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Abstract

Object oriented features like information hiding,
inheritance, polymorphism, and dynamic binding,
present new problems, that cannot be adequately
solved with traditional testing approaches. In this
paper we address the problem of integration testing
of procedural object oriented systems in the pres-
ence of polymorphism. The kind of polymorphism
addressed is inclusion polymorphism, as provided
by languages like C++, Eiffel, CLOS, Ada95, and
Java.

This paper proposes a technique for testing com-
binations of polymorphic calls. The technique ap-
plies a data-flow approach to newly defined sets of
polymorphic definitions and uses, i.e., definitions
and uses that depend on polymorphic calls. The
proposed testing criteria allow for selecting execu-
tion paths that can reveal failures due to incor-
rect combinations of polymorphic calls. The paper
describes the technique and illustrates its efficacy
through an example.

Keywords: testing object oriented programs with
inclusion polymorphism, data-flow testing, integra-
tion testing, test data selection criteria.

1 Introduction

Object oriented systems present new challenges for
testing, due to new features and different structure
of object oriented programs [13]. Traditional ap-
proaches break down in the face of features like in-
formation hiding, inheritance, polymorphism, and
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dynamic binding. The problem of testing object ori-
ented software has been investigated only recently.
Some papers present methods and techniques to ad-
dress specific problems, but many issues are still
open. In particular, the problem of testing the ef-
fects of dynamic bindings of polymorphic calls has
been investigated only in a few papers [7, 10, 15],
that mainly concentrate on selecting test cases for
testing isolated calls. These techniques, although
extremely useful for testing polymorphic calls in iso-
lation, do not address an important class of failures,
i.e., failures related to interactions between different
polymorphic invocations.

This paper concentrates on this latter problem:
the selection of adequate test cases for testing com-
binations of polymorphic calls during integration
testing. The kind of polymorphism addressed is in-
clusion polymorphism, as provided by languages like
C++, Eiffel, CLOS, Ada95 and Java. The paper
assumes a traditional bottom-up integration test-
ing strategy, where a class A is integrated with all
classes containing methods that can be bound to
calls occurring in class A itself. This paper iden-
tifies an important class of failures that can derive
from the use of polymorphic calls in object oriented
programs. The considered failures are due to the
combined effects of different polymorphic invoca-
tions along specific execution paths. Such failures
occur during integration testing and can remain un-
caught using currently available testing techniques.
The technique proposed in this paper allows for se-
lecting more accurate test cases aiming at revealing
the identified class of failures. The paper shows that
traditional data-flow test selection criteria [2] can be
straightforwardly extended by suitably defining new
def and use sets that take into account the pres-
ence of dynamic binding. The possibility of easily
extending traditional criteria allows for applying a
well known body of knowledge to the new problem



and the easy combination of new and traditional
coverage criteria. The next section briefly discusses
the problems arising in the presence of polymor-
phic calls that can be dynamically bound to dif-
ferent methods. The following section surveys the
main techniques proposed so far for testing object
oriented programs in the presence of polymorphism.
Section 4 introduces the new approach: it first de-
scribes Inter Class Control Flow Graphs (ICCFGs),
the program representation used to define the tech-
nique; then, it illustrates the proposed technique re-
ferring to a simple example; finally, it introduces a
few definitions, and discusses the application of dif-
ferent path selection criteria. The last two sections
discuss the technique with the help of an example
and conclude recalling the main results achieved so
far.

2 Polymorphism and Testing

In object oriented programming, the term polymor-
phism indicates the possibility for the same entity
to dynamically refer to instances of different classes.
With typed languages, like the ones considered in
this paper, polymorphism is constrained by inheri-
tance [11], i.e., types can be substituted only within
a type or a class hierarchy. For example, in Java a
reference to an object of type A can be bound to
an object of any type B, as long as B is a sub-type
of A (including A itself). The type A provided in
the declaration is called static type; the type of the
object B bound during an execution is called dy-
namic type. This kind of polymorphism is referred
to as inclusion polymorphism [1] or, more specifi-
cally, as subclass polymorphism. The invocation of
a method on a polymorphic entity can result in dif-
ferent bindings depending on the dynamic type of
the entity. The possibility of binding different meth-
ods at run time is called dynamic binding. With
dynamic binding, the actual object that processes
a message, and thus the method actually invoked, is
not statically known, but it is an instance of one of
a finite number of classes. In the following, we use
the terms virtual method (borrowed from C++) or
polymorphic method to denote a method defined in
a class A and redefined in some of the subclasses of
A. Analogously, we use the terms virtual invocation
or polymorphic invocation to denote the invocation
of a virtual (polymorphic) method.

Testing programs in the presence of inclusion
polymorphism and dynamic binding presents new
problems due to the infeasibility of statically iden-
tifying actual bindings. Exhaustive testing of all
possible combinations of bindings may be impracti-
cal, and thus a technique is needed, which allows for
selecting adequate test cases. The work surveyed in
the next section provides interesting techniques that

address the problem of testing polymorphic calls in
isolation. As for traditional programs, most fail-
ures are not caused by a single invocation, but by
the combined effects of different invocations along
an execution path. Such failures can remain un-
caught while focusing on isolated calls. In the case
of polymorphic invocations, it is important to be
able to select paths according to the combinations
of contained invocations and corresponding bind-
ings to adequately test their combined effects. For
example, let class Person, with a public method
height, be specialized into classes Woman and Man,
both redefining the method height. Let us as-
sume that, for some error in the internationalization
of the code, method height in class Man returns
the value in inches, while method height in class
Women returns the value in centimeters. Testing
the two polymorphic invocations in the fragment
of code shown in Figure 1 independently, would not
reveal the trivial problem derived from comparing
inches and centimeters. An adequate test must con-
sider combinations of invocations and correspond-
ing bindings along execution paths.

