event. If the call is ".‘atCh th.e attributes of the event. .” so, 1t ret_rleve_zs the value asso-
static, no object is retrieved. ciated with the event and returns it. Otherv_wse, it reports an error

’ rto the user. MethodonsuneWw i t e behaves in an analogous way,

Third, the technique scans the list of parameters. For each scala)
parameter, it retrieves the value from the event. Conversely, for but does not r.e‘“”‘ any value because, n the case of GUTWRITE
events, no variable in the observed code is modified.

each non-scalar parameter, it retrieves the corresponding object us
ing the object ID. The retrieved object canibe |, an actual ob- INWRITE EventsTo replay an INWRITE event, our technique

ject, if its class is part of the observed set, or a (possibly newly- first retrieves from the event attributes (1) the receiver object (if
created) placeholder object otherwise.

Finally, the technique calls the specified method on the object (or 2Qur technique actually operates at the bytecode level, and this
on the class, in the case of static calls) using the retrieved param-example is just for illustration purposes.

MethodconsunecCal | retrieves the next event from the event log
and checks whether the event is of type OUTCALL and the param-
%ters match the attributes of the event. If this is not the case, an
error is reported to the user.

doubl e res = scaffol ding. consuneRead(" ‘ bar/ Node' ",
< objectID forn >,

the accessed field is non-static), which represents the object whose Using SCARPE, we performed a feasibility study. The goal of
field is being modified, (2) the name of the field being modified, the study was to assess whether the technique can be used on some-
and (3) the value to be assigned to the field. As usual, the value canthing more than a toy application and to evaluate its practicality. As
be an actual scalar value, an actual object, a placeholder object, ora subject, we used ANOXML, an XML parser that consists of 19

null. Analogous to INCALL events, if the field is non static, the classes and about 3,300 lines of code. To executedXML, we
receiver object is necessarily already existent when the INWRITE used a test suite, developed by other researchers, that contains 216
event occurs. After collecting the information, the technique sim- test cases. For each clasén the application, we defined an ob-

ply sets the value of the field in the identified object (or in the class, served set consisting efonly and ran all test cases in the test suite

in the case of static fields) to the appropriate value. using SCARPE. In this way, we recorded 216 event logs (one for

. each test case in the test suite) for each of the 19 classes in the ap-
EXCIN Events.Our teChmque replays EXCIN eyents by ex plication, for a total of more than 4,000 logs. We then replayed, for
tracting from the event the object ID for the exception, retrieving

: i T each class, all the recorded executions for that class.
the corresponding object, and throwing i. The feasibility study was a complete success, in that all execu-
EXCOUT EventsThe replay scaffolding consumes EXCOUT tions were correctly captured and replayed. We checked the cor-
events by providing an exception handler that catches any excep-rectness of the replay both by making sure that all of the events
tions that may propagate from the observed code. The handler re-generated by the observed set were matching the logged events and
trieves the next event from the event log and checks whether the by spot checking some of the executions. (To this end, we created a
event is of type EXCOUT and the exception thrown matches the special version of SCARPE that reports all of the events generated
exception that was recorded. If not, an error is reported to the user.by the observed code and lets the user inspect them.)

Although this is just a feasibility study, and the evaluation of our

2.5 Additional Considerations technique is still in its early stages, we consider the successful cap-
For space reasons, we glossed over several technical details. Ifure and replay of thousands of executions a very promising result.
this section, we concisely discuss the most relevant ones. 4. RELATED WORK

Assumptions: Our technique works under some assumptions. We Several techniques have been defined for capture and replay of
assume that there is no direct access from an unmodifiable class 4 p play

to a field of an observed class. Unmaodifiable classes are typically ?StAILeTSEplI(l::)atlg?s\}e-rl;genéegglrlliuiéza[tgis ;nt(; scthrneilajzdatno do;;f)clls
in system libraries, so we expect this assumption to hold in most E Dy 9 ' d

cases—Ilibraries do not typically know the structure of the classes in L?r S:F;te}"; ::Sd t;]eeplsi)z;r?(;a%eg;\t;;rfp?fvji?g ZTSSS;};JZ% It(iﬁgt
the application. We also assume that the interleaving due to multi- q P

threading does not affect the behavior of the observed code lBecaus records_ all inputs to the running program. During replay, a”O‘hef
our technique does not order “internal events” (e.g., calls between customized API feeds the recorded data back to the program. This

observed methods), which occur naturally during replay. Finaly, (CCate TEAE B T B 02 BRSO e e
we assume that runtime exceptions occur deterministically. for each execution MOI‘EO?/E]RAPTU RFI; re uiI‘F;.'S twoFéustomized
Special handling of specific language featuresOur technique) ’ d

can nandle st uses of eflecton However,n some cases (e 500 010 AL e v on s,
when reflection is used in external code to modify fields of ob- q p

