A Technique for Dynamic Updating of Java Softwar e*

Alessandro Orso, Anup Rao, and Mary Jean Harrold
College of Computing
Georgia Institute of Technology
{orso,prime,harrold} @cc.gatech.edu

Abstract

During maintenance, systems are updated to correct
faults, improve functionality, and adapt the software to
changes in its execution environment. The typical software-
update process consists of stopping the system to be up-
dated, performing the update of the code, and restarting
the system. For systems such as banking and telecommuni-
cation software, however, the cost of downtime can be pro-
hibitive. The situation is even worse for systems such as
air-traffic controllers and life-support software, for which
a shut-down is in general not an option. In those cases,
the use of some form of on-the-fly program modification is
required. In this paper, we present a new technique for dy-
namic updating of Java software. Our technique is based
on the use of proxy classes and requires no support from
the runtime system. The technique allows for updating a
running Java program by substituting, adding, and deleting
classes. We also present Dusc (Dynamic Updating through
Swapping of Classes), a tool that we developed and that im-
plements our technique. Finally, we describe an empirical
study that we performed to validate the technique on a real
Java subject. The results of the study show that our tech-
nique can be effectively applied to Java software with only
little overhead in both execution time and program size.

1 Introduction

In the software maintenance phase, programs are up-
dated to correct faults, improve functionality, and adapt the
software to changes in its execution environment. The typ-
ical software-update process consists of stopping the sys-
tem to be updated, performing the update of the code, and
restarting the system. Many applications, however, must
run continuously and have maximum downtime require-
ments on the order of a few minutes per year [16]. For
example, banking and telecommunication software systems
have a prohibitive downtime cost. The situation is even

*This work was supported in part by a grant from Boeing Aerospace
Corporation to Georgia Tech, by National Science Foundation awards
CCR-9988294, CCR-0096321, and EIA-0196145 to Georgia Tech, and by
the State of Georgia to Georgia Tech under the Yamacraw Mission.

worse for systems such as air-traffic controllers and life-
support software, for which the interruption of the service
is in general not an option. Furthermore, the number of ap-
plication domains in which systems must deliver continu-
ous reliable service during update is growing, and dynamic
software updating is thus becoming an increasingly impor-
tant issue.

Dynamic software updating is the task of updating parts
of a program without having to terminate its execution. Dy-
namic software updating can be performed in several dif-
ferent ways, depending on the specific context considered.
In particular, we can distinguish between hardware- and
software-based dynamic updating techniques. Hardware-
based dynamic updating techniques are based on hardware
redundancy, are fairly expensive, and target specific con-
texts (e.g., space mission software). Software-based dy-
namic updating techniques, on the other hand, require no
hardware support, and are thus more generally applicable.
We can further distinguish software-based techniques based
on the degree of support that they require from the runtime
system. In the particular case of Java, techniques that rely
on the runtime system require a customized version of the
Java Virtual Machine (JVM [12]) to be applicable.

In this paper, we present a new software-based technique
for dynamic updating of Java software that is completely
defined at the program level. Therefore, our technique re-
quires no support from the runtime system and can be gener-
ally applied to any Java application. Our technique operates
by first statically modifying the application to enable its dy-
namic updating® (through class renaming and code rewrit-
ing) and then performing hot-swapping of classes (i.e., ab-
stract data types and their instances) at runtime, when a
new version of one or more class(es) is available. Un-
der some assumptions, our technique permits generic up-
dates of Java applications and has the following character-
istics/properties:

Semantics preservation. The swapping-enabled applica-
tion has the same behavior as the original application. Also,

IWe refer to such modified application as swapping-enabled applica-
tion hereafter.

after an update, the updated application has the same behav-
ior as if it were built from scratch using the updated set of
classes (rather than being dynamically updated).

Atomicity of updates. Updates involving more than one
class are performed atomically, so avoiding problems re-
lated to inconsistent versions of different parts of the pro-
gram being present in the code at the same time. In addi-
tion, the update is performed so that (1) all instances of an
updated class are atomically migrated from the old to the
new version of the class, (2) no instances of the old classes
are executing after the update is completed, and (3) all in-
stances of the older version are eventually destroyed (i.e.,
garbage collected).

Minimal or no human intervention required. Given a
Java application, our technique generates the correspond-
ing swapping-enabled application in a fully automated way.
Given a set of updated classes, our technique also gener-
ates the updating code and performs the update of the ap-
plication in a fully automated way. The only case in which
human intervention is needed is when the migration of the
state from an old to a new version of the class requires the
developer’s knowledge of the code.? Therefore, in most
cases, the use of the technique is completely transparent to
both the user and the developer.

Support for changes at different levels. Although opti-
mized to operate at the class level, our technique lets us per-
form updates at different levels of granularity: from changes
involving a single statement to structural modifications of
the whole application.

No runtime-system support required. As stated above,
our technique is designed to work on any program running
on any implementation of the JVM that complies to the
standard [12].

Many solutions to the problem of dynamic software up-
dating have been proposed [2, 3, 5, 6, 9, 8, 10, 13, 16, 18]
and several international organizations (including the Ob-
ject Management Group and the Java Community Process)
are developing proposals for specifying models and APIs to
support dynamic application updates. Nevertheless, to the
best of our knowledge, our technique is currently the only
technique that works for generic Java applications and does
not require a customized JVM to be applied.