1. Person pl, p2;
2. int hi=pl.height();
3. int h2=p2.height();

4. if(hl < h2) ...

Figure 1: Faulty polymorphic invocations in Java

3 Related Work

The general problems of testing object oriented sys-
tems are addressed in several papers. However, the
specific problem of testing programs with polymor-
phic references is discussed in some details only in
a few papers. Here we survey the main proposals
for inclusion polymorphism. Proposals for different
kinds of polymorphism are not reviewed since they
are not directly related with the work described in
this paper.

Kirani and Tsai [7] propose a technique for gen-
erating test cases from functional specification for
module and integration testing of object oriented
systems. The method generates test cases that ex-
ercise specific combinations of method invocations.
The method addresses object oriented testing in
general, but is not specifically designed for coping
with polymorphism and dynamic binding. In par-
ticular, it does not address the problem of selecting
bindings for the polymorphic calls in the exercised
combinations. A full solution of such problem would



require analysis of the code, while Kirani and Tsai
focus on functional testing.

McDaniel and McGregor [10] propose a tech-
nique for reducing the combinatorial explosion of
the number of test cases for covering all combi-
nations of polymorphic caller, callee, parameters,
and related states. The technique is based on latin
squares [9]: a set of specific orthogonal arrays are
used to identify the subset of combinations of the
state of each object and its dynamic type to be
tested. The method ensures coverage of all pairwise
combinations. It applies to single calls but does not
consider the combined effects of different calls, as
required in integration testing.

Paradkar [15] proposes a pairwise integration
strategy based on the relationships among classes,
and a heuristic method for selecting test cases based
on states of objects. The heuristic method allows
for identifying some infeasible combinations and
thus limits the number of test cases for integration
testing, focusing on the integration order, but not
on the combination of different bindings.

4 A Data-Flow Technique for
Testing Polymorphism

Programs that contain polymorphic invocations
may fail due to specific combinations of dynamic
bindings that occur along an execution path, and
behave correctly for different combinations of dy-
namic bindings for the same path. To adequately
test such programs, we need selection criteria that
identify paths differing only for the specific combi-
nations of dynamic bindings. Traditional data-flow
test selection criteria distinguish paths that differ
for occurrences of definitions and uses of the same
variables, but do not take into account the possibil-
ity that such definitions or uses may depend on in-
vocations of different methods dynamically bound.
In this section we propose a new data-flow test se-
lection technique that distinguish different combi-
nations of dynamic bindings for the same paths.
Before describing the new technique, we briefly
illustrate the mechanism referring to the example
of Figure 1. Let us assume that the fragment of
code shown in the figure is part of a large program,
comprising different complex paths. A test selec-
tion criterion able to reveal the failure due to the
different units of measure must generate test data
that exercise a path containing the nodes represent-
ing statements 2, 3, and 4, but this is not enough.
The fault is revealed only if at least one of these
test cases corresponds to different bindings of the
polymorphic invocations that occur at nodes 2 and
3, e.g., a test case that causes the polymorphic invo-
cation at line 2 to be dynamically bound to method

height of class Man and the invocation at line 3 to
be bound to method height of class Woman. Tradi-
tional data-flow testing criteria do not distinguish
among different bindings, and thus cannot generate
the required test data. They could success in re-
vealing the failure only by chance. The technique
proposed in this paper overcomes this problem by
defining new sets def’ and useP, that contain vari-
ables together with the polymorphic methods that
can be “directly” or “indirectly” responsible for their
definition or use.

In the example of Figure 1, the node repre-
senting the statement at line 2 would be asso-
ciated with a deff set containing the two pairs
(h1, Man.height) and (h1l,Woman.height), that
reflect the different methods that can be dynam-
ically responsible for the definition of variable hl.
Analogously, the node corresponding to line 3 would
be associated with a deff set containing the two
pairs (h2, Man.height) and (h2, Woman.height).
The node representing the statement at line 4
would be associated with a useP set containing the
four pairs (h1l, Man.height), (h1, Woman.height),
(h2, Man.height), and (h2, Woman.height). This
latter case is less intuitive than the former ones.
As explained in detail in Section 4.2, in this case
the set useP capture how the result of the compu-
tation could depend on the invocation of different
polymorphic methods, either directly or through in-
termediate variables.

The new sets allow for easily adapting traditional
data-flow test selection criteria to cover paths dif-
fering only for the specific combinations of dynamic
bindings. The new testing criteria require the cover-
age of different combinations of elements of the de-
fined sets, and thus different combinations of bind-
ings of polymorphic methods. In particular, any
of the criteria described later in this paper would
select test data required to reveal the failure of the
program in Figure 1. Notice that the simple unfold-
ing of all polymorphic calls would not lead to the
same result, since it would not distinguish between
polymorphic and non-polymorphic definitions and
uses. The simple unfolding would be equivalent to
the integrated criteria mentioned in Section 4.3. Al-
though integrated criteria are extremely appealing,
they are more expensive, while the criteria derived
from the new sets represent interesting intermediate
cases, that allow for identifying smaller set of no-
table test cases. Considering only polymorphically
related definitions and uses allows for focusing on
the class of failures identified in this paper.