served classes), additional instrumentation is required. AnalogouslylgorlIce);gﬂgls'cr?rg:it(gg;\%’ ip?ait]‘?o’r r%ﬂ‘]gr altgaﬁ}?zrrhcgu:zﬁlt?z:]h?ezgg d

to correctly handle all accesses to arrays, some additional instru- . . . p
y ys, Java program executions [1, 2]. DejaVu supports debugging activi-

mentation is required. Finally, inheritance and access modifiers re-ties by performing a fullv-deterministic replay of non-deterministic
quire some special handling. In particular, in some cases, the tech- yp '9 y crepiay ofn
xecutions. DejaVu and our technique have different goals and,

nigue must change access modifiers of class members to be able t Us. a different set of constraints and tradeoffs. DeiaVu focuses
replay recorded executions (which can be done without affecting ') o . ’ Javul 1c
on reproducing, giving the same inputs, the same application be-

the semantics of the observed code). e
havior in terms of concurrency-related events, has no need to store

input and output values, and does not have efficiency constraints.
3. EMPIRICAL EVALUATION) Our technique is mostly concerned with automatically capturing

To evaluate our technique, we built SCARPE (Selective Capture anq replaying subsystems and has efficiency as a priority because
And Replay of Program Executions), a prototype tool that imple- e want the technique to be usable also on deployed software.
ments our technique, and used it on a software subject. During cap- Recently, Saff and Ernst presented a technique for automated test
ture, SCARPE runs the application being captured using a custoM¢actoring that aims at improving the efficiency of testing by auto-
class loader. Such class loader inputs the list of observed classesyatically building mock objects for testing units in isolation [8].
and instruments (modifiable) classes on the fly, at class-loading athough interesting, their approach is still preliminary. Our tech-
time, using the Byte Code Engineering Library (BCEL this nique seems to provide better support for Java’s object-oriented
way, we simplify the capture phase because there is no need to SaVgeatyres and characteristics (e.g., it is not clear how their approach
instrumented versions of the application and related libraries and to,yoy|d handle exceptions and unmodifiable classes). Also, our ap-
use special class paths during execution. This aspect is especiallyyoach is more general and can be used for different applications.

important if the technique is to be used on users’ machines. | fact, our replay scaffolding could be used as a set of mock ob-
During replay, SCARPE acts as the replay scaffolding. It mim- jects for the subsystem or unit of interest.

ics the behavior of the part of the system that is not being re-

played (i.e., the external code) and suitably reproduces and con-5. CONCLUSION AND FUTURE WORK

sumes events. Also in this case, the necessary instrumentation is We presented a novel technique for selective capture and replay
performed on the fly, by means of another custom class loader. of program executions, a tool that implements the technique, and a
study performed on a real application that shows the feasibility of
Shttp://jakarta. apache. or g/ bcel / the approach. There are many possible directions for future work.

In the immediate, we will continue our evaluation of the ap- its replayed execution. In this context, we are currently working on
proach to assess the performance of our technique on various subeombining our approach with Zeller's delta debugging [11], to find
jects and executions. In particular, we must evaluate our techniquea minimal set of interactions that lead to the failure.
in the case of multi-threaded programs. To this end, we have started Another potential direction for future work is the use of static
collecting subjects and improving our tool. Through experimenta- analysis and, possibly, profiling information to help users decide
tion, we will assess the efficiency of our technique and its limits. which classes should be included in the observed set. Currently,
The results will drive refinements or extensions of our approach. the technique requires the users to define the observed set and does

Other research directions consist of investigating the use of the not provide any support for this task. Static analysis and profil-
technique for various applications. We discuss a few possibilities. ing could help identify classes that are tightly coupled and that,

A first possible application ipost-mortem dynamic analysis of if separated, may generate an impractical number of interactions.
users’ executionsOur technique could be used to selectively cap- (Although our technique collects minimal information, there may
ture users executions and to perform dynamic analysis (e.g., cover-still be cases in which the execution log becomes too large to be
age or performance analysis) of the observed code while replayingpractical.) Appropriate analyses could suggest the users ways to
these executions. We envision the investigation of this application improve the performance of the technique by either including more
in several scenarios. One scenario involves the collection of the classes in the observed set (e.g., classes that are tightly coupled
users’ executions to replay them in-house. Another possibility is to with classes already in the set) or by excluding some classes (e.qg.,
replay and analyze the executions on the users’ machines, leveragelasses tightly related with external code and not cohesive with the
ing free cycles, and collect the results of the analysis only. (Note observed set). Static analyses such as flow analysis could also be
that this second scenario would eliminate most privacy issues: theused to identify classes that should be excluded from the observed
only data collected from the users would be analysis results, suchset because they handle confidential data.
as performance data, possibly further sanitized.) Yet another pos- Finally, from a more practical standpoint, a possible research di-
sibility is to use some criterion for deciding which executions to rection is to modify the technique to work at the Java Virtual Ma-
delete and which ones to gather. For example, only executions thatchine, rather than at the bytecode, level. While this approach sacri-
terminate with an exception could be sent back for analysis. fices portability, it has the potential to improve the performance of