To validate our approach, we implemented our technique
in a tool called Dusc (Dynamic Updating through Swap-
ping of Classes). In this paper, we describe our implemen-
tation of Dusc and an empirical study that we performed
using such implementation. In the study, we performed dy-
namic updates of a real Java subject and (1) compared the
behavior of the swapping-enabled applications with the be-

2Consider, as an example, a situation in which a new version ¢’ of class
c is provided and ¢’ contains a new attribute z that is defined as having
the value of c.x + c.y. In such a case, there is no way for the program to
infer the way z should be initialized, unless ¢’’s developer provides such
information.

havior of the corresponding original applications, (2) per-
formed different dynamic updates of the application, and
(3) measured the cost of the technique in terms of perfor-
mances. The results of the studies show that Dusc can be
effectively applied to Java software with only little overhead
in both execution time and program size.

The main contributions of this work are:

1. definition of a new technique for dynamic update of
Java software,

2. implementation of the technique in a tool, and

3. empirical validation of the technique on a real Java
subject.

2 Dynamic Software Updating

In this section, we describe our technique for dynamic
updating of Java code. First, we illustrate the problem and
provide an intuition of our proposed solution. Then, we
describe the assumptions that must be satisfied for the tech-
nique to be applicable. Finally, we provide technical details
about the technique.

2.1 Overview

Dynamic software updating is the task of updating parts
of a program without having to terminate its execution. As
stated in the Introduction, our goal is to define a software-
based technique for dynamic updating of Java software that
requires no support from the runtime system and can be
generally applied to any Java application running on any
implementation of the Java Virtual Machine (JVM) that is
compliant with the Sun’s JVM specification [12] (i.e., we
define a technique that works without any support from the
run-time system).

Given two versions P and P’ of a generic Java program,
the differences between P and P’ can be expressed in terms
of three, possibly empty, sets: the set AD D of added classes
(i.e., classes in P’ and not in P), the set DEL of deleted
classes (i.e., classes in P and not in P’), and the set M OD
of modified classes (i.e., classes that are both in P and in
P', but differ in the two programs). Therefore, to be able to
dynamically update a program, we must be able to (1) add
classes to the program, (2) remove classes from the pro-
gram, and (3) substitute classes in the program. (Note that
the above description refers to the update of the code only
and does not account for the state of the executing program.
The problem of migrating the state of P to P’ is addressed
in Section 2.3.)

Consider, for example, the two versions of a simple ap-
plication shown in Figure 1. On the left-hand side of the
figure, we show the initial application, which is composed
of classes A, B, C, and D; class A uses class B,® which uses

3The specific kind of use of the class—e.g., method invocation on an
instance of B—is irrelevant in this context. We consider that a class C'1
usesa class C2 if C1 may contain a reference to C2.

Initial Application

class A

class C class D

D del et ed
E added

v B nodified to B v
class B Cnodified to C class B’

Updat ed Application

class A

[classc | | classE |

Figure 1. Example of application update.

classes C and D in turn. On the right-hand side of the fig-
ure, we show the updated application, which is composed
of classes A, B, C , and E. In the figure, we also show
that, to get from the initial to the updated application, class
B has been modified (replaced) with class B’ , class C has
been modified (replaced) with class C , class D has been
deleted, and class E has been added. Therefore, in this case,
set ADD contains class E, set DEL contains class D, and
set M OD contains classes B and C.

Adding classes to a running program is straightforward
and requires only some engineering effort; the only requi-
site is to be able to add class files in any location that is
accessible through the class path.# Each newly-added class
will then be loaded the first time the program uses it (e.g.,
when the program instantiates the class or accesses one of
the class’s static members). In the case of the example, af-
ter we add class E, the class will be automatically loaded
the first time that an instance of class B’ uses it.

Removing classes from the application is also fairly
straightforward; in the Java run-time system, the garbage
collector automatically removes from the program memory
objects that are no longer referenced in the application. In
the example, after we substitute class B with class B’ , exist-
ing objects of the old type B are no longer referenced (see
below) and are thus garbage collected. Consequently, ob-
jects of class D are no longer referenced (objects of class
C can be referenced only by objects of class B) and are
garbage collected as well. (The above description assumes
that we remove only classes that are no longer used by any
of the classes in the application, which is an obvious re-
quirement.) From a practical standpoint, the deleted classes
could also be physically removed (e.g., to save space).

Substituting classes in the application is far from triv-
ial. For each class C' that is being substituted with a class
C', we must (1) modify the application so that any new in-
stance of C that is created after the update is an instance
of C’, and (2) migrate all the existing objects of type C' in
the application at the moment of the upgrade to objects of

4Although different specific cases may need slightly different solutions,
we do not describe such solutions because the focus of the paper is on the
updating technique, rather than on the engineering of its implementation.

type C'. Therefore, we need a way of addressing these is-
sues and enabling the substitution of one or more (possibly
all) classes in the application. More precisely, we need a
technique that takes the bytecode of a Java application and
a list of the classes that must be changeable (target classes,
hereafter) as input, and produces an equivalent program in
which the specified classes can be dynamically substituted
(i.e., a swapping-enabled version of the application).