This section starts recalling the definition of In-
ter Class Control Flow Graph (ICCFG), used as
a reference model for the software to be tested; it
then introduces the new concepts of polymorphic
definition and polymorphic use; it finally describes



class A {
public void m1() {...};
public void m2() {...};
};
class B extends A {
public void m1() {...};
};
class C {
private A refTol;
private A a;
public C() {refToA=null;
a=new A;}

public void setA(A a) {refToA=a;}
public void m() {

if (refToA != null)

refToA.m1();

a.m2();
return;

}
};

Figure 2: A fragment of Java code

how traditional data-flow selection criteria can be
adapted to the new sets, and discusses problems of
infeasible paths, scalability, and complementarities
with traditional data-flow test selection criteria.

4.1 ICCFGs

Traditional data-flow test selection criteria are de-
fined starting from a control flow graph representa-
tion of the program to be tested. In this paper, we
refer to a simplified version of the Inter Class Con-
trol Flow Graph (ICCFQG) [3], that extends inter-
procedural control flow graphs to the case of object
oriented programs. To avoid language dependent
assumptions, for presenting the technique we con-
sider a Java-like programming language, that pro-
vides a subset of Java constructs, namely, basic con-
trol constructs, inheritance, polymorphism and dy-
namic binding. As an example, Figure 2 shows a
simple Java-like program, and Figure 3 shows the
corresponding ICCFG. In ICCFGs, each method
is represented by a Control Flow Graph (CFG).
Nodes represent single-entry, single-exit regions of
executable code. Edges represent possible execu-
tion branches between code regions. Each CFG
corresponding to a method has an entry node and
an exit node, both labeled with the name of the
method. Classes are represented with class nodes,
labeled with the name of the class. Class nodes are
connected to the entry nodes of all the methods of
the class with class edges. The hierarchy relation
among classes is represented with hierarchy edges
between class nodes.

Each Method invocation is represented with a call
node and a return node, suitably connected to the
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Figure 3: The ICCFG for the program of Figure 2

entry node and the exit node of the invoked method
with inter-method edges. Each non-polymorphic
call corresponds to a single pair of inter-method
edges. Each polymorphic call corresponds to a set
of pairs of inter-method edges, one for each method
in the binding set, i.e., the set composed by all the
possible dynamic bindings of the invoked method.
In both cases, inter-method edges must be prop-
erly paired in a path, i.e., when exiting a method,
we need to follow the edge corresponding the con-
sidered invocation. Paths comprising only properly
paired inter-method edges are traditionally called
valid paths. Hereafter, we refer only to valid paths.

In the general case, a superset of the binding set
can be statically constructed as follows: if A is the
static type of the object the method m1 is invoked
upon, then we add to the approximated binding
set A.m1 and all the methods overriding A.m1 in
A’s subclasses. In the example shown in Figure 2,
the approximated binding set constructed in this
way for the call “refToA.m1()” would contain A.m1
and B.m1. This simple algorithm can include many
infeasible bindings. More accurate approximations
of the binding set can be constructed by applying
several methods, most of which corresponding to
polynomial algorithms [8, 14, 5, 16, 6]. However,
the general problem of identifying the exact binding
set is undecidable. The algorithms proposed so far
work for special cases and in general can determine



an approximation, not the exact set. As discussed
later in this section, the determination of a good
approximation of the binding set can greatly alle-
viate the problem of infeasible paths, but does not
solve the problem addressed in this paper, namely
the identification of a reasonable set of test cases
for exercising relevant combinations of bindings oc-
curring along execution paths.

A path in the ICCFG is a finite sequence of nodes
(n1, ng, ..., ng), with k& > 2, such that there is an
edge from n; to n;y1 for i= 1, 2, ..., k-1. A path is
loop-free if all occurring nodes are distinct. A path
is complete if its first node is the entry node of a
method, and its last node is the exit node of the
same method.

We model statements containing more than one
polymorphic invocation with several nodes, to have
at most one polymorphic invocation per node.
For example, the statement “if (p.m() < q.m())”,
where both invocations are polymorphic, is mod-
eled with two nodes corresponding to statements
“tmpvar = p.m()” and “if (tmpvar < q.m())”, re-
spectively. Without loss of genericity, we assume
that code regions contain at most one polymorphic
call and only mutually related definitions and uses,
i.e., if a variable v; belongs to the set use(n), and a
variable vs belongs to the set def(n), then v; con-
tributes to the definition of vs.

4.2 Polymorphic Definitions and

Uses

The data-flow testing technique proposed in this pa-
per aims at identifying paths containing polymor-
phic invocations whose combination may lead to in-
correct results. As stated above, incorrect behaviors
may depend on the specific bindings of the invoca-
tions along the execution paths. Traditional def(n)
and use(n) sets do not distinguish among different
bindings, and thus they do not provide enough in-
formation for our goal. To meet the goal, we anno-
tate nodes of the ICCFG graph with the new sets
def’ (n) and useP (n), that provide the required in-
formation. Sets def’ (n) and wuseP (n) contain only
variables defined or used as a consequence of a poly-
morphic invocation. Variables in the sets def’(n)
and useP (n) are paired with the polymorphically
invoked method responsible for their definition or
use, respectively. The same variable often occurs
in several pairs of the same deff (n) or useP (n) set,
since it can be defined or used as a consequence
of the polymorphic invocations of different meth-
ods. These definitions of sets def’ (n) and use? (n)
allow for easily adapting traditional data-flow test
selection criteria to the case of programs contain-
ing polymorphic invocations. The obtained criteria
distinguish among paths that differ for the polymor-

phically invoked methods responsible for the defini-
tions and uses of the same variable. Thus, they can
identify paths containing different polymorphic in-
vocations whose combination may lead to incorrect
results. In this section, we introduce sets def’ (n)
and use? (n). Test selection criteria are discussed in
the next section.