Another possible application i®gression testing Subsystem the capture phase, as well as to allow for a more accurate replay of
and unit test cases could be generated from complete executions othreaded programs [2].
the application (e.g., as JUnit test cases) and used to test new ver-
sions of such subsystems and units. The major issue with this ap-ACknOWIedgmentS
plication is that our technique collects minimal information during This work was supported in part by NSF awards CCR-0205422,
capture. The technique may not be able to replay the captured ex-CCR-0306372, and CCR-0209322 to Georgia Tech. Shrinivas Joshi
ecution when the interactions between observed and external codéelped implementing the tool. The attendants of the Dagstuhl Sem-
change in the new versions. For example, consider a new version ofinar on “Understanding Program Dynamics” gave useful comments
classConput e (see Figure 1) in which methagkt Rat i o accesses on an early version of this work [6]. Gregg Rothermel provided the
field si ze of objectht . In such a case, we would not be able to software subject and the test cases for our empirical evaluation.
replay the execution afonput e because our log would contain no
information about an access that was not occurring in the original 6. REFERENCES
version of the class. For this application of the technique, it is first [1] g- Alpern, T. Ngo, J--Dl- Cgoit; and Mf. Sgidlrlargn. D(\a}'avu:|
necessary to study sets of changes between versions of various pro- Mgtcer:m::Ifgllgr?::eﬁﬁggofeogggse[AOEOSSE A%‘&ﬂgg’;ges
grams to assess how often the replay on a different version of the 165-166, 2000.

Observed set Would fa” One Way to dO thIS iS to Capture execu- [2] J.-D. Choi and H. Srinivasan. Deterministic rep]ay ofa'av

tions for a given version of a class or subsystem, replay them on a multithreaded applications. Proceedings of the Symposium on
set of subsequent versions of such class or subsystem, andrmeasu Parallel and Distributed Toolspages 48-59, 1998.

how often the replay results iout-of-syncevents. In some cases, 3] R.Konuru, H. Srinivasan, and J.-D. Choi. Determinisgplay of
it may be possible to simply ignore such out-of-sync events (e.g., distributed java applications. Rroceedings of the Intl. Parallel &

. . Distributed Processing Symposiupages 219-228, 2000.
when the event does not affect the main flow of the computation). [4] T. Lindholm and F. Yellin.The Java Virtual Machine Specification

In other cases, those events may be handled by providing some de- ~ * (2nd Edition) Addison-Wesley Pub Co, 1999.

fault value to the observed code (e.g., for OUTCALLRET events [5] A. Orso, T. Apiwattanapong, and M. J. Harrold. Leveraygiield
that corresponds to unmatched OUTCALL events). We will also data for impact analysis and regression testing2risceedings of
investigate ways to extend the amount of information captured and ESEC/FSE 2003pages 128-137, september 2003.

[6] A.Orso and B. Kennedy. Improving dynamic analysis through

to balance the resulting trade-offs between efficiency and effective- 8 ! ; .

L - partial replay of users’ executions. In J. Choi, B. Ryded an
ness. For example, we are already considering the possibility of A. Zeller, editors Online Proceedings of the Dagstuhl Seminar on
capturing complete objects of some classes, such aisng. _ Understanding Program DynamicBecember 2003.

A third application isdebugging Consider again the example in http://www dagst uhl . de/ 03491/ Pr oceedi ngs.
Figure 1. The example contains a fault. If (1) the integer passed [7] M. Russinovich and B. Cogswell. Replay for concurrent
to set up has the same value as the integer returned by the call to gigf’f;%ré“g;;gcs ;f;asfezdé?elrgggy applicationsPtoceedings of
dbd gf(.et ngs:; nt Wlﬁhm set up, (.2) thl? \éaluedofileldw%r.mls ZOt [8] D. Saff and M. D. Ernst. Aufomatic mock object creation festt
redefined, (3) methodet Rat i o is called, and (4) predicate &s factoring. InProceedings of PASTE 200dages 49-51, June 2004,
> 0" evaluates to true at least once, then the application generates [9] J. Steven, P. Chandra, B. Fleck, and A. Podgurski. jReptd
a division by zero and fails. An execution that terminates with such capture/replay tool for observation-based testinq?oceedings of
failure could be arbitrarily long and involve a number of interac- ISSTA 2000pages 158-167, 2000.

tions between users, application, and database/filesystem. In this[10] K.C.Tai, R. H. Carver, and E. E. Obaid. Debugging coneat Ada

- : programs by deterministic executidEEE TSE 17(1):45-63, 1991.
context, we could selectively capture the execution of a subsystem [11] A. Zeller and R. Hildebrandt. Simplifying and isolating

of interest (e.g., the one in which the failure occurs) and then debug failure-inducing inputlEEE TSE 28(2):183—200, 2002.