Our technique addresses the above problems by using
wrapper classes . A wrapper class for a class C'is a class
that has the same name and provides the same interface as
class C and acts as a proxy for such class. Given a program
P, we generate a new program Py, . in which we create a
wrapper class for each target class C' in P. We also modify
C so that none of its clients can obtain a direct references
to any instance of C and all calls to C' in P result in call
to the wrapper for C' in Pg,s.. Because the wrapper is a
proxy, every time a method in the wrapper is called, the
wrapper forwards the corresponding call to an appropriate
instance of class C. This level of indirection lets us replace
class C' with a different class at runtime. To perform the
substitution of C' with C’, we (1) create a new instance of
C' for each instance of C, (2) transfer the state from the old
to the new instance, and (3) update the wrappers so that they
refer to the newly created instances after the update. The
application can then continue its execution (transparently)
using the updated class(es).

Note that we provided a high-level and intuitive view
of the way our technique operates, in which most details
are omitted. For the technique to work in the presence of
Java object-oriented features, such as inheritance, polymor-
phism, and dynamic binding, we must address and solve
a number of issues and consider several important details.
Such details are thoroughly presented in Section 2.3.

2.2 Assumptionsand Limitations

In the following, we present restrictions and limitations
of our technique.

Access to public and protected fields. Our technique re-
quires that no class in the application accesses public or pro-
tected fields of any of the target classes directly. All such
accesses must be performed through appropriate accessor

methods—typically, get and set methods. (This restriction
does not apply to fields that are constant and do not change
value from version to version.) This assumption, which is
necessary to maintain the level of indirection required by
our technique, is not overly restrictive; it is a common re-
quirement for object-oriented programming because it en-
forces information hiding [4, 14]. If this requirement is
not satisfied, we modify the application through bytecode
rewriting so that all direct accesses are transformed into one
or more invocations of an accessor method.

Reflection. Our technique assumes that reflection is not
applied to any target class or any component of a target
class. Reflection “allows programmatic access to informa-
tion about the fields, methods and constructors of loaded
classes, and the use of reflected fields, methods, and con-
structors to operate on their underlying counterparts on ob-
jects, within security restriction” [17]. In this paper, we
consider methods that inspect the information about a spe-
cific class, such as the methods inj ava. | ang. Cl ass, as
a form of reflection as well. If a statement uses information
obtained through reflection about either a target class or its
members, the substitution of that target class with a wrapper
would affect the behavior of the application (i.e., it would
not be semantics preserving).

Unmodifiable interfaces. To preserve the type safety of
Java, our technique requires that a new version of a target
class provides the same interface provided by the previous
version of the class: each version of a target class must pro-
vide the same set of public methods. This requirement does
not apply to private methods and instance variables, that can
be freely added to or removed from a new version of the tar-
get class. It is worth noting that, if the interface of a class
does need to be changed, our technique can still be used.
In that case, the class whose interface is changed would
be deleted from the application, and a new class would be
added that provides the new interface. Consider, for exam-
ple, the application in Figure 1 and assume that we need
to change class E’s interface. We would then create a new
class F' that provides the new interface and update the appli-
cation by removing class FE, adding class F', and replacing
class B’ with a class B” that uses the new interface. In this
case, though, the state of existing instances of E would be
lost.

Native methods. Our technique assumes that target
classes do not contain native methods. Native methods are
methods implemented in another programming language,
such as C, that can be used in Java through the Java Na-
tive Interface (JNI [11]). If a target class contains a native
method, our technique cannot analyze the class to build suit-
able wrapper and implementation classes (see Section 2.3
for a definition of implementation class). In practice, this
assumption holds in most cases because the use of native
code is required only for a few applications that have a low-

level interaction with the underlying system.®

Requirements for class updating. Whereas the opera-
tions of adding and deleting classes can be performed at
any time, substituting a class requires that no methods of
the class are executing during the update (i.e., no methods
of the class are on the stack). Therefore, when our tech-
nique attempts to perform a dynamic update, whether or not
an update actually takes place depends on runtime factors.
Although in most cases the ability to perform the update
only depends on waiting for some method of the target class
to complete its execution, this limitation could prevent the
updating of some specific classes in the application, that is,
classes such that one of their methods is always on the stack.
For example, assume that class A in Figure 1 has a method
mai n whose body contains an infinite loop in which some
method of B is called. In such a case, method mai n never
terminates its execution, and we cannot update class A with-
out shutting down the application.

Security. As we stated above, our technique enables the
updating of classes by analyzing the target classes and gen-
erating suitable wrapper classes. The process also involves
performing some changes to the target classes (as described
in Section 2.3). Such transformation of the target classes
could involve some security issues—malicious users may
obtain access to protected and private members of the target
classes. However, this problem does not occur in the orig-
inal application, which uses the target classes in a secure
way by construction. For the problem to occur, a malicious
user needs to (1) know about the details of our technique,
(2) know about the application internals, and (3) write a
suitable program that reproduces the application behavior
while exploiting the security leak.

2.3 TheTechnique

The process for the dynamic updating involves two dis-
tinct steps. The first step consists of transforming the ap-
plication to make it swapping-enabled by generating wrap-
pers and utility classes for each target class in the applica-
tion. The second step consists of the update, in which target
classes are updated with new versions and other classes are
possibly added to or removed from the application. In the
following, we describe the two steps.