Let us assume that each node n of the ICCFG
graph is annotated with the traditional sets def(n)
and use(n) [17]. Sets def(n) contain all the variables
which are bound to a new value as a consequence
of the execution of the code region modeled with
node n. Sets use(n) contain all the variables whose
values are used by the code region modeled with
node n. A def-clear path with respect to a variable
v is a path (ny, ng, ..., ng) such that v & def(n) for
n="mnz, N3, ..., Mg—1-

Each node n of the ICCFG is associated with two
additional sets deff(n) and use?(n). Sets deff(n)
contain pairs composed of a variable name and a
method name. In this paper we assume that names
uniquely identify the corresponding elements, i.e.,
are disambiguated by prefixing the name of the class
they occur in, when needed. A pair (v, m) belongs
to set deff (n) if variable v is either directly or in-
directly defined by virtual method m at node n. A
variable v is directly defined by a virtual method
m at node n if the statement that defines variable
v contains an invocation that can be dynamically
bound to method m. In this case, the polymorphic
invocation is directly responsible for the computa-
tion of the new value of variable v. A variable v is
indirectly defined by a virtual method m at node n
if a variable w that contributes to define variable v
is directly or indirectly defined by virtual method m
at a node p, and there exists a def-clear path from
node p to node n with respect to w. In this case
there exists a chain of related definitions and uses
from a polymorphic definition of a variable w; to
the definition of variable v. More specifically, the
polymorphic invocation of method m is directly re-
sponsible for the computation of the new value of a
variable wy; such value may be used to define the
value of a variable ws, and so on; a path of uses
and definitions leads to the definition of variable
w, whose value is used to compute the new value
of variable v. Such a path, that can be arbitrarily
long, cannot contain additional definitions of one
of the involved variables, i.e., each sub-path from
the definition of w; to its use to define w;41 is a
def-clear path with respect to w;.

Similarly, sets use?(n) contain pairs composed
of a variable name and a method name. A pair
(v, m) belongs to the set useP (n) if variable v is used
in either direct or indirect relation with a virtual
method m. A variable v is used in direct relation
with the virtual method m at node n, if it is used



in a statement that contains an invocation that can
be dynamically bound to method m. In this case,
the result of the computation depends on the com-
bination of the value of variable v and the results of
the polymorphic invocation. A variable v is used in
indirect relation with the virtual method m at node
n if it is used in a statement that uses a variable
w, variable w is directly or indirectly defined by vir-
tual method m at a node p, and there exists a def-
clear path from node p to node n with respect to w.
In this case the result of the computation depends
on the combination of the value of variable v and
the value of variable w, whose definition depends
on a polymorphic invocation. Intuitively, the result
of the computation depends on the combination of
the value of variable v and the results of the poly-
morphic invocation through the chain of definitions
and uses that determine the indirect polymorphic
definition of variable w. In general, the concepts
of indirect definitions and uses avoid loss of infor-
mation caused by the use of intermediate variables
between different polymorphic invocations.

Examples of variables directly and indirectly
polymorphically defined or used by virtual meth-
ods are given in Figure 4.

1. k=9;

2. y=0;

3. x=polRef.m()+k;
4. do {

5 z=y;

6. y=x*2;

7. } while(z < w);

Figure 4: Examples of direct and indirect polymor-
phic definitions and uses

direct polymorphic definition: Variable z is
polymorphically directly defined by all methods mq,

. My, that can be dynamically bound to the in-
vocation polRef.m() at statement 3. Thus, pairs
(z,m1)...{x, my) belong to the set def’ (3) associ-
ated to statement 3.

indirect polymorphic definition: Variable y
is polymorphically indirectly defined at statement 6
by all methods my, ... m, that can be dynamically
bound to the invocation polRef.m() at statement
3, since y is defined using z at statement 6; z is
polymorphically defined at statement 3; and there
exists a def-clear path with respect to x from state-
ment 3 to statement 6 ((3, 4, 5, 6)). Thus, pairs
(y,m1) ...{y, my,) belong to the set def’ (6) associ-
ated to statement 6.
Variable z is polymorphically indirectly defined at
statement 5 by all methods mq, ... m, that can be
dynamically bound to the invocation polRef.m() at
statement 3, since z is defined using y at node 5; y is
polymorphically defined at node 6; and there exists

a def-clear path with respect to y from node 6 to
node 5 ((6, 7, 4, 5)). Thus, pairs {z,m1) ... {(z,my,)
belong to the set def’ (5) associated to statement 5.

direct polymorphic use: Variable k is poly-
morphically directly used by all methods my, ...
my that can be dynamically bound to the invoca-
tion polRef.m() at statement 3, since k is used in an
expression comprising such polymorphic call. Thus,
pairs (k,m1) ... (k,m,) belong to the set def (3) as-
sociated to statement 3.

indirect polymorphic use: Variable w is
polymorphically indirectly used at statement 7 by
all methods my, ... m, that can be dynamically
bound to the invocation polRef.m() at statement
3, since w is used in an expression that also uses
z; z is polymorphically defined at statement 5;
and there exists a def-clear path with respect to z
from statement 5 to statement 7 ((5, 6, 7)). Thus,
pairs (w,my) ... (w,my) belong to the set use”(7)
associated to statement 7.

An algorithm for computing sets def(n) and
useP (n) is given in Figure 5. Since this paper is
mostly focused on demonstrating the essentials
of the proposed technique, we only consider
alias-free programs and we focus on intramethod
definition-use chains. We are currently working on
extending the technique to the intermethod case by
following an approach similar to the one presented
by Harrold and Soffa [4]. The algorithm is applied
to a subgraph of the ICCFG corresponding to
the control flow graph of a single method. The
algorithm assumes that the code regions associated
to the nodes of the ICCFG contain only definitions
and uses mutually related, as stated above.