2.3.1 Transformation

The goal of the transformation is to obtain a new application
that can be dynamically updated and is semantically equiv-
alent to the original application. To this end, we substi-
tute each target class C (possibly all classes in the applica-
tion), with a compound that consists of an implementation
class (C;), an interface class (C,), a wrapper class (Cy,),
and a state class (C').

5The fact that library classes often use native code is not a problem
for the application of our technique. The requirement only affects target
classes, which are almost always in the application, rather than in the li-
brary.

Oiginal system

Transformation

—

Updat e- enabl ed system

wr apper

B ’_L‘
interface
state

| inpl enentation

\

\

C
wr apper

D
wr apper

interface
REY state state

—p Userelation
——p> !Inheritance

relation

i npl enentati on

\ interface

i npl enmentation

Figure 2. Application transformation.

Implementation class. C; contains the implementation
of a version of class C'. Immediately following the transfor-
mation, class C; corresponds to version zero of C, that is,
the version of class C' in the original application. C; con-
tains a slightly modified version of all of C’s members, both
fields and methods. In addition, C; contains an additional
field, which is used to store a reference to the correspond-
ing wrapper class, an additional method, which encode C;’s
state in an instance of the state class and returns such in-
stance, and a set of special constructors, which are used
when performing an update of the class (see Section 2.3.2
for details).

Interface class. C, is an abstract class that is imple-
mented by all implementation classes corresponding to dif-
ferent versions of C. We use C, within the wrapper to
call methods on the implementation class. The wrapper can
access different implementation of C' through a reference
whose static type is C,,. We could obtain the same results
without using C,, by exploiting reflection, but the resulting
wrapper would be much less efficient in this case.

Wrapper class. C,, provides the same interface that class
C provides and, to any client of C' in the application, is in-
distinguishable from C. For every method m of C, there
is a corresponding method m,, in C,, with the same sig-
nature. The goal of each method m,, is twofold: perform-
ing bookkeeping for the update process, as described below,
and performing the same operation that m performs. m,,
accomplishes the latter goal by invoking the corresponding
method m in the current implementation class for C' and by
returning the value that the implementation class’s method
returns. To be able to call method m in the correct instance
of class C;, the wrapper class is provided with a field of
type C, (which is a superclass of C;). For each instance of
the wrapper, such field contains a reference to the object of

class C; that corresponds to that wrapper. In addition, the
wrapper class contains the following static members:

e A Vect or of C,. This vector is used to store refer-
ences to all instances of C; in the application. An ele-
ment is added to the array every time a constructor of
the wrapper is called, after the corresponding construc-
tor for C; has been called. Every time an instance of
the wrapper is garbage collected, the reference to the
corresponding instance of C; is eliminated. We refer
to this vector as instances vector.

e Aninteger value that keeps track of the number of C;’s
methods currently on the stack. The wrapper incre-
ment this value each time a method is called, before
calling the corresponding method in C;, and decre-
ments it each time one of C;’s methods returns. We
refer to this vector as stack counter.

e A method that can be used to request an update of C;.
We refer to this method as swap-request method.

State class. C is a class whose objects can be used to
encode the state of an instance of C;. Class C has the same
fields as class C; and is used to migrate objects of an up-
dated class from the old to the new version, as described in
Section 2.3.2.

To give an example of an application transformation,
Figure 2 shows how the application in Figure 1 would be
transformed to become swapping-enabled.

When substituting a target class with the set of four
classes described above, we must pay special attention to
how we handle object-oriented features in Java. Although
the handling of some features, such as instance methods, is
straightforward, the handling of other language constructs,
such as super calls, can be very complex (and, if per-
formed incorrectly, can cause the swapping-enabled appli-
cation to behave differently with respect to the original ap-

plication). In the following, we describe how we handle this
set of “possibly problematic” Java features.

Inheritance. In the swapping-enabled application, the
class hierarchy differs from the one in the original applica-
tion. Due to class renaming, the wrapper classes replace the
corresponding target classes in the inheritance tree. Each
implementation class is a subclass of the corresponding in-
terface class, which does not belong to the original inher-
itance tree. State classes are also not part of the original
inheritance tree. For example, assume that in the system
shown in Figure 2, Ais a superclass of D. In the correspond-
ing swapping-enabled system, A would be a superclass of
the wrapper class created for D, whereas the implementa-
tion class for D would no longer belong to the hierarchy.
There is a specific reason why implementation classes are
not subclasses of their wrappers: if implementation classes
were subclasses of their wrappers, a new wrapper would be
generated every time there is an update, when objects of the
new type are created to replace objects of the old type. Be-
cause the wrapper is responsible for the bookkeeping dur-
ing the updates, it cannot change between different versions
and thus cannot be created from scratch every time. There-
fore, wrappers and implementation classes must be related
by delegation, rather than by a class-subclass relation.