The algorithm of Figure 5 is polynomial in the
number of nodes. Here we indicate a rough approx-
imation of its complexity; a formal and precise com-
putation can be found in [12]. Loops (1), (9), (26)
and (30) are executed once for each node. Loop (14)
is executed as many times as the maximum number
of nodes, since each iteration adds the information
about indirectness relative to an additional level of
ancestors (assuming a preorder traversal), and the
number of ancestors of each node cannot exceed the
total number of nodes. Each execution of loop (14)
comprises a loop on all nodes (statement 17) which
comprises a loop on the preset of each node (state-
ment 19), whose cardinality does not exceed the
total number of nodes in the worst case. Thus, we
have a cubic factor in the worst case.

The traditional concepts of du-path and du-
set[17] can be easily extended as follows. A du-
path? with respect to a variable v is a path (ng,
n2, ..., ng) such that (v,m1) € def (n1), (v,m2) €
useP (ny) (for any virtual methods m; and ms), and
(n1, na, ..., ng) is a def-clear path with respect to



Input:

G = (N, E,ng): a subgraph of the ICCFG, corresponding to the control flow graph of a method annotated with code regions
corresponding to each node.

Output:

28:
29:
30:
31:

32:
33:

e el
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DEF?(G): set of def?(n), one for each node n € N.
USEP(G): set of use?(n), one for each node n € N.
for all nodes n € N do
/* build the sets def(n) and use(n) */
def(n) = {v|v is a variable defined by a statement occurring in the code region of node n}
use(n) = {v|v is a variable used by a statement occurring in the code region of node n}
/* build the initial sets defP(n) and use? (n) considering only direct definitions and uses */
de fP(n) = {{v, m)|v is a variable defined by a statement occurring in the code region of node n and m is a virtual method
which can be dynamically bound to an invocation occurring in the same node}
use? (n) = {(v, m)|v is a variable used by a statement occurring in the code region of node n and m is a virtual method
which can be dynamically bound to an invocation occurring in the same node}
end for
for all nodes n € N do
/* build the initial sets avail?(n) from the initial sets defP(n), thus considering only direct definitions */

avail? (n) = UkEpreset(n){defp(k)}

: end for
: changed = true
: while changed do

/* build the sets avail? (n) by incrementally adding pairs (v, m) such that either one of the following conditions holds:
1) (v, m) belongs to the set avail? (k), being k an immediate predecessor of node n, and variable v is not defined by any
statement occurring in the code region of node k
2) variable v is defined in a non-polymorphic way by a statement occurring in the code region of node n which uses variable
v1, and the pair (vi, m) belongs to avail® (k), of an immediate predecessor of node n.
Terminate when the last iteration does not modify any of the sets.
preset(n) indicates the immediate predecessors of node n. */
changed = false
for all nodes n € N do
old = avail?(n)
avail? (n) = avail? (n) U {{v, m)|3k € preset(n)({v, m) € avail®(k) Av & def(k))}
U{{v,m)|v € def(n)A Am1({v,m1) € defP(n)) A Jv1 € use(n) A Ik € preset(n)({u, m) € avail®(k))}
if avail? (n) <> old then
changed = true
end if
end for

: end while
: for all nodes n € N do

/* build the complete sets def?(n) starting from sets avail? (n), thus considering also indirect polymorphic definitions; a
pair (v, m) is added to the set defP(n) if variable v is defined in a non-polymorphic way by a statement occurring in the
code region of node n, and the pair (v, m) belongs to avail? (n) */
defP(n) = defP(n) U {(v,m)|v € def(n)A Am1i({v,m1) € defP(n)) A (v, m) € avail?(n)}

end for

for all nodes n € N do
/* build the complete sets use? (n) starting from sets avail?(n), thus considering also indirect polymorphic uses; a pair
(v,m) is added to the set defP(n) if variable v is used in a non-polymorphic way by a statement occurring in the code
region of node n in conjunction with the use of a variable v1, and the pair (v1, m) belongs to avail?(n) */
use? (n) = use? (n) U {(v,m)|v € use(n)A Am1({v,m1) € useP(n)) A Jv1({v1i, m) € avail? (n) A vi € use(n))}

end for

Figure 5: An algorithm for computing sets def?(n) and use?(n).



v. A polymorphic du-set, du? (v,n), for a variable v
and a node n is the set of nodes ¢ such that there
exists a du-path from node n to node i.

4.3 Path Selection Criteria

Starting from the data-flow information associated
with the ICCFG, it is possible to define a family
of test adequacy criteria for exercising polymor-
phic interactions among classes by extending tra-
ditional data-flow selection criteria [17]. The ex-
tensions consider the differences between the tradi-
tional sets def(n) and use(n) and the newly defined
sets def’ (n) and useP (n). Traditional data-flow se-
lection criteria only require given nodes to be tra-
versed according to given sequences of definitions
and uses. New criteria take into account also the dy-
namic type of the polymorphic references occurring
in the paths, i.e., they indicate which dynamic bind-
ings must be exercised. To formalize this principle,
we introduce the concepts of polymorphic coverage
(p-coverage) and coverage of polymorphic uses (u-
coverage). Given a node n, a pair (v, m) in deff (n)
(resp. in useP (n)), and a path ¢ that includes node
n, an execution of path ¢ p-covers the pair (v, m) for
node n if the definition (resp. the use) of variable
v at node n depends (either directly or indirectly)
on the polymorphic invocation of method m in the
considered execution of path ¢. Informally, the ex-
ecution of path ¢ p-covers the pair {v,m) at node
n if the virtual invocation that defines (resp. uses)
variable v is dynamically bound to method m while
executing path q.
Given a node n, a pair (v,m) in use?(n), and a set
P of paths that include node n, the set P u-covers
v for n if for each pair (v, m1) € use? (n), there ex-
ists a path ¢ € P whose execution p-covers (v, m1)
for n. Informally, a set of paths P u-covers vari-
able v for node n if the executions of the paths in P
p-cover all pairs containing v in use? (n). In the fol-
lowing we also use the expression “a path p-covers
a pair (v, m)” to indicate that an execution of the
path p-covers such pair. Extended criteria require
not only the traversal of specific paths, but also that
the executions of such paths p-cover specific pairs.