Static methods. Static methods in the target class are not
represented as static methods in the implementation class,
and instance methods are used instead. The wrapper redi-
rects static method calls to a special instance of the imple-
mentation class that is created to this end. In this way, the
wrapper can exploit method overriding to run the correct
version of the method through the interface class, so avoid-
ing the problem of static methods being statically linked.

this. The explicit use of t hi s is a problem for
our approach because it allows for bypassing the wrapper
class. If t hi s is returned by a method of an instantiation
class C;, it is possible for whichever object gets the refer-
ence to t hi s to access C; directly, without going through
the wrapper class. Furthermore, direct accesses to t hi s
are a problem also within C; itself, for the same reason.
Therefore, when creating the instantiation class, we redirect
all references to t hi s to references to the corresponding
wrapper. (To this end, we add a field to each implementation
class to store such reference, and modify the constructors
of the implementation class so that the field gets suitably
initialized, as described in the next paragraph.) More pre-
cisely, any call to a publ i ¢ internal method that occurs in
an implementation class gets redirected to the correspond-
ing method in the wrapper class, and any direct reference
to a publ i ¢ field that occurs in an implementation class
gets replaced with a call to an appropriate accessor method
suitably created in the wrapper class.

Constructors. Because of renaming, every time a target
class is instantiated, the corresponding wrapper gets instan-

tiated instead. When a wrapper is instantiated with a spe-
cific constructor, it calls the appropriate constructor for the
implementation class and passes a reference to itself as an
additional argument. Such reference is stored in the gen-
erated instance of the implementation class and is used in
place of t hi s to avoid direct accesses to the implementa-
tion class. Besides storing the reference to the wrapper and
performing some additional bookkeeping, the constructor
in the implementation class performs the same operations
as the constructor in the target class. Some special con-
structors are also added to the implementation class: one or
more copy constructors, which perform the migration of the
state from an old to the new version of the implementation
class during an update, and a constructor that builds (once
per class) the special object that is used by the wrapper to
run static methods.

Finalizers. Possible problems may arise if the finalizer
for a target class gets executed when an object of the cor-
responding implementation class is garbage collected. Ob-
jects of implementation classes are garbage collected as a
consequence of an update, and the finalizer may have a side
effect on elements of the object’s state that survive the ob-
ject and migrate to the new version. Consider, for instance,
a class C' that contains a reference f to a file that is open by
C” constructor and closed by C’s finalizer. When we up-
date C to C', all instances of C are eventually garbage col-
lected, but references f must keep their state because they
migrate to the newly created objects of type C'. Therefore,
when creating the implementation class for a target class,
we rewrite the code so that an implementation class’s fi-
nalizer is run only when the finalizer of the corresponding
wrapper is run.

Invocations to super methods. As we described above,
in the swapping-enabled system the original class hierar-
chy is lost. Therefore, invocations of superclass methods in
an implementation class need to be suitably modified. To
handle this problem, we (1) add to wrapper classes ad-hoc
methods that invoke the superclass methods, and (2) modify
calls to super in the implementation classes so that they
result in invocations of those methods instead.

2.3.2 Dynamic Update

Given a swapping-enabled application, in which all classes
that can be updated have been suitably processed, code up-
dates are relatively straightforward to accomplish. Note
that, in the following description, we assume that the user
performs valid updates. A dynamic update from program P
to program P’ using a given state mapping® is valid if, after
the change, the execution is guaranteed to reach a reachable

6The state mapping consists of the way we migrate the state from a
previous to the next version of the class. In the simplest case, state migra-
tion is achieved by performing a shallow copy of corresponding fields in
the two classes. If a more sophisticated migration is needed, the developer
must provide an ad-hoc state mapping.

state of P’ in a finite amount of time [6]. In this context,
we can simplify the above definition and say that a dynamic
update is valid if it brings P’ into a consistent state.

An update consists of a set of classes that must be added
to the system (AD D), a set of classes that must be removed
from the system (DEL), and a set of classes that must be
modified, that is, substituted (M OD). Addition and dele-
tion of classes are mostly an engineering problem, as dis-
cussed in Section 2.1, and can be performed straightfor-
wardly.

When an updated version of a target class is available,
we first generate the corresponding implementation class,
which will be used during the update. The substitution of
classes is then performed through interaction with the wrap-
pers of the classes to be updated. For each class that must
be updated, the swap-request method is called, and the new
version of the implementation class is passed as an argu-
ment. For the sake of the presentation, in the following, we
describe the update assuming that a single class is updated.
In the case of multiple classes, the process is analogous, but
we use a two-phase thread-based locking mechanism to en-
sure the atomicity of the updates.

When a swap-request method is called in the wrapper
for a class C, passing the new version C} of C; as a param-
eter, the wrapper first checks the value of the stack counter.
If the value is greater than zero (i.e., at least one method
of class C; is currently executing), the wrapper returns an
error and cancels the update. Otherwise, the wrapper per-
forms the update by iterating through the instances vector
and, for each instance (including the instance that we use to
“simulate” static members), performs the following actions:

1. Invokes on the instance the special method that en-
codes the current instance state in a state object and
returns it.

2. Creates a new object of type C} using the special copy
constructor that takes a state object as a parameter and
uses it to suitably initialize C;’s state.

3. Changes the value of the reference to the old object
in the instances vector to point to the newly created
object.

After each class for which a new version is available has
been suitably substituted, the classes in the ADD set are
added to the system, the classes in the D E L set are removed
from the system, and the update terminates.