Most traditional data-flow test selection criteria
can be extended to the polymorphic case. To il-
lustrate the technique, we present the all-defs, all-
uses, and all-du-paths criteria extended for poly-
morphism. A complete set of criteria can be found
in [12].
Given an ICCFG and a method m, let T be a set of
test cases corresponding to executions of the set of
complete paths P for the control flow graph G of a
method:

T satisfies the all-defsP criterion if for every node
n belonging to G' and every pair (v, m) € def’ (n),
at least one path in P p-covers (v, m) for n and the

set P u-covers v for at least one node n; € du? (v,n).
Intuitively, for each polymorphic definition of each
variable, the all-defsP criterion exercises all possi-
ble bindings for at least one polymorphic use. It
naturally extends the traditional all-defs criterion
by requiring the execution of all bindings for the
chosen use.

T satisfies the all-uses? criterion if for every node
n belonging to G and every pair {(v,m) € def (n),
at least one path in P p-covers (v, m) for n and the
set P u-covers v for all nodes ny € du? (v,n).
Intuitively, the all-uses? criterion subsumes the all-
defsP criterion by extending the coverage to all poly-
morphic uses of each polymorphic definition, ex-
actly like the traditional all-uses criterion subsumes
the all-defs criterion.

T satisfies the all-du-paths? criterion if for ev-

ery node n belonging to G, for every pair (v,m) €
deff (n), and for every node ny € du?(v,n), at least
one path in P p-covers {v,m) for n and P u-covers
v for ny along all possible def-clear paths with re-
spect to v.
Intuitively, the all-du-pathsP criterion subsumes the
all-usesP criterion, by requiring the selection of all
def-clear paths from each polymorphic definition to
each corresponding polymorphic uses for all possi-
ble bindings.

Any of the defined criteria applied to the sim-
ple example of the fragment of code shown in Fig-
ure 1, would require the two possible binding of the
virtual method height to be exercised in combi-
nation. Thus, for this simple example, any of the
proposed methods would reveal the trivial failure of
the program, that may remain uncaught with other
approaches that focus on single polymorphic calls.

The criteria proposed in this paper add a new
dimension, namely the dynamic bindings, to the
traditional dimensions of definitions and uses. Ig-
noring the different bindings, the new criteria do
not differ from the corresponding traditional crite-
ria projected on the variables involved in polymor-
phic definitions and uses. Integrated approaches
can be straightforwardly defined by applying a tra-
ditional criterion to all variables, and extending the
coverage of variables involved in polymorphic defi-
nitions and uses referring to the corresponding new
criterion. “Hybrid” criteria can be straightforwardly
defined by introducing new criteria that refer to a
mixture of traditional and polymorphic def and use
sets. For example, by requiring the coverage of all
polymorphic uses of each traditional definition. A
detailed discussion of integrated and hybrid criteria
can be found in [12].

4.4 Feasibility of the Approach

The impossibility of determining the feasibility of
execution paths and dynamic bindings causes prob-



lems similar to the ones experienced in traditional
approaches, namely, the impossibility of determin-
ing the exact coverage. Infeasible execution paths
affect the new criteria as the traditional criteria,
since polymorphism does not modify the set of fea-
sible paths. Infeasible dynamic bindings create new
problems, that depend on the approximation of
the computed binding sets. The simple algorithm
sketched in Section 4.1 can identify many infeasible
bindings that can greatly reduce the effectiveness of
the approach. However, a careful choice of an ap-
propriate methods for computing the binding set,
e.g., one of the methods cited in Section 4.1, can
greatly reduce the problem. As in the traditional
case, the problem of infeasible paths depends on
the chosen criterion: we did not notice any notable
change with respect to the traditional case when us-
ing simple criteria, such as the all-deff criterion; the
infeasibility problem can become heavier with more
sophisticated criteria, like the all-du-paths?. The
experiments conducted so far on well designed pro-
grams did not reveal a notable increase of infeasi-
ble paths due to bad approximations of the binding
sets, computed with an appropriate method.

5 Example

In this section we present the application of the pro-
posed approach to an example: a set of four Java
classes: Polygon, Circle, Square, and Figure.
Figure 6 shows the skeleton of the Java code of the
example. The statements composing the method
addPolygon have been numbered and edited to have
at most one polymorphic call per line of code, thus
simplifying the correspondence between the code it-
self and the partial ICCFG shown in Figure 7. Class
Figureis a container of objects of type Polygon, hi-
erarchically specialized as Circle and Square. In
the example, class Figure can contain up to two
polygons. We are interested in computing the area
of objects of type Figure starting from the areas
of the contained objects. Contained objects of type
Polygon have a sign determining whether their area
has to be computed as positive or negative.
Figures can be built by adding Polygons with
the following rules: a polygon cannot intersect pre-
viously inserted polygons; if the inserted polygon is
completely contained in a previously inserted poly-
gon, then its sign becomes negative; if the inserted
polygon completely contains a previously inserted
polygon, then the sign of the contained polygon be-
comes negative. Classes Square and Circle are im-
plemented as subclasses of Polygon. Class Polygon
is an abstract class which defines the concrete meth-
ods getX, getY, setX, setY, setSign, getSign,
and area, which are inherited unchanged by both
classes Square and Circle. Class Polygon declares

class Figure {

public boolean addPolygon(Polygon p) {
1 if (polyl==null) {

2 polyl=p;