Note that the constraint that the swapping of a class can
be performed only if no methods of that class are currently
executing may be overly restrictive. Static analysis tech-
niques may be used to identify methods whose execution
does not prevent an update. Based on our experimental find-
ings, we shall decide whether it is worth investigating this
and other improvements to the technique.

3 Empirical Evaluation

In this section, we describe the system that we developed
and that implements our dynamic-updating technique. We
also report on the results of an empirical study that we per-
formed using our system on a real Java subject.

3.1 System

To investigate the usefulness of our technique, we de-
veloped a tool that implements our dynamic-updating tech-
nique: Dusc (Dynamic Updating through Swapping of
Classes). Dusc is written in Java and exploits SOOT [15]
capabilities to perform bytecode rewriting. Figures 3 and 4
show a high-level view of Dusc.

| Targel Oasses

|
H !

| Pr eproc.

Java Oass
P e
| sfde |4 —— = —

d asses

I
I
I

Pr eprocessor [
IIIr_
Pr eproc
I

dass

Figure 3. Dusc tool—Preprocessing stage.

Dusc is logically composed of three main components:

Class Bytecode Preprocessor (CBP). CBP takes the
bytecode of a Java application and a list of target classes
as input and produces two sets of classes: the preprocessed
target classes, which are the classes that will be swap-
pable in the swapping-enabled application, and the prepro-
cessed system classes, which are the classes that will be im-
mutable. The preprocessing stage performs some “normal-
ization” of the code, such as modifying all direct accesses
to public fields of target classes with calls to appropriate ac-
cessor methods and adding accessor methods to the target
classes if needed.

Proxy Builder (PB). PB takes the bytecode of a prepro-
cessed class as input and generates a suitable wrapper class,
interface class, and state class.

Implementation Class Builder (ICB). Analogous to the
proxy builder, this component reads bytecode of a prepro-
cessed class and produces the corresponding implementa-
tion class.

DUSC Swappi ng Enabl er W apper
d ass I
busCc
Proxy Bui | der
Inlerface Stale
ass CI ass
Dusc
I npl enent ati on I npl enent ati on
O ass :>
Bui | der

Figure 4. Dusc tool—Swapping-enabling
stage.

Preproc.
O ass

PB and ICB builder are used jointly when producing the
swapping-enabled version of an application, whereas ICB is
used in isolation when a new version of a class is available
and only the corresponding implementation class is needed.

Figure 5 shows how updates are performed on a
swapping-enabled application. We integrate into the appli-
cation a module, called Update Manager (UM), that runs in
its own separate thread. The module is initialized by boot-
strap code inserted at the entry of the mai n method(s) of the
application and is aware of (1) which wrapper classes are in
the system, and (2) which version of each implementation
class is currently in the system. The UM module provides
an interface’ through which a user can request an update, by
providing the three sets of classes ADD, DEL, and M OD.

When UM receives a request for an update, it contacts
the wrappers involved in the update (i.e., the wrappers that
corresponds to classes in the M OD set) and, using a two-
phase locking mechanism, either performs an atomic update
or cancels the update if one or more wrappers cannot per-
form the swapping (because a method in the corresponding
class is currently executing). If the update is successful, UM
also suitably handles the addition of classes to and the re-
moval of classes from the system, according to the contents
of the ADD and DEL sets.

UM’s interface can also be used to perform simple
queries on the status of the application with respect to the
updating. To date, we have implemented queries for gather-
ing three kinds of information: (1) list of the names of the
wrappers in the application, (2) current version of the im-
plementation class for a given wrapper, and (3) current list
of pending updates. So far, we have used the query mecha-
nism mostly to check whether a requested update has actu-
ally been performed or is still pending.

3.2 Case Study

To validate the tool and the technique, we performed two
empirical studies using DEJAVOO [7], a regression testing
tool developed by some of the authors, as a subject program.
DEJAVOO is part of the JABA (Java Architecture for Byte-
code Analysis [1]) analysis framework, and consists of 43
classes and approximately 11KLOC. Given two versions of
a program, DEJAVOO (1) analyzes them to identify which
parts of the code are affected by the changes between the
two versions, and (2) reports to the user what needs to be
retested based on the results of the analysis.

In the first study, we generated a swapping-enabled ver-
sion of DEJAVOO (DEJAVOOQ 4., hereafter) by selecting
all classes as target classes. The goals of the study are (1) to
check that the original application and the (fully) swapping-
enabled application behave in the same way, and (2) to as-
sess the overhead caused by Dusc in terms of both execu-
tion time and memory requirements.

"The current interface is implemented through UNIX sockets using a
simple communication protocol.

For the first goal, we used a regression test suite that we
had developed for DEJAVOOQ, and ran it on both the original
application and on the swapping-enabled version. For each
test case, we then compared the results and verified that they
matched for the two applications.®

For the second goal, we ran the same regression-test
suite and measured the execution time and the memory re-
quirements for both DEJAVOO and DEJAVOO g4,s.. More
precisely, for both applications, we measured the time and
memory required to run each test case. For each test case,
we then computed the difference in both time and memory
required. The result are reported in Tables 1 and 2.

Table 1. Execution time results.
Differencesin execution time

maximum | minimum | avgerage
Absolute 0.79 0.02 0.27
Percentage 3.36% 0.08% 1.13%

Table 2. Memory requirements results.