3 return true; }

4 else if(poly2 != null) return false;
5 else {

6 int pminX=p.minX();

7 int pmaxX=p.maxX();

8 int pminY=p.minY();

9 int pmaxY=p.maxY();
10 if (pminX < polyl.minX()) {
11 if (pmaxX > polyl.maxX()) {
12 if (pminY < polyl.minY()) {
13 if (pmaxY > polyl.maxY()) {
14 polyl.setSign(1);
15 poly2=p;
16 return true; }}}}
17 if (pminX > polyl.minX()) {
18 if (pmaxX < polyl.maxX()) {
19 if (pminY > polyl.minY()) {
20 if (pmaxY < polyl.max¥Y()) {
21 p.setSign(-1);
22 poly2=p;
23 return true; }}}}
24 if (! (pminX>polyl.maxX())) {
25 if (! (pmaxX<polyl.minX())) {
26 if (! (pminY>polyl.max¥Y())) {
27 if (! (pmaxY¥<polyl.minY())) {
28 return false; }}}}
29 poly2=p;
30 return true; }

}

public double area() {

double a=0;

if (poly2 != null) a+= poly2.area();
if(polyl != null) a+= polyl.area();
return a;
}
}
abstract class Polygon {

protected abstract double unsignedArea();
public abstract int minX();
public abstract int minY();
public abstract int maxX();
public abstract int maxY();

final public int getX() {return x;}
final public int getY() {return y;}
final public void setX(int xx) {x=xx;}
final public void setY(int yy) {y=yy;}
final public void setSign(int s) {...}
final public int getSign() {...}

final public double area() {...}

}

class Circle extends Polygon {

protected double unsignedArea()

{return (3.14*radius*radius);}
public int minX() {return (getX()-radius/2);}
public int maxX() return (getX()+radius/2);
public int minY() return (getY()-radius/2);
public int maxY() return (getY()+radius/2);

}

class Square extends Polygon {

protected double unsignedArea()

{return (edgexedge);}
public int minX() {return (getX()-edge/2);}
public int minY() return (getY()-edge/2);
public int maxX() return (getX()+edge/2);
public int maxY¥() return (getY()+edge/2);

Figure 6: The Java skeleton of the sample program



Class Figure

Figure

Figure::addPolygon(Polygon p) entry

Figure::addPolygon(Polygon p) exit

Figure 7: A partial ICCFG for the example

Figure 8: An example in which the contain relation
would be computed incorrectly

[ Node ] def? (n) |
6 <pminX,Circle.minX>, <pminX,Square.minX>
7 <pmaxX,Circle.maxX>, <pmaxX,Square.maxX>
8 <pminY,Circle.minY>, <pminY,Square.minY >
9 <pmaxY,Circle.maxY>, <pmaxY,Square.maxY >

[ Node ] use? (n) |
10 <pminX,Circle.minX>, <pminX,Square.minX>
11 <pmaxX,Circle.maxX>, <pmaxX,Square.maxX>
12 <pminY,Circle.minY>, <pminY,Square.minY >
13 <pmaxY,Circle.maxY>, <pmaxY,Square.maxyY >
17 <pminX,Circle.minX>, <pminX,Square.minX>
18 <pmaxX,Circle.maxX>, <pmaxX,Square.maxX>
19 <pminY,Circle.minY>, <pminY,Square.minY >
20 <pmaxY,Circle.maxY>, <pmaxY,Square.maxyY >
24 <pminX,Circle.maxX>, <pminX,Square.maxX>
25 <pmaxX,Circle.minX>, <pmaxX,Square.minX>
26 <pminY,Circle.maxY >, <pminY,Square.maxyY >
27 <pmaxY,Circle.minY >, <pmaxY,Square.minY >

Table 1: Sets deff (n) and use? (n) for the example

also the abstract methods minX, minY, maxX, maxy,
and unsignedArea, which are defined in the two
subclasses.

In the example, method addPolygon checks if a
newly inserted polygon is enclosed in an existing
one by comparing their cartesian coordinates, that
are computed by the dynamically bound methods
minX, minY, maxX, and maxY. Due to the way coor-
dinates are computed, method addPolygon would
erroneously consider cases like the one shown in
Figure 8. This fault can be revealed only by suit-
able combining dynamic bindings of polymorphic
invocations of methods minX, minY, maxX, and max¥
in method addPolygon. Testing techniques dealing
with single calls would not reveal such faults, since
the fault is not due to a single invocation, but to
the combined use of different dynamic bindings. In
this section we show how the all-du-paths? criterion
used for integration testing of the four classes would
select a sequence of dynamic bindings that could re-
veal the fault. In the following, we apply the tech-
nique to the method addPolygon, that contains the
fault.

The subset of the ICCFG for method addPolygon
of class Figure is shown in Figure 7. Nodes con-
taining relevant polymorphic invocations are high-
lighted with double circles; nodes call, return, and
relative inter-method edges are omitted. Table 1
shows the sets deff (n) and use? (n), respectively, for
all relevant nodes of the ICCFG.
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def [

use |

1 <pminX, C.minX> (6) <pminX, C.minX> (10)
2 <pminX, C.minX> (6) <pminX, S.minX> (10)
3 <pminX, C.minX> (6) <pminX, C.minX> (17)
4 <pminX, C.minX> (6) <pminX, S.minX> (17)
5 <pminX, C.minX> (6) <pminX, C.mazX> (24)
6 <pminX, C.minX> (6) <pminX, S.mazX> (24)
7 <pminX, S.minX> (6) <pminX, C.minX> (10)
8 <pminX, S.minX> (6) <pminX, S.minX> (10)
9 <pminX, S.minX> (6) <pminX, C.minX> (17)
10 <pminX, S.minX> (6) <pminX, S.minX> (17)
11 <pminX, S.minX> (6) <pminX, C.marX> (24)
12 <pminX, S.minX> (6) <pminX, S.mazX> (24)
13 <pmazX, C.mazX> (7) | <pminX, C.mazX> (11)
14 <pmazX, C.mazX> (7) | <pminX, S.mazX> (11)
15 <pmazX, C.mazX> (7) | <pminX, C.mazX> (18)
16 <pmazX, C.mazX> (7) <pminX, S.mazX> (18)
17 <pmazX, C.mazX> (7) <pminX, C.minX> (25)
18 <pmazX, C.mazX> (7) <pminX, S.minX> (25)
19 <pmazX, S.mazX> (7) <pminX, C.mazX> (11)
20 <pmazX, S.mazX> (7) <pminX, S.mazX> (11)
21 <pmazX, S.mazX> (7) <pminX, C.mazX> (18)
22 <pmazX, S.mazX> (7) <pminX, S.mazX> (18)
23 <pmazX, S.mazX> (7) <pminX, C.minX> (25)
24 <pmazX, S.mazX> (7) <pminX, S.minX> (25)
25 <pminY, C.minY> (8) <pminY, C.minY> (12)
26 <pminY, C.minY> (8) <pminY, S.minY> (12)
27 <pminY, C.minY> (8) <pminY, C.minY> (19)
28 <pminY, C.minY> (8) <pminY, S.minY> (19)
29 <pminY, C.minY> (8) <pminY, C.mazY> (26)
30 <pminY, C.minY> (8) <pminY, S.mazY> (26)
31 <pminY, S.minY> (8) <pminY, C.minY> (12)
32 <pminY, S.minY> (8) <pminY, S.minY> (12)
33 <pminY, S.minY> (8) <pminY, C.minY> (19)
34 <pminY, S.minY> (8) <pminY, S.minY> (19)
35 <pminY, S.minY> (8) <pminY, C.mazY> (26)
36 <pminY, S.minY> (8) <pminY, S.maz¥> (26)
37 <pmazY, C.mazY> (9) | <pminY, C.mazY> (13)
38 <pmazY, C.mazY> (9) <pminY, S.maz¥> (13)
39 <pmazY, ComazY> (9) | <pminY, C.mazY> (20)
40 <pmazY, C.mazY> (9) | <pminY, S.mazY> (20)
41 <pmazY, C.mazY> (9) | <pminY, C.minY> (27)
42 <pmazY, C.mnazY> (9) | <pminY, S.minY> (27)
43 <pmazY, S.maz¥Y> (9) <pminY, C.mazY> (13)
44 <pmazY, S.maz¥> (9) <pminY, S.mazY> (13)
45 <pmazY, S.maz¥> (9) <pminY, C.mazY> (20)
46 <pmazY, S.maz¥> (9) <pminY, S.mazY> (20)
47 <pmazY, S.maz¥Y> (9) <pminY, C.minY> (27)
48 <pmaz, S.maz¥Y> (9) <pminY, S.minY> (27)

Table 2: Polymorphic definition-use pairs for the
example (where C. stands for Circle., and S. stands
for Square.)

Table 2 pairs polymorphic definitions with re-
lated polymorphic uses on def-clear paths. Each
line indicates a polymorphic definition as a pair
(variable, method), the corresponding use, and the
nodes of the ICCFG they are associated with.

The all-du-pathsP criterion requires at least a test
case for each path covering all pairs shown in Ta-
ble 2. Table 3 shows a possible set of (sub)paths
covering all such pairs, and indicates the pairs cov-
ered by each (sub)path. Any set of test cases, that
exercise a set of complete paths including the sub-
paths shown in Table 2 satisfy the all-du-pathsP cri-
terion. In Table 3, when necessary, bindings for
a node n belonging to a path are shown with the
following syntax: “ref=-C” (resp. S) states that the
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reference ref must be bound, in node n, to an object
of type Circle (resp. Square), while any indicates
that there are no constraints on the bindings for
node n.

The paths selected by the all-du-paths? crite-
rion represent all combinations of possible dynamic
bindings, including the ones leading to the de-
scribed failure, i.e., paths covering the polymorphic
definitions-use pairs of lines 9, 21, 33, 45 of Table 2.
Tests selected according to the boundary values cri-
teria for the given paths and bindings would reveal
the fault.

6 Conclusions

Inclusion polymorphism and dynamic binding intro-
duce new problems, as far as integration testing of
procedural object oriented systems is concerned. In
this paper we identify an important class of failures
that can derive from the presence of polymorphic
calls in object oriented programs. The considered
failures are due to the combined effects of different
polymorphic invocations along an execution path.
Such failures occur during integration testing and
can remain uncaught using the currently available
techniques for testing in the presence of polymor-
phism, that focus on the testing of polymorphic
calls in isolation.

In this paper we have presented a data-flow test-
ing technique which allows for selecting more ac-
curate test cases aiming at revealing the identi-
fied class of failures. The paper has shown that
the data-flow test selection criteria for identifying
such failures can be straightforwardly derived from
traditional data-flow testing techniques by suitably
defining a new kind of def and use sets. The possi-
bility of easily extending traditional criteria allows
for applying a well known body of knowledge to the
new problem and the easy combination of new and
traditional coverage criteria.
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