Differencesin memory requirements

maximum | minimum average
Absolute 6,541 1,034 1,762
Percentage 18.92% 3.98% 6.36%

In Table 1 (resp., Table 2), we show the maximum, the
minimum, and the average difference in execution time
(resp., memory requirements) over all test cases. The fig-
ures are shown both as absolute differences and as percent-
ages. Absolute differences are expressed in seconds and
kilobytes for time and memory, respectively.

The results show that our technique can be effectively
applied to Java software with only little overhead in both
execution time and memory requirements. As far as timing
is concerned, the swapping enabled application required a
maximum of 0.79 seconds (3.36%) more than the original
application to be executed. Although the maximum for the
memory requirements is 6,699 more kilobytes (18.92%),
which is a worse result with respect to the timing, the aver-
age overhead is 1,762 kilobytes (6.36%) over all test cases.®

In the second study, we performed different dynamic up-
dates of DEJAVOO. The goal of the study is to validate the
updating mechanism with respect to both the class swap-
ping and the state migration.

DEJAVOO usually terminates its execution after com-
pleting the comparison of two program’s versions. There-

8The comparison was performed by comparing the diagnostic outputs
produced by DEJAVOO and DEJAVOO g4, ¢, Which also report intermedi-
ate analysis results. Although the matching of such outputs is not a proof of
correctness as such, almost all parts of DEJAVOO are involved in the gen-
eration of the diagnostic information, and thus it is unlikely that a problem
in the application would not result in any difference.

9There are a few executions for which the overhead is considerably
higher than the average. We plan to investigate the characteristics of those
executions to assess whether there are special conditions in which our tech-
nique could be improved.

~

A

Updat e- enabl ed application
A

interface
state

wr apper

| i npl enent ati on

Updat es(ADD, DEL, MD) L ===
Queries
|:> Updat e B
: Manager
results
- A
\ N
~
\ ~
\
AN

\\//

C
wr apper

~
-~

D
- wr apper

interface |

N
N

=9\

/

\ | interface |

| state

i npl enent ati on

i npl enent ation

Figure 5. Dusc tool—Swapping-enabled application.

fore, to simulate a continuously running application, we
wrote a driver on top of DEJAVOO that indefinitely reads
an input from the user, performs its analysis on the two pro-
grams, and prints out the results. Based on a set of different
releases of DEJAVOO in our repository, we selected a base
version and a set of four later versions. We then identi-
fied the pairwise differences between the different versions
and built four updates expressed in terms of the sets ADD,
DEL,and MOD. The sizes of the sets for the four updates
are shown in Table 3.

Table 3. Size of updates sets.

update#1 | update#2 | update#3 | update#4
ADD 0 2 1 0
DEL 0 1 0 0
MOD 2 5 3 3

For each update, we performed the following steps:

perform the update,

verify that the update actually occurred,
perform the analysis, and

collect the analysis results.

We then compared the collected results with the results ob-
tained for the four original versions of DEJAVOO consid-
ered. The comparison was performed as for the previous
study. Because the different analyses are performed on the
same two versions of a program, any inconsistency in the
class swapping or in the migration of the state during an
update should result in either a runtime error or an incorrect
result. The results matched for all the analyses and versions.

Some details about the second study are worth reporting.
For the considered updates, we never ran into the problem
of having a method of a class to be updated that was on the
stack (which would have prevented the update from occur-
ring). Also, we never needed to define ad-hoc state map-

ping for any of the considered versions. Finally, the time
required for an update was always in the order of magni-
tude of a few milliseconds (which could be problematic for
real-time applications, but is in general an acceptable time).

Like any empirical study, this study has limitations. We
have considered the application of our technique to a single
program, a single set of four subsequent versions, and a sin-
gle test suite. We cannot therefore claim generality for our
results. However, the program and modified versions we
used are derived from an implementation, the updates we
considered are real updates, and the test suite we used is a
coverage-adequate test suite for the program. Nevertheless,
additional studies with other subjects are needed to address
such questions of external validity.

4 Reated Work

Several dynamic software update techniques and sys-
tems have been presented in the literature [2, 3, 5, 6, 9, 8, 10,
13, 16, 18]. Here, we do not consider updating techniques
based on hardware redundancy, which are quite costly and
have limited application, as we stated in the Introduction.

Among the software-based techniques, several ap-
proaches are targeted to very specific languages and en-
vironments and do not directly compare with our tech-
nique [2, 3, 5, 10, 13].

Other approaches, such as the one proposed by Segal and
Frieder [16] and the one presented by Hicks, Moore, and
Nettles [8], address the problem in a more general way, but,
unlike our technique, rely on the support from the runtime
system to perform dynamic updates.

Gupta, Jalote, and Barua present a framework for dy-
namic updating and address several theoretical issues re-
lated to this task [6]. Although Gupta et al.’s theoretical
findings are of general validity, the work is mostly focused
on validity of updates.

The approach that is most closely related to our tech-
nique is the one presented by Hjalmtysson and Gray [9].
By exploiting the C++’s template mechanism, Hjalmtysson
and Gray’s approach allows for defining C++ classes that
can be dynamically updated. Similar to our technique, the
approach is based on the use of a wrapper/proxy that adds
a level of indirection and permits class swapping. However,
the approach cannot be applied to Java programs because
of the lack of some program features, such as templates,
in the Java language. Moreover, unlike our technique, the
approach by Hjalmtysson and Gray does not permit the up-
dating of static members and, most important, requires the
programmer to explicitly implement a class as swappable.

To the best of our knowledge, our technique is the first
technique that, at the same time, (1) works on Java code, (2)
does not require any runtime-system support and can thus
be applied on any platform that provides a standard imple-
mentation of the JVM, (3) lets parts of the program that are
not involved in the update continue their execution during
the update, (4) automatically builds the swapping-enabled
system without requiring the developer’s intervention (thus
facilitating clear separation between development and up-
dating), and (5) permits updating of both types and imple-
mentation.

5 Conclusion

We presented a new software-based technique for dy-
namic updating of Java software that permits substituting,
adding, and deleting classes without having to stop the pro-
gram. Our technique requires no support from the run-
time system and can thus be applied to any program run-
ning on any standard Java Virtual Machine. Our technique
first modifies the application using class renaming and code
rewriting, to enable the dynamic update, and then performs
the updates by dynamically swapping classes at runtime.

We also presented a tool, Dusc (Dynamic Updating
through Swapping of Classes), that we developed and that
implements our technique. We used Dusc to perform an
empirical study to validate the technique on a real Java sub-
ject. The results of the study show that our technique can be
effectively applied to Java software with only little overhead
in both execution time and program size.

In future work, we plan to improve the existing tool and
to extend our experimentation in two directions. First, we
want to apply our technique to additional subjects, to ver-
ify the statistical meaningfulness of our experimental re-
sults. Second, we want to study different releases of ex-
isting subjects to categorize the types of changes occurring
between different versions of an application; such a clas-
sification will provide important insight on whether our ap-
proach needs to be extended (e.qg., if changes in the interface
of classes between different versions are common, or if ad-
hoc state mappings are often needed).

References

[1] Aristotle Research Group. JABA: Java Architecture for
Bytecode Analysis. http://ww. cc. gat ech. edu/
aristotl e/ Tool s/jaba. htm .

[2] T. Bloom. Dynamic module replacement in a dis-
tributed programming system. Technical Report MIT-
LCS//MIT/LCS/TR-303, Massachusetts Institute of Tech-
nology, Laboratory for Computer Science, Mar. 1983.

[3] R. Fabry. How to design A system in which modules can
be changed on the fly. In Proceedings of the Second Inter-
national Conference on Software Engineering. IEEE, Oct.
1976.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison Wesley, Reading, Mass., 1995.

[5] H. Goullon, R. Isle, and K.-P. Léhr. Dynamic restructuring
in an experimental operating system. IEEE Transactions on
Software Engineering, 4(4):298-307, July 1978.

[6] D. Gupta, P. Jalote, and G. Barua. A formal framework for
on-line software version change. IEEE Transactions on Soft-
ware Engineering, 22(2):120-131, Feb. 1996.

[7] M. Harrold, J. Jones, T. Li, D. Liang, A. Orso, M. Pennings,
S. Sinha, S. Spoon, and A. Gujarathi. Regression test se-
lection for java software. In Proceedings of the ACM Con-
ference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, November 2001.

[8] M. Hicks, J. Moore, and S. Nettles. Dynamic software up-
dating. In C. Norris and J. J. B. Fenwick, editors, Proceed-
ings of the ACM SIGPLAN ’01 Conference on Programming
Language Design and Implementation, volume 36.5 of ACM
SIGPLAN Notices, pages 13-23, N.Y., June 20-22 2001.

[9] G.Hjalmtysson and R. Gray. Dynamic C++ classes. In Pro-
ceedings of the USENIX 1998 Annual Technical Conference,
pages 65-76. USENIX Association, June 15-19 1998.

[10] I. Lee. DYMOS: A Dynamic Modification System. PhD the-
sis, Department of Computer Science, University of Wis-
consin, April 1983.

[11] S. Liang. Java Native Interface: Programmer’s Guide and
Specification. Addison-Wesley, Reading, MA, USA, 1999.

[12] T. Lindholm and F. Yellin. The Java Virtual Machine Spec-
ification. The Java Series. Addison Wesley Longman, Inc.,
second edition, Apr. 1999.

[13] J. Magee, J. Kramer, and M. Sloman. Constructing dis-
tributed systems in conic. IEEE Transactions on Software
Engineering, 15(6):663-675, June 1989.

[14] B. Meyer. Object-Oriented Software Construction. Pren-
tice-Hall, Englewood Cliffs, second edition, 1997.

[15] Sable Group. SooT: A Java Optimization Framework.
http://ww. sabl e. ntgill.cal/soot/.

[16] M. E. Segal and O. Frieder. On-the-fly program modi-
fication: Systems for dynamic updating. 1EEE Software,
10(2):53-65, Mar. 1993.

[17] Sun Microsystems. Java2 Platform, API Specification.
http://java. sun.conij2se/ 1. 3/ docs/ api/.

[18] First International Workshop on Unanticipated Software
Evolution (USE2002), 2002. http://joint.org/
use2002/ sub/ .

